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Abstract.  Practical ambient excitations of engineering structures usually do not comply with the 

stationary-white-noise assumption in traditional operational modal analysis methods due to heavy traffic, 

wind guests, and other disturbances. In order to eliminate spurious modes induced by non-white noise 

inputs, the improved stochastic subspace identification based on a delay index is proposed in this paper for a 

representative kind of stationary non-white noise ambient excitations, which have nonzero autocorrelation 

values near the vertical axis. It relaxes the stationary-white-noise assumption of inputs by avoiding 

corresponding unqualified elements in the Hankel matrix. Details of the improved stochastic subspace 

identification algorithms and determination of the delay index are discussed. Numerical simulations on a 

four-story frame and laboratory vibration experiments on a simply supported beam have demonstrated the 

accuracy and reliability of the proposed method in eliminating spurious modes under non-white noise 

ambient excitations. 
 

Keywords:  operational modal analysis; non-white noise ambient excitations; stochastic subspace 

identification; delay index 

 
 
1. Introduction 
 

As the basis of dynamic analysis, finite element model updating and damage detection, modal 

parameter identification plays an important role in structural health monitoring (Hassiotis 1999, 

Van der Auweraer and Hermans 1999). For civil engineering structures, operational modal analysis 

has become more and more popular because of its applicable and economic benefits (De Roeck et 

al. 2000, Ren and Zong 2004). It dispenses with artificial excitation, and relies on ambient 

vibration measurements, which represent the actual operating conditions of structures. 

Consequently, operational modal parameter identification methods have to process very small 

magnitudes of vibration responses affected by unknown ambient excitations with stochastic noises. 

After several decades of development, researches in operational modal analysis are now focused 

on enhancing the accuracy of estimated results in practical application where noises inevitably 

exist (Dorvash and Pakzad 2012, Reynders 2012). 
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Traditional operational modal analysis methods, such as frequency domain decomposition 
(FDD), peak picking (PP), auto regressive moving average (ARMA) model, natural excitation 
technique (NExT), and stochastic subspace identification (SSI), all assume that the unmeasured 
ambient excitations are stationary white stochastic processes (Yi and Yun 2004). For instance, in 
stochastic subspace identification method, the stationary-white-noise assumption of inputs helps to 
establish direct relationships between dynamic response and structural characteristics, based on 
which system parameters could be identified by singular value decomposition (SVD) and other 
numerical techniques (Peeters and De Roeck 2001, Ren et al. 2004). However, actual ambient 
excitations of engineering structures under operational conditions usually behave with obvious 
non-whiteness and even non-stationarity. They usually contain dominant frequencies due to heavy 
traffic, wind gusts, and other disturbances. Some incidental but prominent disturbances may even 
take place, like typhoons and earthquakes. As a result, those non-white components would bring 
spurious modes and calculation errors into the results of traditional operational modal parameter 
identification methods (Peeters 2000, Mevel et al. 2002, Li et al. 2011). Elimination of spurious 
modes is not easy due to the complexity and insufficient knowledge of operational excitations, 
especially when both of the structural and spurious modes are mixed in close frequency domain. 

Lisowski (2001) summarized the characteristics of structural vibration modes compared to 
harmonic modes in practice, i.e., fast decay, higher mode shape complexity, constant time-
frequency representation, and mutual linear independence, which are used as criteria to identify 
structural modes. As most of the researchers, Reynders et al. (2008) assumed that those spurious 
modes due to constant harmonic components in the inputs normally have zero damping ratios and 
so can be discriminated from structural modes in the final identification results. Brincker et al. 
(2001) pointed out that, in the frequency domain decomposition method, a harmonic frequency 
would produce peaks in nearly all singular values of the power spectral density (PSD) matrix, 
while eigenfrequencies only produce peaks at the first singular value. Jacobsen (2005) stated that 
the probability density function (PDF) of a structural mode is normally distributed, while that of a 
pure harmonic component will have two distinct peaks approaching infinity at ±A, where A is the 
amplitude of the harmonic component. Besides, Mohanty and Rixen (2004a, 2004b, 2006) have 
modified least squares complex exponential (LSCE), Ibrahim time domain (ITD) and eigensystem 
realization algorithm (ERA), which are carried out along with the NExT for operational modal 
analysis, to explicitly take into account the effect of purely harmonic vibrations. Unfortunately, 
they all depend on a threshold that the harmonic frequencies must be known in advance, which is 
not applicable for civil engineering structures in intricate ambient. 

However, unlike machines with rotating or reciprocating parts, non-white components in 
ambient excitations of civil engineering structures may not be standard harmonics that are stably 
lasting without damping. It has been acknowledged by experiments that the dampings of harmonic 
frequencies identified in practice are not too small to be ignored, and direct filtering of harmonic 
components would pollute the measured responses, especially when they are close to structural 
eigenfrequencies. By combining transmissibility measurements under different loading conditions, 
a novel approach has been proposed by Devriendt et al. (2007, 2009), which does not rely on any 
assumption about the ambient excitations. Recently, other researchers are trying to improve it in 
order to avoid the need of multiple loading conditions that are inconvenient and even impossible 
for practical applications (Yan and Ren 2013, Araújo and Laier 2014). 

For stochastic subspace identification, one of the most advanced operational modal analysis 
methods, some relevant efforts have been made for the sake of accurate identification results in 
case of various noises. The most significant improvement is the introduction of stabilization 

188



 
 
 
 
 
 

Operational modal analysis of structures by stochastic subspace identification with a delay index 

diagram (Van Overschee and De Moor 1996, Peeters and De Roeck 2001), in which spurious 
frequencies from numerical and ambient noises would not stabilize with the increase of model 
order according to the preset limits of modal parameters. Goethals et al. (2004) investigated an 
automatic interpretation algorithm for the stabilization diagrams in stochastic subspace 
identification that separates the physical and spurious modes through a simple clustering technique 
and a self-learning classification algorithm. Yu and Ren (2005) combined the empirical mode 
decomposition (EMD) technique with stochastic subspace identification to bypass spurious 
frequencies due to unwanted noises. Goursat and Mevel (2008) pointed out that the damping ratio 
and mode shape sometimes are of no help to distinguish the true modes of structural system from 
spurious ones, and then proposed to check the stability of identified modes for different windows 
on measurement data. Saeed et al. (2008) suggested an alternative stabilization histogram to reject 
spurious modes by combining identified results from the measured output signals of different 
sampling rates. Nonetheless, these techniques above based on the stabilization diagram in 
stochastic subspace identification are mainly effective for spurious modes generated by 
measurement noises and numerical calculation. 

Obviously, the operational modal parameter identification of engineering structures under non-
white noise ambient excitations is still a challenging task. More complicated types of non-white 
noises should be considered that do not stably last without damping as standard harmonics, and 
that could not be recognized by existing techniques like stabilization diagram theory and zero-
damping criterion. This paper focuses on the stationary non-white noise excitations, specifically a 
representative kind of practical non-white noises with nonzero autocorrelation values near the 
vertical axis, which involves many forms in time domain, like colored noises, swept harmonics, 
impacts, and etc (Cooper et al. 1995). By introducing a delay index, the improved stochastic 
subspace identification is developed for engineering structures under such non-white noise 
ambient excitations. Details of the improved identification algorithms and determination of the 
delay index are illustrated. Numerical simulations on a four-story frame and laboratory vibration 
experiments on a simply supported beam have demonstrated that the proposed improved stochastic 
subspace identification based on a delay index is able to eliminate spurious modes induced by non-
white noise excitations. It relaxes the traditional stationary-white-noise assumption of ambient 
excitations in operational modal analysis, and improves the precision of identification results. 
 
 
2. Traditional stochastic subspace identification procedures 
 

The widely-used stochastic subspace identification has two branches: covariance-driven 
method and data-driven method. Both of these two algorithms rely on the stochastic state space 
model of vibrating system, while the differences between them are detailed techniques adopted for 
reducing measurement data and solving system of equations. This section briefly describes the two 
identification procedures, and more detailed information could be found in the references (Van 
Overschee and De Moor 1996, Peeters 2000, Ren et al. 2004). 
 

2.1 Stochastic state space model of a vibrating system 
 

The dynamic model of a structure, i.e., a vibrating system, can be converted to the discrete-time 
stochastic state space model, by applying model reduction, sampling and modelling the noise 
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                 (1) 

where k is the discrete time instant; xk is the discrete state vector; yk is the sampled output vector 
(measurements). A is the discrete state matrix that fully characterizes the dynamics of the system 
by its eigenvalues. C is the discrete output matrix that specifies how the internal states are 
transformed to the outside world. wk is the process noise typically due to processing disturbances 
and modeling inaccuracies, but here also due to the unknown ambient excitation of the structure. vk 
is the measurement noise typically due to sensor inaccuracy, but here also due to the unknown 
ambient excitation of the structure (Peeters and De Roeck 2001). 

The two noise terms, wk and vk, implicitly involving the ambient inputs, are both unmeasurable 
signals assumed to be stationary white noises with zero means and covariance matrices 

 E
p T T

q q pqT
p

w Q S
w v

v S R


    
    

    
                       (2) 

where δpq is the Kronecker delta. This stationary-white-noise assumption cannot be omitted for the 
sake of accurate system identification results in both of the traditional covariance-driven and data-
driven stochastic subspace identification methods. If the ambient excitations contain some 
dominant frequency components, these frequency components will appear as spurious poles of the 
state matrix A and cannot be separated from intrinsic modes of the system (Van Overschee and De 
Moor 1996, Peeters 2000). Based on the stationary-white-noise assumption of ambient excitations, 
a recursive relationship between output covariances (i.e. autocorrelation function for stochastic 

processes with zero means) E[ ]T
i k i kR y y  and system state matrix A is obtained 

   
1

1
1,2,3

i
i

TT i T
i

R CA G
i

R G A C






  


                        (3) 

Here, 1E[ ]T
k kG x y  is the covariance matrix between next state and output. 

 
2.2 Covariance-driven stochastic subspace identification (SSI-COV) 

 
In short, the covariance-driven stochastic subspace identification can be implemented in the 

following six steps (Peeters 2000). 
(1) Form the Hankel matrix jli

iii YY 
  2

1210 )/( R  using output measurements according to  
predefined index i and j, where l is the number of output channels. 
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               (4) 
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It should be noted that the matrix has been divided into past part Yp and future part Yf. 

(2) Calculate the Toeplitz matrix lili
iT R1 . 

 

1 1

1 2
1

2 1 2 2

...

...

... ... ... ...

...

i i

i iT
f pi

i i i

R R R

R R R
T Y Y

R R R





 

 
 
  
 
 
 

 (5) 

(3) Singular value decomposition of the Toeplitz matrix. 

  1 1
1 2 1 1 11

2 2
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0 0
T T
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T USV U U U S V

S V

  
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                  (6) 

The rank of Toeplitz matrix indicates the order of structural system, n. 
(4) Deduce the extended observability matrix Oi and reversed extended stochastic 

controllability matrix Γi. 

 1
1

1

...
...

i
i ii

i

C
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T A G AG G O
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



 
 
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 
 
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                     (7) 

where 

1/2 1/2
1 1 1 1,   T

i iO U S S V                              (8) 

(5) Estimate the system matrices A and C. 
Another Toeplitz matrix T2|i+1 is calculated from a new Hankel matrix (Y0|i-1/Yi+1|2i), and 

compared with T1|i in order to obtain the system matrices. 

2 1 i iiT O A                                  (9) 

 1/2 1/2
1 1 1 12 1 ,   1: ,:T

iiA S U T V S C O l 
                       (10) 

(6) Identify the modal parameters. 
The eigenvalues of discrete and continuous state matrices, A and Ac, are respectively μi and λi, 

which correspond to the same eigenvector matrix Ψ. 

t
diagA i

i
nn

i 
   In

  ,][  ,1 C                   (11) 

Finally, the frequencies, damping ratios and mode shapes of a vibrating system are identified. 

   
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 
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
            (12) 
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2.3 Data-driven stochastic subspace identification (SSI-DATA) 
 

By applying the Kalman filter to the stochastic state space model, a forward innovation model  
is established, and then an optimal prediction of the state vector xk, denoted as k̂x  (k=1,2...), is 
produced by utilizing observations of the outputs up to time k−1 and the available system matrices 
together with the known noise covariances. Eq. (13) below defines the Kalman filter state  
sequence jn

iX Rˆ , and its relationship with the state matrix and output of system 

   
0 1 1

1 0 21
1 1

1 2 0

...

...ˆ ˆ ˆ ˆ ...
... ... ... ...

...

i

ii
i i i i j p
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X x x x A G AG G Y

R R R

 


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 

 
 
  
 
 
 

      (13) 

where Yp is the past part of Hankel matrix. In the light of these ideas, the data-driven stochastic 
subspace identification can be represented by the following six steps (Peeters 2000). 

(1) Form the Hankel matrix jli
iii YY 
  2

1210 )/( R  same as Eq. (4). 

(2) Project the row space of future outputs into that of past outputs through QR decomposition. 
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          (14) 

where (.)† denotes the Moore-Penrose pseudo-inverse of a matrix. 
(3) Singular value decomposition of the projection. 
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                (15) 

(4) Deduce the extended observability matrix Oi and Kalman filter state sequence ˆ
iX . 
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 (16) 

where 

1/2
1 1iO U S , †ˆ

i iiX O                            (17) 

(5) Estimate the system matrices A and C. 
A new way of division is conducted on the Hankel matrix in Eq. (4). 
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Another projection Pi-1 is computed for the sake of 1
ˆ

iX  . 

1 1 1
ˆ=i f p i iY Y O X 

                               (19) 

†
1 11

ˆ
i iiX O                                 (20) 

Then, ˆ
iX  and 1

ˆ
iX   are substituted into the stochastic state space model, and the system 

matrices A and C are estimated in a least square sense, where Vi and Wi are the residuals. 

1 1 †
ˆ ˆ

ˆ ˆ  
ii i

i i
ii i i i

A W AX X
X X

C V CY Y

         
                      

                  (21) 

(6) Identify modal parameters from A and C, similarly as the covariance-driven method. 
 

2.4 Stabilization diagram 
 

It is difficult to determine the exact order of system for singular value decomposition and to get 
clear results of structural modal parameters in practical application because of the numerical and 
ambient noises. Therefore, the stabilization diagram has been introduced. The poles corresponding 
to a certain model order are compared to those of the one-order-lower model. As the model order 
increases, spurious frequencies from numerical and ambient noises would not stabilize according 
to the preset limits of modal parameters (Peeters 2000). 
 
 
3. Improved stochastic subspace identification based on a delay index 
 

Since practical ambient excitations of engineering structures under operational conditions are 
not always white noises, the traditional stochastic subspace identification should be improved in 
order to relax the stationary-white-noise assumption of inputs and eliminate the spurious modes 
caused by non-white noise excitations in identification results. Those non-white noise ambient 
excitation sources might be various and mixed, and it is unrealistic to consider all of their potential 
forms. This paper focuses on the stationary non-white noise ambient inputs whose autocorrelations 
are not zero near the vertical axis. It is a simple but representative kind of non-white noises, 
involving many forms of practical non-white noise ambient excitations in time domain, like 
colored noises, swept harmonics, impacts, and so on. The specific functions of stationary-white-
noise assumption in the traditional stochastic subspace identification are investigated. Then, for the 
aforementioned non-white noise ambient excitations, a delay index is introduced to modify the 
covariance-driven and data-driven stochastic subspace identification methods respectively. 
Furthermore, the determination of delay index is discussed for practical applications. 

 
3.1 The functions of stationary-white-noise assumption in traditional methods 

 
On the basis of the stationary-white-noise assumption in Eq. (2), the recursive relationship 

between output covariances and system state matrix, namely Ri=CAi-1G in Eq. (3), is established. 
It plays a key role in the traditional stochastic subspace identification by relating the measured 
vibration measurements to the dynamic characteristics of structural system. 
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  (22) 

Here, 1E[ ]T
k kw x  to 1E[ ]T

k i kw x  , ][ T
kik xvE  , 1E[ ]T

k kw v  to 1E[ ]T
k i kw v  , and [ ]T

k i kE v v  are  
equal to zeros only under the stationary-white-noise assumption, which ensures wk and vk to be 
zero-mean white noise vector sequences, and independent of state vector xk. 

With this recursive relationship, it is then possible to achieve structural characteristics through 
singular value decomposition of the covariance matrix (covariance-driven method) or projection 
matrix (data-driven method) (Van Overschee and De Moor 1996, Peeters 2000). Thus, in order to 
relax the stationary-white-noise assumption of ambient excitations, a delay index could be 
introduced into the Hankel matrix to suppress the influence of unqualified output covariances of 
this recursive relationship. 
 

3.2 Improved covariance-driven stochastic subspace identification 
 

For stationary non-white noise ambient excitations with nonzero autocorrelations in time 
interval [−t0,t0], the recursive relationship in Eq. (3) can only start from Rx+1, where x=t0×fs (fs is 
the sampling rate) is called the delay index. In order to avoid those unqualified covariances, R1 to 
Rx, a delay index x is introduced into the Hankel matrix to get rid of the corresponding unqualified 
elements, i.e., deleting the first x rows at the front of traditional future part Yf (as shown in Eq. (4)) 
and adding another x rows at its end. Thus, the Hankel matrix becomes 

 

0         1         2          1          

1 2 3

0 1 1 1 2

1 2 12 1

1 2 3

2 1 2 2 1 2

1

j

j

i p i i i i j

x i x i x i x i jfx i x i

x i x i x i x i j

x i x i x i x i j

y y y y

y y y y

Y Y y y y y
y y y yY Y j
y y y y

y y y y



    

         

       

       

   
        





    







    

 2

 
 
 
 
 
 
 
 
 
 
 
 

 (23) 
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The Toeplitz matrix includes Rx+1, Rx+2,... Rx+2i-1, instead of R1, R2,...,R2i-1. 

 
1 1

1
1 2 1 1

1

1
2 1 2 2

...

...
...

... ... ... ...

...

x
x i x i x

x
x i x i xT i

f p i ix x i

x i
x i x i x i

R R R CA

R R R CA
T Y Y A G A G G O

R R R CA

   


    

 

 
    

  
  
        
       


   (24) 

where the reversed extended stochastic controllability matrix Γi remains the same as that of  
traditional identification process, while the extended observability matrix iO  changes to be 

 1 1 Tx x x i
iO CA CA CA                          (25) 

For an observable and controllable structural system, the rank n is computed by singular value 
decomposition of the block Toeplitz matrix Tx+1|x+i. 

  3 3
3 4 3 3 31

4 4

0

0 0
T T

x x i

S V
T USV U U U S V

S V
 

  
      

              (26) 

By comparing Eq. (24) with Eq. (26), the matrices iO  and Γi respectively yield 

1/2 1/2
3 3 3 3,   T

i iO U S S V                             (27) 

In the same way, another Toeplitz matrix is calculated from Hankel matrix (Y0|i-1/Yx+i+1|x+2i), and 
decomposed as 

2 1 i ix x iT O A                                   (28) 

Utilizing these two Toeplitz matrices, the state matrix of a vibrating system is achieved by 

1/2 1/2
3 3 3 32 1

T
x x iA S U T V S                              (29) 

Then, the rest of identification procedures remain the same as the traditional covariance-driven 
stochastic subspace identification as stated in section 2.2. 

 
3.3 Improved data-driven stochastic subspace identification 
 
Similarly, the concept of delay index is introduced to the data-driven stochastic subspace 

identification. Although the computation of output covariances is replaced by projecting the row 
space of future outputs into that of past outputs here, the influence of non-white noise ambient 
excitations can still be removed by avoiding the corresponding unqualified elements in Hankel 
matrix. The Hankel matrix (Y0|i-1/Yx+i|x+2i-1) with a delay index x in Eq. (23) is formulated first, 
whose QR decomposition yields the projection Pi. 

 

1 1 0 1 1

1
1 2 1 0 2

1 1

1
2 1 2 2 1 2 0

... ...

... ... ˆˆ ˆ ˆ=
... ... ... ... ... ... ... ...

... ...

x
x i x i x i

x
x i x i x i

i f p p i i i j i

x i
x i x i x i i i

R R R R R R CA

R R R R R R CA
Y Y Y x x x O
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     
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  

 
      
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   
         
         




iX   (30) 
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where the extended observability matrix iO  has been specified in Eq. (25). 
The singular value decomposition of Pi is then calculated 

  3 3
3 4 3 3 3

4 4

0

0 0
T T

i

S V
USV U U U S V

S V

  
       

                 (31) 

By comparing Eq. (30) with Eq. (31), the matrices iO  and ˆ
iX  respectively yield 

1/2
3 3iO U S , †ˆ

i iiX O                             (32) 

For the sake of system identification, another Hankel matrix (Y0|i/Yx+i+1|x+2i-1) composed of pY   
and fY   is formulated, and one more projection Pi-1 is done to get 1

ˆ
iX  . 

0         1        2       1        

1 2 3
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0 1 2 1

1 2 31 2 1

2 1 2 2 1 2 2
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y y y yY Y j

y y y y



   


   


          

       







   

         







    







    












 
 
 



          (33) 

1 1 1
ˆ=i f p i iY Y O X 

                                (34) 

†
1 11

ˆ =i iiX O                                  (35) 

Then, the rest of identification procedures remain the same as the traditional data-driven 
stochastic subspace identification stated in section 2.3. 

 
3.4 Determination of the delay index 

 
The improved stochastic subspace identification based on a delay index excludes those nonzero 

autocorrelations. Thus, the spurious modes are eliminated and the precision of identification 
results is improved accordingly. The delay index x is just the number of samples in half of the time 
interval with nonzero values of autocorrelation function. It should be noted that the traditional 
stochastic subspace identification is in fact the case of delay index x=0. However, actual ambient 
excitations are unmeasured that could be very complicated. It is difficult to determine the exact 
values of delay index x for various operational vibration measurements in practice. Similar to the 
idea of stabilization diagram, several different values could be attempted for the delay index x with 
an ascending order, and the modal parameters of structural system are calculated sequentially 
using the improved stochastic subspace identification. All the identified stabilization diagrams 
corresponding to different values of delay index are then compared to determine whether the delay 
index is necessary and what is its appropriate value if needed. If a pole could not keep stable in 
different stabilization diagrams as the value of delay index increases, it should be a spurious mode 
irrelevant to the structural system. Also, the delay index could not be too large because it is 
considered that lower lag correlations (Ri with smaller i value) contain more accurate information 
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Fig. 4 Non-white noise input of simulation C3 Fig. 5 Non-white noise input of simulation C4 
 

Fig. 6 Stabilization diagram of simulation C1 
 
 

Four cases were simulated with different forms of excitations respectively. 
• C1: white noise excitation as a benchmark for comparison, which is shown in Fig. 2 with its 
PSD and autocorrelation functions (τ is the time lag in second). 
• C2: non-white noise excitation by adding a 5 s harmonic wave of 15 Hz into a white noise 
process, which is shown in Fig. 3 with its PSD and autocorrelation functions. 
• C3: non-white noise excitation by adding a 10 s colored noise of 10 Hz into a white noise 
process. The colored noise itself was generated from a white noise filtered by a single-degree-
of-freedom system with natural frequency of 10 Hz and damping ratio of 5%. The excitation is 
shown in Fig. 4 with its PSD and autocorrelation functions. 
• C4: non-white noise excitation by combing a colored noise of 10 Hz with a white noise 
process. The colored noise was also generated from a white noise filtered by a single-degree-of-
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freedom system with natural frequency of 10 Hz and damping ratio of 5%. The excitation is 
shown in Fig. 5 with its PSD and autocorrelation functions. 
In the benchmark case C1, four natural frequencies of this frame have been obtained using the 

traditional stochastic subspace identification (i.e., improved stochastic subspace identification with 
delay index x=0): f1=3.90 Hz, f2=11.14 Hz, f3=16.84 Hz, and f4=20.42 Hz. The corresponding 
stabilization diagram is displayed in Fig. 6, together with the PSD of a selected acceleration 
response a3. 

In C2 with non-white noise input, considered as the unknown ambient excitation, the delay  
 
 

(a) Traditional SSI (b) Improved SSI 

Fig. 7 Stabilization diagrams of simulation C2 
 

(a) Traditional SSI (b) Improved SSI 

Fig. 8 Stabilization diagrams of simulation C3 
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(a) Traditional SSI (b) Improved SSI 

Fig. 9 Stabilization diagrams of simulation C4 
 
 

index for improved stochastic subspace identification was determined to be 1000 after attempting 
several times of x=500, 1000, and 1500, according to principles stated in section 3.4. The 
stabilization diagrams obtained by traditional and improved identification methods are compared 
in Fig. 7. As can be seen, the spurious mode arises in the traditional stabilization diagram due to 
non-white component 15 Hz in the excitation, whereas it is successfully rejected after introducing 
the delay index. 

In C3 with non-white noise input, the delay index for improved stochastic subspace 
identification was determined to be 2000. The stabilization diagrams obtained by traditional and 
improved identification methods are compared in Fig. 8. The improved stochastic subspace 
identification based on a delay index can accurately distinguish structural modes from the spurious 
mode due to a non-white component of 10 Hz in excitation, even if it is close to the second 
structural mode. 

In C4, the autocorrelation function of excitation has relative higher absolute values in both 
neighborhood of vertical axis and range of time lag τ>60 s, and its small values in the middle range 
can be approximately considered to be zeros. Because the autocorrelations of too long time lags, 
i.e., τ>60 s, would not be involved in the calculation of stochastic subspace identification, the 
improved method proposed still applies to this type of excitations. The delay index was determined 
to be 1000 after attempts and comparison of x=500, 1000, and 1500, and the corresponding 
stabilization diagram is shown in Fig. 9 (b), following that of the traditional method in Fig. 9 (a). It 
is obvious that the delay index helps to eliminate the spurious mode of 10 Hz. 

Finally, frequencies identified in the four cases by both traditional and improved stochastic 
subspace identification methods are summarized in Table 1. The improved stochastic subspace 
identification reveals its advantages over eliminating spurious modes caused by non-white noise 
excitations, even if some of them are close to the structural modes. And the structural modes 
identified in the cases of non-white noise inputs are accurate as that in the case of white noise 
input. 
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Fig. 12 White noise excitation of experiment C1 Fig. 13 Non-white noise excitation of experiment C2
 

Fig. 14 Non-white noise excitation of experiment C3 Fig. 15 Non-white noise excitation of experiment C4
 
 

system, supplied by Donghua Testing Technology Co., LTD. The sampling rate was 1000 Hz, and 
the sampling time was 100 s. Moreover, the excitation force from vibration exciter should be 
carefully controlled to be moderate during experiments. Too small force could not excite all 
structural modes interested, while too large force would work as a redundant support to the beam, 
and might make the testing system overloaded. 

Four cases of excitations were set up respectively as below. 
• C1: benchmark test with white noise excitation, which is shown in Fig. 12 with its power 
spectral density (PSD) and autocorrelation functions. 
• C2: non-white noise excitation by adding a 2 s harmonic wave of 30 Hz into a white noise  
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(a) Frequencies (b) Mode shapes 

Fig. 16 Identified modal parameters of tested beam in experiment C1 
 

(a) Traditional SSI (b) Improved SSI 

Fig. 17 Stabilization diagrams of experiment C2 
 
 
process, which is shown in Fig. 13 with its PSD and autocorrelation functions. 
• C3: non-white noise excitation by adding a 2 s harmonic wave of 30 Hz and a 2 s harmonic 
wave of 80 Hz simultaneously into a white noise process, which is shown in Fig. 14 with its 
PSD and autocorrelation functions. 
• C4: non-white noise excitation by adding a 2 s harmonic wave of 30 Hz and a 2 s harmonic 
wave of 80 Hz separately into a white noise process, which is shown in Fig. 15 with its PSD 
and autocorrelation functions. 
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(a) Traditional SSI (b) Improved SSI 

Fig. 18 Stabilization diagrams of experiment C3 
 

(a) Traditional SSI (b) Improved SSI 

Fig. 19 Stabilization diagrams of experiment C4 
 
 
It should be noted that these excitations were actually continuously repeated when applied on 

the beam. This makes the excitations to be stationary and more realistic, since the non-white noise 
components of excitations do repeated in practice. 

The acceleration measurements were analyzed using both of the traditional and improved data-
driven stochastic subspace identification methods. From the benchmark case C1, the first three 
natural frequencies of the beam tested were identified to be f1=12.94 Hz, f2=48.83 Hz, and 
f3=108.90 Hz, with their corresponding mode shapes displayed in Fig. 16. In the other three cases  
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Table 2 Identified frequencies of different cases in the laboratory test (unit: Hz) 

Structural 
Mode 

Number 
C1 

C2 C3 C4 

Traditional 
SSI 

Improved 
SSI 

Traditional 
SSI 

Improved 
SSI 

Traditional 
SSI 

Improved 
SSI 

1 12.94 12.95 12.94 12.96 12.95 12.94 12.94 

-- -- 30.00 -- 30.00 -- 30.00 -- 

2 48.83 48.81 48.83 48.65 48.60 48.80 48.82 

-- -- -- -- 80.00 -- 80.00 -- 

3 108.90 108.68 108.62 109.10 108.96 108.79 108.91 

 
 

with non-white noise excitations, C2-C4, delay indexes were all determined to be 2000 after 
attempting several times of x=1000, 2000, and 3000. The stabilization diagrams of both traditional 
and improved stochastic subspace identification methods are respectively shown in Figs. 17-19. 
Table 2 summarizes all the frequency identification results of four cases. As can be seen, the non-
white components 30 Hz and 80 Hz of excitations give rise to spurious modes in stabilization 
diagrams of the traditional stochastic subspace identification. However, the proposed improved 
stochastic subspace identification based on a delay index can effectively avoid these spurious 
modes, and works well no matter whether one or multiple non-white components exist 
simultaneously in the excitations. Under disturbance of non-white components, the identification 
errors of structural modes are within 2% using the improved stochastic subspace identification. 
 
 
6. Conclusions 
 

Due to heavy traffic, wind gusts, and other disturbances, actual ambient excitation sources of 
engineering structures under operational condition are often mixed with some obvious dominant 
frequencies, which violate the stationary-white-noise assumption of inputs in traditional 
operational modal analysis. For a representative kind of practical stationary non-white noise 
ambient excitations whose autocorrelations are not zero near the vertical axis, the improved 
stochastic subspace identification based on a delay index is proposed in this paper. By avoiding 
corresponding unqualified elements in the Hankel matrix, it relaxes the stationary-white-noise 
assumption of inputs, and eliminates the spurious modes due to non-white components in ambient 
excitations. Numerical simulations on a four-story frame and vibration experiments on a simply 
supported beam have confirmed the accuracy and reliability of proposed improved stochastic 
subspace identification. 

The non-white noise excitations applied in both numerical and experimental verifications are 
simple forms, by adding harmonic waves and colored noises into white noise processes. In fact, 
cases under non-white noise ambient excitations with nonzero autocorrelation values near the 
vertical axis, however they behave in time and frequency domains and whether non-white 
frequency components contained are close to the structural modes, would all benefit from this 
improved stochastic subspace identification based on a delay index for successful rejection of 
spurious modes. For practical application, several values of the delay index need to be attempted 
in order to determine the most appropriate one, and meanwhile their corresponding stabilization 
diagrams are compared to eliminate unstable spurious modes. Besides, including more types of 
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non-white noise ambient inputs of engineering structures under operational conditions is still one 
of the future research interests. 
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