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Abstract.  In this paper, an alternative analytical method is presented to evaluate the nonlinear vibration 

behavior of single and double tapered cantilever beams. The admissible lateral displacement function 

satisfying the geometric boundary conditions of a single or double tapered cantilever beam is derived by 

using Rayleigh-Ritz method. Based on the Lagrange method and the Newton Harmonic Balance (NHB) 

method, analytical approximate solutions in closed and explicit form are obtained. These approximate 

solutions show excellent agreement with those of numeric method for small as well as large amplitude. 

Moreover, due to brevity of expressions, the present analytical approximate solutions are convenient to 

investigate effects of various parameters on the large amplitude vibration response of tapered beams. 
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1. Introduction 
 

Non-uniform structural members with variable cross section or material properties like rods, 

beams, plates and shells are commonly used in various aeronautical, civil and mechanical 

engineering fields, such as helicopter rotor blades, airplane wings, wind turbine blades; non-

prismatic pylons of cable-stayed bridges, offshore vertical risers and structure piles, oil platform 

supports, oil-loading terminals, tower structures and moving arms (Swaddiwudhipong and Liu 

1996, Swaddiwudhipong and Liu 1997, Wu and Hsieh 2000, Chen and Liu 2006, Yardimoglu 

2006, Gunda et al. 2007, Pradhan and Sarkar 2009, Attarnejad et al. 2011, Shahba et al. 2011, 

Saboori and Khalili 2012, Bambill et al. 2013, He et al. 2013, Rajasekaran 2013, Rajasekaran 

2013, Baghani et al. 2014, Fang and Zhou 2015, Mao 2015). Nowadays, micro- and nano-sized 

tapered structures and devices such as biosensors, atomic force microscope, microactuators, 

energy harvesting, and nanoprobes have been widely used in micro-electro-mechanical (MEMS) 
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and nano-electro-mechanical systems (NEMS) (Liu et al. 2003, Sadeghi 2012, Akgoz and Civalek 

2013, Mohammadimehr et al. 2015, Sadeghi 2015). It is significant that predicting and 

determining of their static and dynamic characteristics for design and analysis of tapered 

structures. For this purpose, the mechanical analyses of non-uniform beams/columns have been 

investigated by analytical and approximate numerical methods.  

Various types of non-linearity that may arise in beam vibrations has been investigated. 

Georgian (1965) has proposed the linear vibration frequencies of truncated, tapered cantilever 

wedges and cones with a free end for vibration problems of turbine and compressor blades with 

variable cross-sections, and validated his analytical results with experimental ones. For free non-

linear oscillations of an initially straight, uniform elastic bar with free-clamped or free-free end 

conditions, Wagner (1965) has obtained approximate solutions, via combining Hamilton‟s 

principle, Bubnov‟s method and Atkinson‟s superposition method. Based on an iterative numerical 

scheme to obtain results for tapered beams with rectangular and circular cross sections, Rao and 

Rao (1988) presented a simple formulation for the large amplitude free vibrations of tapered 

beams. More recently, Dugush and Eisenberg (2002), Shahba and Rajasekaran (2012), Bambill et 

al. (2013), Rajasekaran (2013) investigated the vibrations of non-uniform beams under moving 

loads, curved Timoshenko beams, rotating Timoshenko beams, helicopter blade modeled as 

Tapered beams of functionally graded materials, respectively. 

Exact solutions were hardly obtained for most cases of tapering. However, for some special 

cases, some special functions such as Bessel or hypergeometric ones are used to obtained solutions 

(Abrate 1995, Auciello and Nole 1998, Raj and Sujith 2005). Yet, exact solutions are restricted to a 

few simple cases that can hardly be applied to more realistic geometries, material properties, 

boundary conditions or loading. Therefore, approximate method is the other choice, such as the 

Rayleigh quotient or the Ritz method (Sato 1980; Auciello and Nole 1998), the Galerkin-like 

reduction (Abdel-Jaber et al. 2008, Karimpour et al. 2012), the method of solving numerically an 

integral equation (Sakiyama 1985), the analog equation method (Katsikadelis and Tsiatas 2004). In 

addition, the Poincaré-Lindstedt method (Lenci et al. 2013), the multiple time scale method 

(Clementi et al. 2015), and the harmonic balance and the time transformation methods (Abdel-

Jaber et al. 2008) are also applied to present analytical approximate solutions for nonlinear 

oscillations of tapered beams. 

This paper is focus on the frequency response curves of a single or double beam undergoing 

nonlinear oscillations determined analytically by the Newton Harmonic Balance (NHB) method 

(Wu et al. 2006), which provides approximate, but accurate results. It is different from other 

literatures that the admissible lateral displacement function satisfying the geometric boundary 

conditions are presented by Rayleigh-Ritz method. It is simpler in expression than that of Bessel 

functions. The accuracy of the present analytical approximate solutions has been illustrated by 

comparing with numeric results and the results from the Classic Harmonic Balance Method (CHB 

method). The main result of this work is that the nonlinear frequency can be investigated by simple 

formulas with respect to amplitude. 

 

 

2. Mathematical model 
 

A schematic of the tapered beam is shown in Fig. 1. The transverse deflection ν and the axial 

shortening u due to bending deformation are along the vertical axis y and the beam neutral axis x, 

respectively. The elastic modulus E, density ρ, and the length L1 of the beam are constants;  
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Fig. 1 A schematic for the tapered beam 

 

 

however, width b and thickness h of the beam vary linearly along the beam neutral axis. The cross- 

sectional area and moment of inertia at the large end are A1=b1h1 and 3

1 1 1 12I bh , respectively,  

where b1 and h1 are the width and the thickness, respectively. While the ones at the small end are  

A0=b0h0 and 3

0 0 0 12I b h , respectively. The thickness of the beam is assumed to be small,  

compared to the length of the beam, so that the effects of rotary inertia and shear deformation can 

be ignored. The beam transverse vibration can be considered to be purely planar and the amplitude 

of vibration may reach large values.  

Lagrange method is used to construct the nonlinear vibration equation. Firstly, using Rayleigh- 

Ritz method (Shames 1985) to obtain an approximate mode  s , and then transverse deflection 

v(s,t) could be expressed as 

      ,v s t s q t  (1) 

where q(t) is an unknown time modulation of the assumed deflection mode  s . Secondly,  

based on the assumed mode method discretizing the continuous Lagrangian function, the nonlinear 

control equation could be expressed as 

 
2 2 3

0 1 2 3( ) ( 2 ) 0q q q qq q q        . (2) 

Where β0, β1, β2, β3, 
are listed in Appendix. For the detail of the derivation about Eq. (2), the 

readers are kindly advised to see the Appendix. 

Next, a new variable is introduced 

 t   . (3) 

Then, the non-dimensional control equation could be written as 

    , , 0f q q q g q     (4) 
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where 

    2 2

1, ,f q q q q q q qq        (5) 

   3

2 3g q q q   . (6) 

The corresponding non-dimensional parameters are 

 1 2 3
1 2 3

0 0 0

2
, ,

  
  

  
    (7) 

and “ ' ” denotes differentiation with respect to τ. The new independent variable is chosen in a way 

such that the solution of Eq. (4) is a periodic function of τ of period 2π. The corresponding 

dimensionless frequency of nonlinear oscillation is given by    . From Eq. (4), the present 

approximate dimensionless linear frequency 2La La     and the corresponding 

fundamental frequency parameter 2La La La         could be obtained. Similarly, 

the exact fundamental frequency parameter is L L L      . 

 

 

3. Methods of solution 
 

In this section, Eq. (4) will be solved by using NHB method (Wu et al. 2006). The initial 

conditions are taken as 

  0q a ,  0 0q   (8) 

where a is the amplitude of the motion. Here, both periodic solution q(τ) nd frequency     

depend on a. The periodic solution q(τ) can be represented by a Fourier series containing only odd 

multiples of τ, i.e. 

 
1

( ) cos[(2 1) ]j

j

q z j 




  . (9) 

Following the single term HB (Harmonic Balance) approximation, set 

 1( ) cosq a   (10) 

which satisfies the initial conditions in Eq. (8). Substituting Eq. (10) into Eq. (4), expanding the 

resulting expression in a trigonometric series, and setting the coefficient of cosτ to vanish, yields 

  3 3 5

2 1 316 12 16 8 6 0a a a a a          (11) 

which can be solved for Ω as function of a as 

  
2

1
2 3

2

1

4 3

4 2

a

a
a

 







 . (12) 

The first approximation to the dimensionless frequency of the nonlinear oscillator is 
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     2
1

3

2

1

1

24 3

4 2
a a

a

a

 



 




  (13) 

and the corresponding approximate periodic solution is 

 1( ) cosq a  , 1( )a t   . (14) 

Initial approximations q1(τ) and Ω1(a) to Eqs. (4) and (8) have been obtained. Next, the 

combination of Newton‟s method and the HB method is formulated to solve Eqs. (4) and (8). The 

first step is the Newton-linearization procedure. The periodic solution and the square of frequency 

of Eq. (4) can be expressed as 

 1 1q q q   , 1 1     . (15) 

Substituting Eq. (15) into Eqs. (4) and (8), and linearizing about the correction terms Δq1 and ΔΩ1 

lead to 

 
       

     

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

, ,

, , , , , ,

q

q q q

f q q q g q g q q

f q q q q f q q q q f q q q q 

      

               

 (16) 

  1 0 0q  ,  1 0 0q  . (17) 

Here, Δq1 is a periodic function of τ of period 2π, and both Δq1 and ΔΩ1 are yet undetermined. The 

resulting linearized equations (16) and (17) in Δq1 and ΔΩ1 will be solved by the HB method.  

The second approximate solution to Eq. (4) could be developed by setting Δq1 in Eq. (16) as 

 1 1( ) (cos cos3 )q z      (18) 

which satisfies initial condition in Eq. (17) at the outset. Substituting Eqs. (10) and (18) into Eq. 

(16), expanding the resulting expression in a trigonometric series and setting the coefficients of 

cosτ and cos 3τ to zeros, respectively, yield 

     3 3 2

2 3 1 1 1 2 3 1 14 3 4 2 4 6 4 0a a a a a z               (19) 

    3 3 2 2

3 1 1 1 2 3 1 1 12 4 3 36 14 0a a a a z              
 

. (20) 

Solving Eqs. (19) and (20) for z1 and ΔΩ1 gives 

 
  

     

4 2 2

1 2 3 1 3 1 2 3 1 3

1 2 2 2 4 2 6

1 2 1 2 3 1 2 1 3 1 3

2 2 3 3
( )

2 64 56 48 10 39 6

a a a
a

a a a a

         

          

   
 

      
 

 (21) 

 
  

   

2 2 3

1 1 2 3 1 3

1 2 2 4 2 6

2 1 2 3 1 2 1 3 1 3

2 2
( )

64 56 48 10 39 6

a a a
z a

a a a

     

         

  


    
. (22) 

Using Eq. (21) results in the second approximations to frequency and periodic solution as 

  
   
   

2 2 2 2 4 2 6

2 1 2 2 3 1 2 3 3 1 3

2 2 2 4 2 6

2 1 2 3 1 2 1 3 1 3

128 48 192 70 69 24

128 2 56 48 2 10 39 12

a a a
a

a a a

          


         

    


    
 (23) 
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and 

      2 1 1 1 2( ) cos cos cos3 ( ),     ( )  q t q q a z a a t              . (24) 

It should be clear how the procedure works for constructing further analytical approximate 

solutions. For brevity, further higher order analytical approximation is omitted. Nevertheless, the 

procedure can be carried out recursively to desired order. In the next section, one could find that 

present formulas are capable of providing excellent analytical approximate representations to 

frequencies of the nonlinear oscillator in Eqs. (4) and (8). 

Furthermore, the formulas of the Classic Harmonic Balance Method (CHB method) with two 

terms in Eqs. (4) and (8) are listed as 

 
   3 2 2 3 2 2 2 3

2 3 H 1 H 3 1 H 3 1 H

2 2

H 2 3

4 3 4 2 9 14 6 16

4 4 6

a a a a a a y y
y

a

          

  

      


 
 (25) 

 
 

3 2 2 3
2 2 3 3 3 3
H 3 2 2 3

1 1 1 1

4 3 9 8

2 18 7 17 18

y a ya ay y

y a ya ay y

    


   

   


   
 (26) 

    H Hcos cos cos3 ,     ( )  q t a y a t         . (27) 

However, Eqs. (25) and (26) should be solved numerically for a given amplitude a, using an 

iterative technique. Namely, the formulas of the CHB method with two terms could only obtain 

numerical solutions to Eqs. (4) and (8), instead of analytical ones. Unlike the CHB method, the 

present method carries out linearization of the governing differential equation prior to harmonic 

balancing. Simple linear algebraic equations are constructed by the present approach, instead of 

nonlinear algebraic equations without analytical solution. Therefore, accurate higher-order 

approximate analytical expressions for period and periodic solution could be established. 

 

 

4. Results and discussion 
 

In this section, accuracy of the proposed analytical approximations will be illustrated by 

comparing with the exact (numerical) solution obtained by the improved shooting method (Yu et 

al. 2012) and the results of the CHB method. For a double tapered beam and wedge-type beam 

(single taper), the present result of linear frequency ωLa, the analytical and experimental ones ωLGA  

and ωLGE from Georgian (1965), and the result ωLRR obtained by Rao and Rao (1988) are firstly 

listed in Tables 1 and 2, respectively. From Tables 1 and 2, excellent agreements of the present 

results with those obtained by experiment method can be observed. Therefore, the present mode  

   1s L   , where ϕ(ξ) is given by Eq. (A.6), is exact enough to calculate the fundamental  

frequency of a single or double tapered beam. 

Let ωN represent the nonlinear vibration frequency of the beam. Accuracy of the proposed 

analytical approximate nonlinear frequency is presented by comparing with the exact (numerical) 

frequency e  obtained by the improved shooting method (Yu et al. 2012) and the frequency ωH 

from the CHB method, where ω1, ω2 represent the first and second analytical approximate 

nonlinear frequencies obtained by present method. For taper ratios α=0.1,0.3,0.5, the nonlinear 

frequencies of a single taper „„wedge-shaped beam‟‟ and a double tapered beam ωe, ω1, ω2 with  
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Table 1 The smallest natural frequency parameters ωL from linear free vibration analysis of a tapered 

cantilever wedge with a free end  

α ωLa ωLGA ωLGE ωLRR 

1.000 3.521 3.516 3.55 3.516 

0.800 3.610 3.608 —— 3.608 

0.797 3.611 —— 3.65 3.610 

0.600 3.737 3.737 —— 3.737 

0.592 3.743 —— 3.82 3.743 

0.407 3.926 —— 3.99 3.926 

0.400 3.934 3.934 —— 3.934 

0.206 4.278 —— 4.31 4.277 

0.200 4.293 4.292 —— 4.292 

 
Table 2 The smallest natural frequency parameters ωL from linear free vibration analysis of a tapered 

cantilever cone with a free end 

α ωLa ωLGA ωLGE ωLRR 

1.000 3.521 3.516 3.59 3.516 

0.803 3.850 —— 3.88 3.849 

0.601 4.316 —— 4.41 4.316 

0.500 4.625 4.625 —— 4.625 

0.411 4.963 —— 4.96 4.962 

0.333 5.329 5.289 —— 5.328 

0.250 5.825 5.85 —— 5.823 

0.207 6.142 —— 6.13 6.140 

0.100 7.209 7.201 —— 7.205 

 

 

Fig. 2 Comparison of the approximate and exact dimensionless nonlinear frequencies for a single 

tapered beam (α=0.1, 0.3, 0.5) 
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Fig. 3 Comparison of the approximate and exact dimensionless nonlinear frequencies for a double 

tapered beam (α=0.1, 0.3, 0.5) 

 

 

Fig. 4 Comparison of approximate phase trajectories with exact ones for a single tapered beam (α=0.1, 

a=0.1, α=0.3, a=0.5 and α=0.5, a=0.8) 

 

 

respect to the amplitude a are shown in Figs. 2 and 3, respectively.  

According to Figs. 2 and 3, the considered example exhibits a softening nonlinear behaviour. 

From Figs. 2 and 3, it also can be concluded that Eqs. (13) and (23) can provide excellent 

approximate frequencies for oscillation amplitude a<0.5, but Eq. (13) is not very accurate when 

a>0.5. Especially, for a single taper „„wedge-shaped beam‟‟ and α=0.1, the relative error of ω2 to ωe  
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Fig. 5 Comparison of approximate phase trajectories with exact ones for a double tapered beam (α=0.1, 

a=0.1, α=0.3, a=0.5 and α=0.5, a=0.8) 

 

 

is only 0.0427% when a=0.8, while the corresponding one for ω1 is 0.657%. Note that vibration 

amplitude a=0.8 is a large value, which corresponds to a ratio of tip displacement/length of the 

beam equal to 0.8. What‟s more, it is easier and more convenient to investigate vibration behavior 

of a tapered beam by applying the analytical approximate solutions than numeric method or the 

CHB method, since the former is an explicit expression in terms of dimensionless oscillation 

amplitude a. 

With α=0.1, a=0.1, α=0.3, a=0.5 and α=0.5, a=0.8, Figs 4 and 5 present comparison of the 

analytical approximate phase trajectories computed by Eqs. (14) and (24) with the exact one 

obtained by numerically integrating Eq. (4), for a single taper „„wedge-shaped beam‟‟ and a double 

tapered beam, respectively. These figures show that the approximate phase trajectories proposed 

from Eq. (24) provide excellent approximations to exact ones. Moreover, the result of Eq. (14) also 

gives generally acceptable approximation to the exact solution when oscillation amplitude is not 

very large, such as a<0.5. 

 

 

5. Conclusions 
 

The Lagrangian method and the NHB method have been successfully applied to investigate 

large amplitude vibration behavior of tapered beams. The novel ideas proposed in this study are 

briefly summarized here:  

• The admissible lateral displacement function satisfying geometrical conditions of tapered a 

cantilever beam is presented.  

• Brief analytical approximate solutions of closed form, for the problem considered, are directly 

obtained.  
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• The present analytical approximate solutions are directly validated by comparing with those 

obtained from numeric method.  

• The proposed method in this paper is general and could be directly applied to study large 

amplitude vibration behavior of circular and rectangular thin plates.  
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Appendix 
 

Construction of Mathematical model 

The potential energy of the system could be expressed as 

 
1 2

0
V ( )

2

LE
I s ds   (A.1) 

and the kinetic energy T of beam can be written as 

 
1 2 2

0

1
( )

2

L

T A s u v ds      (A.2) 

where 

 
 
 

2 22 22 22
2

2 2
1

1

d v dsd d v dv

ds ds dsdv ds




     
        
        

 (A.3) 

and 

 

2 2

0 0 0

1
cos 1

2

s s sdv dv
u s d s d d

ds ds
   

   
        

   
   . (A.4) 

Here u is the axial shortening due to bending deformation. Note that Eqs. (A.3) and (A.4) are 

obtained by assuming (dv/ds)2<<1. The Lagrangian function of the beam can be expressed as 

 L T V  . (A.5) 

An assumed single mode of transverse deflection Eq. (1) is used to discretize the continuous 

Lagrangian function. Let ξ=s/L1, and    1s L   , and ϕ(ξ) is the non-dimensional deflection 

mode and satisfies the condition ϕ(1)=1. For simplicity, ϕ(ξ) which satisfies geometrical boundary 

(i.e. clamped condition) could be taken as  

      
4 4

1 1

1 cosi i i

i i

C C i    
 

      . (A.6) 

Where C1−C4 are arbitrary constants to be determined by Rayleigh-Ritz method (Shames 

1985). Using Eqs. (A.1) - (A.6), the Lagrangian function could be expressed as 

 
2 2 2 2 4

0 1 2 3

1

2

E E
L q q q q q    

 

 
    

 
 (A.7) 

where 

    
1 23

0 1
0

L A d       (A.8) 
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  
 

2
2

1
3

1 1
0 0

d
L A d d

d

  
   



   
   

   
   (A.9) 
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2
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1

2 20
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1 d
I d

L d
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  



 
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 
  (A.10) 

  
   

22 2
1

3 20
1

1 d d
I d

L d d

   
  

 

  
   

   
  (A.11) 

For a double tapered beam,    
2

1 1 1A A       and    
4

1 1 1I I       , here 

0 1 0 1b b h h   . While for wedge-type beams (single taper),    1 1 1A A        and 

   
3

1 1 1I I       , where 0 1 0 1,h h b b   . 

Applying the Euler-Lagrangian relation to the system Lagrangian function 

 0
d L L

dt q q

  
  

  
 (A.12) 

the nonlinear equation of motion is obtained. 

    2 2 3

0 1 2 32 0
E

q q q qq q q   


     . (A.13) 

Eq. (A.13) could be rewritten as 

    2 2 3

0 1 2 32 0q q q qq q q         (A.14) 

where 
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For a double tapered beam,  
2* 1 1A        

and  
4* 1 1I       , here 0 1 0 1b b h h   , 

while for wedge-type beams (single taper),  * 1 1A        
and  

3* 1 1I       , where 

0 1 0 1,h h b b   . 
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