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Abstract.  Different versions of a damage index (DI) along with a formulation to find the number of cycles 

at failure due to fatigue, applicable to reinforced concrete (RC) structures are presented. These are based on 

an energetic analysis method and applicable to both global and local levels. The required data can be found 

either from the numerical simulation of structures or from the experimental tests. A computer program has 

been developed to simulate numerically the nonlinear behavior of RC columns under cyclic loading. The 

proposed DI gives a regular distribution of structural damages up to failure and is validated by the results of 

the tests carried out on RC columns subjected to cyclic loading. In general, the local and global damage 

indices give approximately similar results, while each of them has its own advantages. The advantage of the 

implicit version of DI is that, it allows the comparison of the results with those of the monotonic loading 

case, while the explicit version makes it possible to estimate the number of loading cycles at failure due to 

fatigue, and the advantage of the simplified version is that; the monotonic loading data is not needed for the 

cyclic loading case. 
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1. Introduction 
 

Different types of structures, during their service life, accumulate damage resulting from the 

actions of various environmental cyclic loading and impacts. The cumulative damage causes 

changes in the properties of the structural system, especially in the case of an earthquake or fatigue 

loading. 

The technical rules and practice codes accept a certain amount of damage in the structural 

members during seismic vibrations. The use of a DI enables the quantification of the structural 

damage caused by earthquakes or the other cyclic loading.   

Existing damage indices are based on different characteristics such as the number of cycles 

(Palmgren-Miner, Shah, Oh and Chung), stiffness (Lybas, Roufaiel and Meyer), ductility (Park, 

Gupta, Bertero) and energy (Banon, Darwin, Park and Meyer) and do not indicate correctly the 

real sequence or amount of damage.  

Within the energy-based damage indices, the DI proposed by Meyer (1988) is oversensitive to 
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the number of cycles and is, therefore, not applicable in the case of loading comprising repeated 

cycles. The DI proposed by Park and Ang (1985) which is based on the plastic-hinge approach and 

consists of both deformation and energy terms, has been criticized by Abbasnia et al. (2011) and 

some other researchers. 

The global DI proposed by Amziane and Dubé (2008) is applicable to RC structures under 

uniaxial cyclic bending with axial load. Massumi and Monavari (2013) have proposed an energy-

based method to obtain the target displacement for reinforced concrete frames under cyclic loading 

assuming that the capacity of energy absorbing of the structures for both the pushover and cyclic 

analyses are equal.  

In some of the existing global energy-based damage indices (proposed by Meyer 1988, Garstka 

1993 and also in the implicit and explicit versions presented in this paper), monotonic loading test 

is needed for the cyclic loading cases because in these damage indices, absorbed energy to failure 

of monotonic loading is used as normalizing factor for cyclic loading cases, therefore some 

adaptation measures are also required. Meyer has fixed the extreme limits of DI (zero and 100% at 

intact and failure states), but the distribution of DI between zero and 100% especially for repeated 

cycles is not valid. In the implicit and explicit versions of the DI presented in this paper, a 

monotonic normalizing factor is used. In the implicit version, in addition to usage of a normalizing 

monotonic factor, an adaptation factor is also used. In the simplified version of DI, the cyclic 

normalizing factor is used and therefore no adaptation factor is needed. Rodrigueza and Padillaa 

(2009) have proposed a DI for the seismic analysis of RC members using the hysteretic energy 

dissipated by a structural member and a drift ratio related to the failure of the structure. The index 

was calibrated against observed damage in laboratory tests of RC columns under various 

protocols. An analysis of the parameters involved in the definition of their proposed DI showed the 

importance of displacement history in the drift ratio capacity of structures. Paal et al. (2014) 

presented a method of automatically determining the damage state of RC columns in RC frame 

buildings based only on the automatically detected damage and column information. In addition, 

their proposed method automatically determines the residual drift capacity. All of the methods 

previously developed by the writers were combined with the method newly presented by them and 

the results were compared with those of manual assessment procedures. Iranmanesh and Ansari 

(2014) reported on the development of a methodology to evaluate the energy dissipation in 

reinforced concrete columns with circular cross sections based on the curvatures measured in the 

plastic hinge area. The scope of their study included the evaluation of their proposed damage 

assessment method through hybrid simulation tests on hybrid models of a two-span bridge 

subjected to various amplitudes of near-source ground motions of the 1994 Northridge earthquake. 

Cao et al. (2014) briefly reviewed all available concepts and investigated their relative merits and 

limitations with a view to proposing a new concept based on residual deformation. They proposed 

a DI based on energy, both for static and for cyclic loadings, are compared with those obtained 

using the most widely accepted DI in literature. Their proposed DI demonstrated a rational way to 

predict the extent of damage for a number of case studies. 

Fatigue damage in RC structures is mainly a problem in practical engineering, the fatigue 

failure mechanism rather than the destruction of the static bearing capacity mechanism is complex 

and influenced by many factors. A large number of experimental data shows that the fatigue life of 

the concrete beam is random and the use of probability and reliability theories are required to 

analyze it. Fatigue failure of the concrete elements is gradually accumulated within the damaged 

material. This cumulative process is usually an irreversible and a random energy dissipation 

process. Therefore, the correct description of the material subjected to cyclic loading, fatigue 
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damage accumulation process, and the material fatigue life estimates should be carried out. Li et 

al. (2015) have experimentally investigated the fatigue performance of RC beams with hot-rolled 

ribbed fine-grained steel bars under static and constant-amplitude cyclic loading. Test results 

indicate that, the concrete beams, reinforced with the appropriate amount of HRBF500 bars, can 

survive 2.5 million cycles of constant-amplitude cyclic loading with no apparent signs of damage, 

provided that the initial extreme tensile stress in the steel bars was controlled to less than 150 MPa. 

They also found that, the initial extreme tension steel stress, stress range, and steel ratio were the 

main factors that affected the fatigue properties of RC beams with HRBF500 bars, while the cross-

sectional shape had no significant influence on fatigue properties. Zhu et al. (2014) have proposed 

a procedure for fatigue reliability prediction of PSC highway bridges. Vehicle-bridge coupling 

vibration analysis was performed for obtaining the equivalent moment ranges of a critical section 

of bridges under typical fatigue truck models. Three-dimensional nonlinear mathematical models 

of fatigue trucks are simplified as an eleven-degree-of-freedom system. The limit state functions 

are constructed according to the Miner's linear damage rule, the time-dependent S-N curves of 

prestressing tendons and the site-specific stress cycle prediction. Currently, the engineering 

community has widely used fatigue cumulative damage theory and Miner's linear cumulative 

damage theory proposed by Palmgren. The use of Miner theory is based on the traditional stress-

life curves and stress-number (SN) curves to determine the failure of the structures (Changfeng et 

al. 2012). In Eurocode there are two alternative methods by which fatigue in reinforced concrete 

can be calculated: The Cumulative Damage Method, and the λ-Coefficient Method. Both methods 

consider the loading during the lifetime of a structure, but in a different manner. The Cumulative 

Damage Method calculates a fatigue damage factor which expresses the actual damage occurred in 

the structure in relation to the design fatigue life. The λ-Coefficient Method simply checks if the 

structure fulfills the demands of a given service life (Olsson and Peterson 2010, Amaravel and 

AppaRao 2015). 

The goal of this paper is to present the different versions of a global and a local DI for RC 

structures subjected to monotonic, cyclic and fatigue loading. The implicit, explicit and simplified 

versions of an energy based DI along with a formulation of the number of cycles at failure for 

fatigue indices are presented in this paper. The different versions of the proposed DI are applicable 

for monotonic, cyclic and fatigue loading cases. 

 

 

2. Experimental data 
 

The proposed DI and the numerical simulation have mainly been validated by the experimental 

test results of Garcia Gonzalez performed on the full-scale columns (Garcia Gonzalez 1990, 

Sieffert et al. 1990).  Over 20 tests were performed on columns under biaxial alternating cyclic 

with axial loading. This column is fixed at the bottom, free at the top and is under an axial force of 

500 kN and a cyclic oriented lateral force and axial loading (COLFAL) or an oriented pushover 

force and axial loading (OPFAL) in any direction at the top. The horizontal loads through different 

orientations Ω have been applied on the top of the columns.  

 

 

3. Developed computer program  
 

A computer program entitled Column Analysis and Damage Evaluation Program (CADEP) has 
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been developed by the authors to simulate numerically the behavior of RC columns under cyclic 

loading and DI for rectangular or nonrectangular sections, considering the nonlinear behavior of 

materials. 

CADEP has some sub-programs such as BBCS (biaxial bending column simulation) which is 

used as Base Model, CCS (confined concrete simulation), UCS (unconfined concrete simulation), 

SBS (steel bars simulation), EC (energy calculation) and DIC (damage index calculation). 

In the proposed simulation algorithm used in the CADEP computer program, the column is 

decomposed into two Macro-Elements (ME) positioned between the inflection point (zero 

moment) and the critical sections (maxim moments). Then the nonlinear behavior of ME are 

analyzed. In fact, a Macro-Element acts as fixed bottom-free top half-column under biaxial cyclic 

bending moment (i.e., lateral force in any direction) with axial load. Finally, the two connected 

ME are assembled to determine the global behavior of the column. To find the status of the entire 

column, the applied loads and also the secondary moments, due to P-∆ effect, are considered in the 

simulation of the column. Each section of the column is discretized into fixed rectangular finite 

elements.  For each concrete and reinforcement element a uniaxial behavior is considered and their 

strain distributions are assumed to form a plane which remains a plane during deformation 

(Kinematics Navier’s hypothesis). The stresses of concrete and steel are expressed as nonlinear 

functions of strains in each concrete and steel element. For compressive confined and unconfined 

concrete elements, the cyclic stress-strain model proposed by Sadeghi (2014) and for 

reinforcements, the expression proposed by Park and Kent (1972) based on the Ramberg-Osgood 

cyclic model have been used in the proposed simulation algorithm. The concrete tensile stress is 

assumed to be linear up to the concrete tensile strength. The CEB Code (1978) specification is 

used for the maximum compressive strain value for unconfined concrete. This is particularly 

applicable where there is a loss of concrete cover outside the stirrups. To determine the failure of 

confined concrete in the simulation, the equation proposed by Sheikh (1982) has been used. 

The basic equilibrium is justified over a critical hypothetical cross-section assuming the Navier 

law with an average curvature. The method used qualifies as a “strain plane control process” that 

requires the resolution of a quasi-static simultaneous equations system using a triple iteration 

process over the strains (Sadeghi 2015). The calculations are based on the cyclic nonlinear stress-

strain relationships for concrete and reinforcement FE. In order to reach equilibrium, three main 

strain parameters; the strains at the extreme compressive point, the strains at the extreme tensile 

point and the strain at a point located at another corner of the section are used as three main 

variables. For non-rectangular sections these points may be outside the actual cross-sections and 

be located on the discretizing mesh frontiers. 

The nonlinear responses of a Macro-Element and the column are based mainly on the fixed 

finite elements at the critical sections and on the location of the inflection point. For the entire 

column, deflection is evaluated using an elastic-plastic analytic formulation (Priestley and Park 

1987). The program takes into account the confining effect of the transverse reinforcement and 

simulates the loss of the concrete cover. The CADEP allows the determination of the failure, the 

internal local behavior of critical sections (i.e., strains, stresses, neutral axis position, cracks 

positions, loss of material, microscopic DI, etc.) and the external global behavior of the column 

(curvature, deflection, stiffness, damping ratio, different types of energies for negative and positive 

displacements, global and local damage indices, etc., Sadeghi 2015).  

The simulated results obtained using CADEP are confirmed with the full-scale experimental 

results obtained by other researchers (Garcia Gonzalez 1990, Sieffert et al. 1990, Park and Kent 

1972). 

1024



 

 

 

 

 

 

Damage and fatigue quantification of RC structures 

 

Fig. 1 Comparison of the proposed simulation and experimental test results, BMAL case 

 

 

Fig. 2 Comparison of proposed simulation and experimental test/simulation of Park and Kent (1972), 

CBM case 

 

 

Comparison of numerically simulated results using the proposed simulation algorithm and 

experimental tests on full-scale RC members are reflected in Figs. 1 and 2. The comparison 

indicates a good agreement between the proposed simulation and the experimental test results. In 

Fig. 1, the results of the proposed simulation are compared with the experimental test results of 

Garcia Gonzalez (1990), Sieffert et al. (1990) on the columns tested under Bending Moment and 

Axial Loading (BMAL). In Fig. 2, the results of the proposed simulation and experimental 
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test/simulation of Park and Kent (1972) for a Cyclic Bending Moment (CBM) loading case are 

compared. As these figures show there is a good agreement between simulated and experimental 

results. 

 

 

4. Proposed damage index 
 

4.1 Description of the steps 
 

To find and evaluate the proposed DI, the various steps applied are as follows:  

- studying the different types of energies to find the weighting, importance and the role of 

different types of energy in the damage extension and DI, 

- evaluating the relationship between damages for displacements in the positive and negative 

directions as well as the overall damage,  

- concentrating on the similarities and differences between monotonic and cyclic loading, 

- studying and choosing a normalizing factor,   

- the proposition of a DI, 

- evaluation of the proposed DI by using the experimental tests and simulated results. 

 

4.2 Concepts of “Primary half-cycle” and “following half-cycle” absorbed energy 
 

The absorbed energy in each cycle of loading number “i” is divided into two parts: the primary 

half-cycle absorbed energy (Epi) and the following half-cycle absorbed energy (Efi). Their physical 

meanings are described below by introducing the concepts of “primary half-cycle” (PHC) and 

“following half-cycle” (FHC). After Otes (1985) a “primary half-cycle” is considered when any 

half-cycle reaches a new maximum amplitude; it is followed by a certain number of “following 

half-cycles” with smaller amplitudes. Whenever a certain maximum displacement (δmax)i, 

corresponding to the primary half-cycle (PHC)i is exceeded, a new primary half-cycle (PHC)i+1 is 

established. Every PHC corresponds to a certain damage degree. For more information about the 

practical application of the PHC and FHC absorbed energies please refer to the schematic example 

given in Section 4.5.   

 

4.3 Analyzing different types of energy 
 

In order to consider the weighting, importance and the role of different types of energy in the 

DI, the different energies extracted from the experimental tests and numerical simulation were 

analyzed and compared, as listed below: 

• Absorbed energy “Ea” (area under the force-displacement curve. See also section 4.5), 

• Dissipated energy “Ed” during cyclic loading (force-displacement hysteresis loop area), 

• Recovered energy “Er” (the difference between “Ea” and “Ed”. See also section 4.5), 

• PHC absorbed energy “Ep”, (see sections 4.2 and 4.5), 

• FHC absorbed energy “Ef”, (see sections 4.2 and 4.5).  

The variations of the above-mentioned energies versus top horizontal displacements for column 

C0C3 under the cyclic loading are illustrated in Fig. 3. 

As shown in Fig. 3, the ratio ∑    
    

   /∑    
    

    is approximately equal to 185.  This is one of 

the reasons that the FHC absorbed energy effect should be considered only implicitly (not directly) 
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Fig. 3 Different energies versus top amplitude for column C0C3 under cyclic loading 

 

 

Fig. 4 Force vs. positive PHC displacement, cyclic and monotonic loading 

 

 

or with a big reduction factor.  

In Fig. 4, the variations of the top horizontal force versus only top positive PHC horizontal 

displacements for cyclic loading of column C0C3 is illustrated and is compared with those of the 

column C0M under monotonic loading in positive and negative directions. As demonstrated in this 

figure, in the case of cyclic loading, the force-displacement envelope curve is usually close enough 

to the monotonic curve, while its maximum displacement at failure is smaller than the maximum 

displacement obtained monotonically but its maximum force is greater than the maximum force in  
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Fig. 5 Different energies versus top amplitudes of column C0C3 under cyclic loading. 

 

 

Fig. 6  PHC absorbed energy, calculated for cyclic and monotonic loading 

 

 

monotonic case. Therefore the small difference between total PHC absorbed energy to failure 

(∑    
    

   ) in the cyclic and monotonic loading cases always stand. This can be explained basically 

by the different types of loading employed. 

In Fig. 5 the absorbed, dissipated, recovered and PHC absorbed energies are illustrated versus 

top PHC positive horizontal displacements for column C0C3 under the cyclic loading.  

In Fig. 6 the PHC absorbed energies for columns C0C3 and C0M under the cyclic and 

monotonic loading are illustrated versus top PHC positive horizontal displacements. A quasi-linear 
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relationship connecting the PHC absorbed energy to the PHC positive displacements for cyclic and 

monotonic loading can be observed as shown in Fig. 6. 

Within the range of energies studied, the PHC absorbed energy, calculated for cyclic and 

monotonic loading cases, are very similar.  

Since the experimental test results indicate that the damage to the structural members is caused 

mainly due to the primary half-cycles, the PHC absorbed energy is emphasized and used as the key 

element in the DI proposed by the authors and the secondary energy explain the fatigue 

phenomenon of the structural member. The similarity between the absorbed energy of PHC 

calculated for cyclic and monotonic loading cases is the basis of the DI implicit and explicit 

versions (given in sections 4.6.1 and 4.6.2) which treat the absorbed energy of PHC of monotonic 

loading as the normalizing factor and use C
+
 and C

-
 as adaptation factors for covering the 

differences between cyclic and monotonic cases (see Eqs. (1)-(11)). 

Since in these existing damage indices, absorbed energy to failure of monotonic loading is used 

as a normalizing factor for cyclic loading cases, some adaptation measures are required. Meyer 

and Garstka have fixed the extreme limits of DI (zero and 100% at intact and failure states), but 

their distribution between zero and 100% especially for repeated cycles is not valid (confirmed by 

Garstka 1993).  

 

4.4 Characteristics of an efficient damage index 
 

The real damage caused to structural members should be evaluated by using an efficient 

quantitative ratio of damage (damage index) applicable for the different types of structural 

members and the different kinds of loading with different loading history. 

The DI must be a representative of damage by showing: 

• the realistic visual shape of each damaging phase, 

• realistic strength degree and stability of structural member for each damaging phase, 

• numerical values increasing from 0% up to 100% for intact status to failure. 

 
4.5 Schematic examples of applying PHC and FHC absorbed energies in DI 
 

The evaluation of the PHC and FHC absorbed energies and DI is illustrated by the following 

examples shown schematically in Figs. 7 and 8 for cyclic and monotonic loading.  

Fig. 7 shows typical top horizontal force-displacement curve of a reinforced concrete column 

under cyclic loading. The energy Ep1
+
 of first PHC corresponds to the under curve area of OAA’, 

whereas Ef1
+
 is still zero. If point A corresponded to failure, Ep1

+
 would be equal to ∑       

    
    

and Eu
+ 

while i=imax=n=1 and DI=100%. This concept retains its validity for monotonic loading at 

failure, similar to the case shown in Fig. 8. 

  During unloading toward point B, the recovered energy corresponding to the area under the 

curve AA’B, is recovered, while the DI retains its value. Following the loading cycle to the point C, 

is a “following half-cycle”, with absorbed energy Ef1
+
, corresponding to the under curve area of 

BCO. DI
-
 is still zero. The change in sign of Ep1

+
, Ef1+ and Eu

+
 occur at the points of symmetry 

about the origin of the coordinate system. For the first PHC in the negative displacement range, 

Ep1
-
 is equal to the area under the curve OCDD’. The recovered energy between points D and E is 

not considered, and DI retains its value. For loading between points E and F (first FHC in the 

negative direction), Ef1
-
 is equal to the area under the curve EFO. Further loading in the positive 

direction up to point A” (maximum positive displacement to date) is equal to a new FHC. The area  
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Fig. 7 Schematic illustration of DI calculation procedure for cyclic loading 

 

 

Fig. 8 Schematic illustration of DI calculation procedure for monotonic loading 

 

 

under the curve OFA”A’ is equal to Ef2
+
. After point A”, a new PHC for positive displacements is 

formed. Ep2
+
 is equal to the area under the curve A”GG’A’. Subsequent cycles are analyzed with 

the same procedure and DI is calculated.  

Fig. 8 shows the schematic horizontal force-displacement curve of a reinforced concrete 

column under monotonic loading. Actually monotonic loading is a particular case of cyclic loading 

with the number of loading cycles being equal to one (either in the positive or negative directions). 

The total positive PHC absorbed energy ∑    
    

    at point i corresponds to the area under the curve 

(area of Oii’). If point i corresponded to failure, ∑    
    

    would be equal to ∑    
    

   
 and Eu

+
 while 

i=n=1 and DI=100%.  

 

4.6 Proposed global damage index 
 

4.6.1 Damage index (implicit global version) 
In the case of cyclic loading, the force-displacement envelope curve is usually close enough to 
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the monotonic curve (see Fig. 4), while its maximum displacement at failure is smaller than the 

maximum displacement obtained monotonically but its maximum force is greater than the 

maximum force in monotonic case.  Therefore, the difference between  ∑    
    

    and E
u

+

 and also 

between ∑    
    

    and E
u

-

 always stand at failures.  This can be explained basically by the different 

methods of loading employed.  

The proposed DI expression is equal to the maximum value of DI
+
 and DI

-
, considering DI

+
 for 

the positive displacements and DI
-
 for the negative displacements as follows 

                                                     (1) 

With 

       
∑    

    
   

  
      (for displacements in positive direction)     (2) 

        
∑    

    
   

  
        (for displacements in negative direction)      (3) 

Where: 

The adaptation factors “   and   ” are expressed as follows 

      
     

        
           

     
        

        
                    (4) 

       
     

        
           

     
        

        
         (5) 

and: 

i: cycle number 

   
 : absorbed energy during (PHC)i

+
 in positive direction, 

   
 : absorbed energy during (PHC)i

-
 in negative direction, 

    
  : maximum force applied in positive direction, 

    
  : maximum force applied in negative direction, 

    
  : maximum displacement in positive direction, 

    
 : maximum displacement in negative direction, 

  
 : absorbed energy at failure in the case of positive monotonic loading,  

  
 : absorbed energy at failure in the case of negative monotonic loading.  

In the DI formulae, Eu
+
 and Eu

- 
are used to represent a normalizing factor while the C

+
 and C

-
 

represent adaptation factors, and provide a good relationship between monotonic and cyclic cases 

when DI is calculated. The effects of the following half-cycles are implicitly taken into account in 

the C
+
 and C

-
 factors. 

This implicit version represents both limits for DI (from 0% up to approximately 100% at 

failure) and also a realistic progression of the DI factor between these limits. One of the 

advantages of this version of DI is that, it allows the comparison of the results with those of the 

monotonic loading case 

The developed form of Eqs. (2) and (3) combined with the Eqs. (4) and (5) are written as 

follows: 

     

∑ ∫    
      

 
   
 

       
 

   
   

  
    

(    
        

 )
         

     
        

        
    (for displacements in positive direction) (6) 
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Fig. 9 DI (implicit version) for cyclic (COC3) and monotonic (COM) loading 

 

 

     
∑ ∫    

      
 

   
 

       
 

   
   

  
    

     
        

           

     
        

        
    (for displacements in negative direction) (7) 

Where:   

   
  : applied force during (PHC)i

+ 
in positive direction, 

   
  : applied force during (PHC)i

- 
in negative direction, 

   
 : displacement during (PHC)i

+
 in positive direction,  

   
  : displacement during (PHC)i

- 
in negative direction.  

 Therefore, to apply the global implicit energy-based DI, Eqs. (1), (6) and (7) are used. 

In Fig. 9, the proposed implicit DI calculated for cyclic (COC3) and monotonic (COM) loading 

versus top horizontal displacement in the positive direction is illustrated. 

As is demonstrated in Fig. 9, in the proposed implicit vision of DI, since a monotonic 

normalizing factor and an adaptation factor are used which both depend upon the behaviors of two 

different columns, the value of DI is not exactly 100% at failure phase (e.g., DI at failure phase, 

reaches 99% for column C0C1, 102.7% for column C0C2 and 97.7% for column C0C3). 

 

4.6.2 Damage index (explicit global version) for fatigue case 
Considering directly the weighting of FHC, the formulas (2) and (3) can be reformulated as (8) 

and (9), respectively. This explicit version which consists of Eqs. (1), (8) and (9), yields Eqs. (13), 

(14) and (15) for estimating the number of cycles at failure due to fatigue as follows. 

     
∑    

    
     ∑ ∑   

    
   

   
 
    

  
             (for displacements in positive direction)     (8) 
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∑    

    
     ∑ ∑   

    
   

   
 
    

  
         (for displacements in negative direction)            (9) 

Where: 

i: cycle number (considering all cycles, equals     for regular repeating cases), 

j: group number of constant amplitude cycles, 

k: number of cycles in group j, 

   
  

: absorbed energy during (FHC)k
+
 at each different amplitude number j, 

  
 : fatigue factor for group j (for positive displacements), 

   
  

: absorbed energy during (FHC)k
-
 at each different amplitude number j, 

  
 : fatigue factor for group j (for negative displacements). 

The developed form of Eqs. (8) and (9) are written as follows: 

     

∑ ∫    
      

 
   
 

       
 

   
     ∑ ∑ ∫   

    
  

     
  

 
  
  

 
      
  

 
   

 
    

  
  (for positive displacements)     (10) 

     

∑ ∫    
      

 
   
 

       
 

   
     ∑ ∑ ∫   

    
  

     
  

 
  
  

 
      
  

 
   

 
    

  
  (for negative displacements)     (11) 

Where: 

   
  

: displacement during (FHC)k
+
 at each different amplitude number j,  

   
  

: displacement during (FHC)k
-
 at each different amplitude number j. 

The following half-cycles cannot be taken into account without weighting them.  This has also 

been noticed during the tests of Sieffert et al. (1990). Therefore the reducing factors 
j

+

 and 
j

-
 

(essentially depending on the number of cycles) for the fixed amplitude aj
+
 and aj

-
 should be 

included. These factors are calculated locally for successive δmax
+
 and δmax

-
, by equating the Eqs. 

(6) and (10) and the Eqs. (7) and (11) respectively. 

Therefore, to apply the global explicit energy-based DI, Eqs. (1), (10) and (11) are used. 

 

4.6.3 Estimation of the number of cycles at failure due to fatigue 
An additional advantage of this form of explicit DI is that makes it possible to estimate the 

number of cycles at failure (nj) due to fatigue.   

At failure DI=1, assuming that the loop areas remain constant up to failure, this means that the 

absorbed energy is still the same during each following cycle (i.e.: 
j

fkE  is constant and equals to 

j

fE 1  
for identical cycles of set type j. Similarly for negative displacements 

j

fkE  is constant and 

equals to 
j

fE 1  for identical cycles set type j). In this case  ∑    
    

        
  and ∑    

    
        

 . 

The difference between Eu
+ and ∑    

    
    in monotonic and cyclic loading cases at failure (the area 

under the curve CMM’C’ shown in Fig. 10) is due to the effect of the following half-cycle 

absorbed energy (∑ ∑   
    

   
   

 
   ) which for identical cycles set type j equates to 

 j

fjj En 1  and 

(∑ ∑   
    

   
   

 
   ) equates to 

 j

fjj En 1 . 
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Fig. 10  The difference between Eu

+ and ∑    
    

    in monotonic and cyclic cases at failure 

 

 

According to this discussion nj is obtained as follows for these identical cycles set type j 

                                           (12) 

           
    

                (13) 

With: 

  
   

  
      

 

  
    

    (If at failure: DI = DI
+
, or for DI

+
 > DI

-
)                    (14) 

  
   

  
      

 

  
    

           (If at failure: DI = DI
-
, or for DI

+
 < DI

-
)              (15) 

Where: 

   
 : absorbed energy for a (PHC)j

+
,  

   
  

: absorbed energy for an (FHC)j
+
, 

   
 : absorbed energy for a (PHC)j

-
, 

   
  

: absorbed energy for an (FHC)j
-
. 

The test results show that 
j
+
 and j

- are variable versus amplitude. 

The developed form of Eqs. (13) and (14) are written as follows: 

    
    

  
   ∫   

     
 

   
 

 

  
 ∫   

  
    

  
 
  
  

 

               (If at failure: DI = DI
+
, or for DI

+
 > DI

-
)            (16) 
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   ∫   

     
 

   
 

 

  
 ∫   

  
    

  
 
  
  

 

               (If at failure: DI = DI
-
, or for DI

+
 < DI

-
)             (17) 

Where: 

   
 : maximum displacement for a (PHC)j

+
,  

   
  

: maximum displacement for an (FHC)j
+
, 

   
 : maximum displacement for a (PHC)j

-
, 

   
  

: maximum displacement for an (FHC)j
-
. 

Therefore, to find the number of cycles at failure due to fatigue Eq. (13), (16) and (17) are used. 

Fig. 11 shows the 
j
+
 for cycles producing failure versus aj

+
 amplitudes at failure for cyclic 

loading based on the used experimental test data (Garcia Gonzalez 1990, and Sieffert et al. 1990). 

In this case the following equation is found for 
j
+
 

     
             

             (aj
+
 in mm)         (18) 

Fig. 12 shows the estimated number of cycles producing failure (nj) versus different chosen 

amplitudes at failure for cyclic loading.  In the particular case of a monotonic loading (i.e., n=1) 

from best-fit curve shown in Fig. 12, maximum displacement at failure is obtained at 

approximately 57.5 mm while it was found to be 53 mm in the real monotonic experimental test. 

This corresponds to an 8.5% relative difference. 

For the tested columns the following equation is found for nj 

                             (aj in mm)                (19) 

 

 

 
Fig. 11 

j
+
 for cycles producing failure 
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Fig. 12 nj versus different chosen amplitudes at failure for cyclic loading 

 

  

4.6.4 Damage index (simplified global version) 
This version is simple, direct and more exact at failure for the cases of cyclic loading, but it is 

not valid for fatigue loading.  

In this version the summation of PHC absorbed energy to any cycle is normalized to the 

summation of PHC absorbed energy to failure for the same cyclic loading and on the same 

structural member.  Since in this version, the same cyclic loading model and structural member are 

used for damage values and normalizing factor, DI reaches exactly 100% at failure. In this case, a 

monotonic loading test is not needed for the cyclic loading case (Sadeghi 2011).   

This simplified version consists of the Eqs. (1), (20) and (21) as follows 

     
∑    

    
   

∑    
    

   

                   (for displacements in positive direction)           (20) 

       
∑    

    
   

∑    
    

   

          (for displacements in negative direction)          (21) 

The developed form of Eqs. (20) and (21) are written as follows 

        
∑ ∫    

      
    

       

   
   

∑ ∫    
      

 
   

       

   
   

         (for displacements in positive direction)           (22) 

      
∑ ∫    

      
    

       

   
   

∑ ∫    
      

 
   

       

   
   

   (for displacements in negative direction)        (23) 

Therefore, to apply the global simplified DI, Eqs. (1), (22) and (23) are used. 

In the implicit and explicit versions, the absorbed energy at the failure of monotonic case 
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loading is used as a normalizing factor therefore in those cases, DI is approximately 100% at 

failure and the monotonic test or numerical simulation is applicable. While in the simplified 

version, DI reaches exactly 100% at failure for cyclic loading and monotonic loading test or 

numerical simulation is not required. 

In Figs. 13 and 14, the simplified DI calculated for cyclic and monotonic loading versus top 

horizontal displacement in the positive direction is shown.  

In Fig. 13, the proposed simplified DI calculated for columns C0C1 and C0M under cyclic and 

 

 

 

Fig. 13 Proposed simplified DI, calculated for cyclic and monotonic loading, columns C0C1 and C0M 

 

 

Fig. 14 Proposed simplified DI, calculated for cyclic and monotonic loading, columns C0C3 and C0M 
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Fig. 15  DI calculated based on experimental and numerical simulation results, monotonic loading case 

 

 

Fig. 16 DI calculated based on experimental and numerical simulation results, cyclic loading case 

 

 

monotonic loading versus top horizontal displacement are shown. As this figure indicates, in the 

experimental test, column C0C1 is damaged during both positive and negative displacements, 

therefore the increasing of DI is due to both “D
+
” and “D

-
”, while the column C0C3 has been 

damaged only during positive displacements,
 
as shown in Fig. 14. 

Figs. 15 and 16 represent the comparison between values of the proposed simplified global DI 

calculated based on experimental tests (Garcia Gonzalez 1990, Sieffert et al. 1990), and numerical 

simulation results simulated by using CADEP for monotonic and cyclic loading (C0M and C0C3), 
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respectively. This comparison shows that for the calculation of DI, performing the expensive 

experimental tests is not necessary and using an analytical method such as finite element method is 

sufficient. 

 
4.7 Proposed local damage index 
 

Based on the evidence that the structural member is highly affected in the critical zone 

(section), the main bending effect is due to the curvature registered at critical sections. Actually, 

after the peak value on the response curve of the critical section, very significant local effects 

occur at the critical section where a pseudoplastic hinge appears. Once the peak has passed, 

curvature enhancement is concentrated in the critical zone (section), while in the other regions, the 

curvatures decrease rapidly to near zero and cracks openings are closed. To determine force-

displacement relationships for different sections of a structural member to apply the global energy-

based DI requires a time-consuming calculation of the structural member’s displacement. Further, 

the structural member response is highly affected in the critical zone (section), a comparable local 

moment-curvature based DI, derived from the global DI is proposed as follows. The calculation of 

the different terms of the different versions of the proposed local DI is performed using the same 

procedure as explained in section 4.6 for global DI by replacing force-displacement curve by the 

moment-curvature curve. The different versions of the proposed local DI are given below. 

In general, since there is a strong interaction between local and global behaviors of the columns 

under lateral loading due to the role of the critical section, the local and global damage indices 

give approximately similar results, while each of them has its own advantages. 

 

4.7.1 Damage index (implicit local version) 
Eqs. (1), (24) and (25) are proposed to calculate the implicit local DI 

     

∑ ∫    
      

 
   

 

       
 

   
   

   
    

(    
        

 )
         

     
        

        
      (for positive loading directions)     (24) 

     
∑ ∫    

      
 

   
 

       
 

   
   

   
    

     
        

           

     
        

        
       (for negative loading directions)    (25) 

Where:   

   
 : applied bending moments during (PHC)i

+
 in positive direction, 

   
 : applied bending moments during (PHC)i

- 
in negative direction, 

   
 : curvature during (PHC)i

+
 for positive PHC curvature,  

   
 : curvature during (PHC)i

- 
for negative PHC curvature,   

    
  : maximum moment applied in positive direction, 

    
  : maximum moment applied in negative direction, 

    
  : maximum curvature in positive direction, 

    
 : maximum curvature in negative direction, 

   
 : area under the curve of moment-curvature

 
at failure in the case of positive monotonic 

loading,  

   
 : area under the curve of moment-curvature at failure in the case of negative monotonic 

loading.  
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Therefore, to apply the local implicit energy-based DI, Eqs. (1), (24) and (25) are used. 

 

4.7.2 Damage index (explicit local version) 
Eqs. (1), (25) and (26) are proposed to calculate the explicit local DI 

     
∑ ∫    

      
    

       

   
     ∑ ∑ ∫   

    
  

     
     

       

 
   

 
    

  
    (for positive loading directions)   (26) 

     
∑ ∫    

      
    

       

   
     ∑ ∑ ∫   

    
  

     
     

       

 
   

 
    

  
    (for negative loading directions)  (27) 

Where:   

   
  

: curvature during (FHC)k
+
 at each different amplitude number j,  

   
  

: curvature during (FHC)k
-
 at each different amplitude number j. 

 

4.7.3 Estimation of the number of cycles at failure due to fatigue in local level 
Eqs. (13), (28) and (29) are used to estimate the number of cycles at failure due to fatigue in 

local level 

  
    

   
   ∫   

     
    

 

  
 ∫   

  
    

     
 

    (If at failure: DI = DI
+
, or for DI

+
 > DI

-
)   (28) 

  
    

   
   ∫   

     
    

 

  
 ∫   

  
    

     
 

    (If at failure: DI = DI
-
, or for DI

+
 < DI

-
)               (29) 

 

4.7.4 Damage index (simplified local version) 
The Eqs. (1), (30) and (31) are used for calculation of the proposed simplified local DI 

     
∑ ∫    

      
    

       

   
   

∑ ∫    
      

    
       

   
   

  (for positive loading directions)                         (30) 

     
∑ ∫    

      
    

       

   
   

∑ ∫    
      

    
       

   
   

     (for negative loading directions)             (31) 

 

 

5. Relation between different phases of damage and damage index  
 

Table 1 allows comparison of the calculated global DI, on the basis of the different submitted 

versions and the damaging phase ranges for the tested column C0C3 under cyclic loading. 

The results of the calculation of the DI applying implicit, explicit or simplified versions give a 

regular distribution of structural damages up to failure and are very similar.   

 

 

6.  Practical use of damage index 
 
The practical use of the proposed DI is illustrated schematically in Fig. 17. 
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Table 1 Global DI and observed damaging phases for the tested column C0C3 under cyclic loading 

Damaging phases 

(Visual observations) 
δmax

+ 

(mm) 
Implicit & explicit DI (%) Simplified DI (%) 

Phase A (First tension cracks) 

2.4 1.21 1.24 

5.0 

7.5 

4.45 

8.48 

4.56 

8.68 

Phase B 

(Tension crack development) 

10.1 

12.6 

15.2 

17.8 

20.2 

13.15 

18.85 

25.08 

32.31 

39.83 

13.46 

19.30 

25.69 

33.09 

40.79 

Phase C 

(First compression cracks  appearance) 
22.4 48.47 49.63 

Phase D 

(Compression cracks development) 

25.4 

27.9 

30.3 

32.9 

55.99 

63.64 

70.53 

78.55 

57.33 

65.17 

72.23 

80.44 

Phase E 

(Failure of column) 

35.5 

38.1 

40.2 

86.21 

92.80 

97.65 

88.28 

95.04 

100.00 

 

 

Fig. 17  Schematic illustration of the practical use of DI 

 

 

In order to calculate the global DI, the force-displacement data and to calculate the local DI, the 

moment-curvature data for the critical section are required.  This data can be found from numerical 

simulation of structures. In deciding after an earthquake, whether to repair or demolish a structure, 

the calculated DI is compared with an allowable damage index ( DI ) which could be determined 

by technical rules and practice codes for different types of structures according to cost and safety  
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Fig. 18 Meyer’s DI, calculated for tested columns under cyclic and monotonic loading 

 

 

Fig. 19 Comparison of the proposed and Meyer’s damage indices calculated for different loading cases 

 

 

criteria (see Fig. 17). 

For the tested RC columns under cyclic oriented lateral loading and axial loading, the values of 

the proposed DI, reached about 5% in the phase of the first tensile cracks appearance, about 45% 

when the first compression cracks occurred, and 100% at failure. 

 

 

7. Comparison of the proposed and Meyer’s damage indices 
 

In Fig. 18, the Meyer’s index calculated for columns C0C3 and C0M under cyclic and 

1042



 

 

 

 

 

 

Damage and fatigue quantification of RC structures 

monotonic loading, versus top horizontal displacement are presented. Comparison of the values 

given in Figs. 13, 14 and 18 with damage phases show that the DI proposed by Meyer is 

oversensitive to the number of cycles and is therefore, not applicable in the case of loading 

comprising repeated cycles, while the proposed DI provides a regular distribution adapted to 

different phases of damage up to failure for any type of loading. 

In monotonic loading cases, the proposed index and Meyer’s index provide exactly the same 

results. 

In Fig. 19, the proposed global DI calculated for columns C0C3 and C0M under cyclic and 

monotonic loading and Meyer’s index versus top PHC horizontal displacement in the positive 

direction are compared. As shown in this figure, the DI proposed by Meyer is oversensitive to the 

number of cycles and is therefore, not applicable in the case of loading comprising repeated cycles. 

For example, applying the column test results under cyclic loading with 20 repeated cycles per 

amplitude shows that Meyer's DI reaches 70% in the phase of first tension crack appearance at the 

amplitude of 5 mm, and 99.9% in the phase of compression cracks appearance at the amplitude of 

22.5 mm, while in these phases the proposed DI reaches 4.5% and about 49%, respectively. 

 

 

8. Conclusions  
 

The different versions of the DI proposed in this paper are applicable to RC structures 

subjected to both cyclic and monotonic loading. They have been validated both by comparing the 

experimental data obtained in laboratory tests and by nonlinear numerical simulation. They are 

practical, quick and cost-effective means for determining whether to repair or demolish structures 

after an earthquake or any other type of cyclic loading. They can also be employed in the design of 

new structures as design parameters. The values of the proposed DI, reached approximately 5% in 

the phase of the first tensile cracks appearance, about 50% when the first compression cracks 

occurred, and 100% at failure. The index considers the real temporal sequence of loading cycles, 

providing a regular distribution adapted to different phases of damage up to failure and can be 

applied to RC structures under both cyclic and monotonic loading in any direction. The 

comparison between values of the proposed DI calculated based on experimental test data and 

numerical simulation results for a cyclic loading case shows that to calculate DI, performing the 

expensive experimental tests is not necessary and using a nonlinear structural analytical simulation 

is sufficient. To apply this index, the force-displacement or moment-curvature data of the 

structural member is required for the global or local approaches, respectively. In general, since 

there is a strong interaction between local and global behaviors of the columns under lateral 

loading, due to the role of the critical section, the local and global damage indices give 

approximately similar results, while each of them has its own advantages. 
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