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Abstract.  The study is to investigate the free vibration of antisymmetric angle-ply conical shells having 

non-uniform sinusoidal thickness variation. The arbitrarily varying thickness is considered in the axial 

direction of the shell. The vibrational behavior of shear deformable conical shells is analyzed for three 

different support conditions. The coupled differential equations in terms displacement and rotational 

functions are obtained. These displacement and rotational functions are invariantly approximated using 

cubic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency 

parameter and an associated eigenvector of spline coefficients. The vibration characteristic of the shells is 

examined for cone angle, aspect ratio, sinusoidal thickness variation, layer number, stacking sequence, and 

boundary conditions. 
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1. Introduction 
 

The shells of non-uniform thickness are used in ship, rocket, missile and marine industry. The 

main characteristic of variable thickness shells is to alter frequency, decrease weight, size and 

ultimately cost of the structure. The composite laminated shell structures have gained interest of 

engineers during last few decades due to specific properties tailored by suitable arrangement of the 

stacking sequence of the layers. Moreover, required properties of the structure can be attained by 

selecting the best aspect of the constituent layers in terms of choice of materials, number of layups, 

thickness variation of each layer and boundary conditions. 

Few researchers worked on anti-symmetric angle-ply structures. Among them the influence of 

boundary conditions and transverse shear on vibration of angle-ply laminated plates and 

cylindrical shells was investigated by Soldatos and Messina (2001). Angle-ply laminated conical 

shells were analysed for their post buckling characteristics by Patel et al. (2008). Further, 
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Viswanathan and Kim (2008) who studied free vibration of anti-symmetric angle-ply plates 

including shear deformation. Moreover, State space differential quadrature method was used by 

Alibeigloo (2009) to examine the static and vibration of axi-symmetric angle-ply truncated conical 

shells. Recently, Qu et al. (2013) analysed anti-symmetric angle-ply laminates using unified 

formulation for vibration analysis of composite laminated shells. Also, Xiang et al. (2014) 

analysed angle-ply and cross ply laminates of conical, cylindrical shells and annular plates 

structures.  

But to the authors knowledge few researchers studied the free vibration of conical shells having 

variable thickness. Kang (2014) investigated the free vibration of conical shells with linear 

thickness variation using Ritz method. Selahi et al. (2014) analyse the functionally graded 

truncated conical shells of variable thickness using differential quadrature method and fourier 

series expansion. Free vibration of ring-stiffened conical shell of variable thickness loading with 

fluid was analysed by Liu et al. (2014). Sofiyev et al. (2009) studied the vibration of orthotropic 

conical shells varying with material properties, in which the variation being along the thickness 

direction. 

Different numerical techniques were used to analyse frequency of plates and shells. Among 

them Lal and Rani (2014) studied the mode shapes and frequencies of sandwich annular circular 

plates using differential quadrature method. Modified Fourier series was used to analyse the 

vibration of conical shells by Jin et al. (2014). Dey and Karmakar (2012) investigated the natural 

frequency of delaminated rotating conical shells using finite element approach. Recently, 

Chernobryvko (2014) used Ritz method to analyse the free vibration of thin parabolic shells. 

Akbari et al. (2014) analyse free vibration of conical panels consisting of functionally graded 

materials using differential quadrature method. Haar wavelet method was used to analyse the free 

vibration of functionally graded conical shells and annular circular plates (Xie 2014). Ansari used 

a novel variational numerical method for analyzing the free vibration of composite conical shell 

using Rayleigh-Ritz method. Free and forced vibration of coupled conical-cylindrical shells were 

analysed using Fourier-Ritz method (Ma et al. 2014). Analytical and experimental study of free 

vibration of joined conical shells was done by Shakouri and Kouchakzadeh (2014). Galerkin and 

semi inverse method was used by Sofiyev (2014) to analyse the large-amplitude vibration of non-

homogeneous composite conical shells. Sofiyev and Kuruoglu (2014) studied the combined 

influences of shear deformation and rotary inertia on the frequencies of cross-ply laminated 

orthotropic cylindrical shells. Su et al. (2014) studied the three-dimensional vibration analysis of 

thick functionally graded conical, cylindrical shell and annular plate structures using Fourier 

series. 

Firouz-Abadi (2014) higher order Shear deformation theory was used to analyse thick conical 

shells using Forbenius method. Further, Higher-order equivalent single layer theories were used by 

Tornabene et al. (2014) to investigate free vibration of doubly-curved shells. Moreover, stress and 

strain recovery for doubly-curved sandwich shells were investigated using higher-order equivalent 

single layer theory (Tornabene et al. 2014). 

Wu et al. (2015) used domain decomposition method to study free vibration of conical shell 

resting on Pasternak foundation. In addition to that, Zarouni et al. (2014) analysed the free 

vibration of fiber reinforced composite conical shells resting on Pasternak-type elastic foundation 

using Ritz and Galerkin methods. Zhang et al. (2015) analysed free vibration analysis of four-

unknown shear deformable functionally graded cylindrical micro shells based on the strain 

gradient elasticity theory. Buckling of heterogeneous orthotropic composite conical shells under 

external pressures with shear theory has been studied by Sofiyev (2016). In his work the equation  

1002



 

 

 

 

 

 

Vibration analysis of a shear deformed anti-symmetric angle-ply conical shells... 

 

   
 

 

o 

 

 
 

 

 

 

 

 

 

 

Fig. 1 Coordinate system and geometry of truncated conical shell 

 

 

of conical shells  were derived using Donnell shell theory and approximated using Galerkin‟s 

method.  

This paper aims to investigate the free vibration of anti-symmetric angle-ply conical shells of 

non-uniform sinusoidal thickness variation including shear deformation and applying spline 

approximation technique. The displacement and rotational functions are predicted using cubic 

spline. Collocation with these splines yields a set of field equations which along with the 

equations of boundary conditions, reduce to system of homogeneous simultaneous algebraic 

equations on the assumed spline coefficients. Then the problem is solved using eigensolution 

technique to obtain the frequency parameter. The eigenvector are the spline coefficients from 

which the mode shapes can be constructed. The stability of the conical structure is analysed with 

respect to the cone angle and length ratio in addition to that, the effect of lamination material, 

lamination scheme and boundary conditions are analysed on the value of frequency parameter.  

Graphs and tables signify the obtained results. 
 

 

2. Formulation of the problem 
 

Consider a truncated conical shell of constant thickness shown in Fig. 1. The orthogonal 

coordinate system (x,θ,z) is fixed at its reference surface, which is taken to be at the middle 

surface. The radius of the cone at any point along its length is r=xsinα. The radius at the small end 

of the cone is ra=asinα
 
and the other end is rb=bsinα. α is the semi-vertical angle and ℓ is the length 

of the cone along its generator. The thickness variation is assumed along the axial direction is 

considered as x-axis. 

The stress resultants Nij
 
and moment resultants Mij are defined as 

   , , , , , ,, ,x x x x x xz z

z

N N N Q Q dz            
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   , , ,, ,x x x x

z

M M M z dz                             (1) 

The stress-strain relations of the k-th layer by neglecting the transverse normal strain and stress, 

are of the form 

( ) ( ) ( ) ( ) ( )

11 12 16

( ) ( ) ( ) ( ) ( )

12 22 26

( ) ( ) ( ) ( ) ( )

16 26 66

( ) ( ) ( ) ( )

44 45

( ) ( ) ( ) ( )

45 55

0 0

0 0

0 0

0 0 0

0 0 0

k k k k k

x x

k k k k k

k k k k k

x x

k k k k

z z

k k k k

xz xz

Q Q Q

Q Q Q

Q Q Q

Q Q

Q Q

 

 

 

 

 

 

 

 

     
     
     
     

     
     
     
    
     



          (2) 

When the materials are oriented at an angle θ with the x-axis, the transformed stress-strain 

relations are 

( ) ( ) ( ) ( ) ( )

11 12 16

( ) ( ) ( ) ( ) ( )

12 22 26

( ) ( ) ( ) ( ) ( )

16 26 66

( ) ( ) ( ) ( )

44 45

( ) ( ) ( ) ( )

45 55

0 0

0 0

0 0

0 0 0

0 0 0

k k k k k

x x

k k k k k

k k k k k

x x

k k k k

z z

k k k k

xz xz

Q Q Q

Q Q Q

Q Q Q

Q Q

Q Q

 

 

 

 

 

 

 

 

     
     
     
     

     
     
     
    
     



    (3) 

where 
( )k

ijQ  and 
( )k

ijQ  are given by Viswanathan and Lee (2007). 

The strain-displacement relations for conical shells having the radius r is given as 

0 01
, ,

sin sin sin

x

x

u v w z
z

x x x x x





 
 

    

  
    
   

xz x

w

x
 


 


, 

0 01 1

sin sin

x

x

u v
z

x x x x





 


   

   
    

    
, 01

sin sin
z

vw

x x
  

  


  


, 

,x
x

x









01

sinx





 





 and 

1

sin

x
x

x x




 


 

 
 

 
        (4) 

Substituting Eq. (4) into Eq. (3) and then into Eq. (1) we get the equations of stress-resultants 

and moment resultants as 

0

11 12 16 11 12 16

0
12 22 26 12 22 26

0
16 26 66 16 26 66

11 12 16 11 12 16

12 22 26 12 22 26

16 26 66 16 26 66

xx

x x

x x

x x

A A A B B BN

A A A B B BN

N A A A B B B

M B B B D D D

M B B B D D D

M B B B D D D

 

 

 

 













   
   
   
   
   
   
   
   

    
     

      (    5) 
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and 

0

44 45

0
45 55

z

x xz

Q A A
K

Q A A

 



    
       

     
                 (6) 

The thickness of the k-th layer is assumed in the form 

0( ) ( )k kh x h g x                                 (7) 

where h0k is a constant thickness where ( ) sinS

x a
g x C

l


 
  

 
 and CS is the coefficients of 

sinusoidal variation. 

Since the thickness is assumed to be varying along the axial direction, we define the elastic 

coefficients Aij, Bij and Dij (extensional, bending-extensional coupling and bending stiffness‟s) 

corresponding to layers of uniform thickness with superscript „c‟ as 

( )c
ij ijA A g x , ( )c

ij ijB B g x , ( )c
ij ijD D g x  

( )

1( )c k

ij ij k k

k

A Q z z   , 
( ) 2 2

1

1
( )

2

c k

ij ij k k

k

B Q z z   ,         (8) 

( ) 3 3

1

1
( )

3

c k

ij ij k k

k

D Q z z       for     , 1,2,6i j  , 

and              ( )

1( )c k

ij ij k k

k

A K Q z z        for     , 4,5i j  ,    (9) 

Here K is the shear correction factor meanwhile zk-1 and zk are boundaries of k-th layer. The 

value for the shear correction factor K is chosen from the lamination scheme (Madabhusi-Raman 

and Davalos 1996, Pai and Schulz 1999). 

The elastic coefficients A16, A26, A45, B11, B12, B22, B66, D16 and D26 are identically zero for 

antisymmetric angle-ply laminates (George 1999, Gibson 1994, Reddy 1997).  

The displacement components u0, v0, w and shear rotations ψx, ψθ are assumed in a separable 

form as follows 

0( , , ) ( ) n i tu x t U x e e    

0( , , ) ( ) n i tv x t V x e e    

( , , ) ( ) n i tw x t W x e e    

( , , ) ( ) n i t

x xx t x e e     

( , , ) ( ) n i tx t x e e 
   

                          
(10)

 

where n is the circumferential node number and ω is the angular frequency. 

Substituting Eq. (5) and Eq. (6) in to the equilibrium equations and then substituting Eq. (10), 

the resulting equation becomes as ordinary differential equations in terms of displacements and 

rotational functions and can be written in the matrix form as  
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11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

0

0

0

0

0

x

L L L L L U

L L L L L V

L L L L L W

L L L L L

L L L L L 

     
     
     

        
          
         

                        (11) 

where 

2 2
' ' 2

11 11 11 11 12 22 66 12 2 2 2

1 1 1

sin

d d d n
L A g A g A g A g A g A g I

dx x dx xdx x x



         

'
12 12 66 12 22 662 2sin sin sin sin sin

n d n d n n n
L A g A g A g A g A g

x dx x dx x x x    
      

'
13 12 12 22 2

1 1 1

tan tan tan

d
L A g A g A g

x dx x x  
    

'
14 16 162

sin sin

n d n
L B g B g

x dx x 
   

2 2
' '

15 16 16 26 26 26 162 2 2 2

1 1 1

sin

d d d n
L B g B g B g B g B g B g

dx x dx xdx x x 
       

'
21 12 66 22 66 662 2sin sin sinsin sin

n d n d n n n
L A g A g A g A g A g

x dx x dx xx x   
      

2 2
' ' 2

22 66 66 66 22 44 66 66 12 2 2 2 2 2

1 1 1 1

sin tan

d d d n
L A g A g A g A g kA g A g A g I

dx x dx xdx x x x


 
       

23 22 442 2sin tan sin tan

n n
L A g KA g

x x   
 

2 2
' '

24 16 16 16 26 26 26 262 2 2 2

1 1 1 1
2

sin

d d d d n
L B g B g B g B g B g B g B g

dx x dx x dx xdx x x 
        

'
25 26 44 26

1
2

sin tan sin

n d n
L B g KA g B g

x dx x x  
    

31 12 22 2

1 1

tan tan

d
L A g A g

x dx x 
    

32 22 442 2sin tan sin tan

n n
L A g KA g

x x   
    

2 2
' 2

33 55 55 55 22 44 12 2 2 2 2

1 1

tan sin

d d d n
L KA g KA g KA g A g KA g I

dx x dxdx x x


 
       

'
34 55 26 55 552

1

sin tan

d n
L KA g B g KA g KA g

dx xx  
     
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35 26 44 26 2

1 1

tan sin tan

d n
L B g KA g B g

x dx x x  
     

'
41 16 162

sin sin

n d n
L B g B g

x dx x 
   

2 2
' '

42 16 26 16 16 26 262 2 2 2

1 1 1

sin

d d d n
L B g B g B g B g B g B g

x dx dx xdx x x 
       

43 55 26 2 sin tan

d n
L KA g B g

dx x  
    

2 2
' ' 2

44 11 11 11 12 22 66 55 32 2 2 2

1 1 1

sin

d d d n
L D g D g D g D g D g D g KA g I

dx x dx xdx x x



         

'
45 12 66 12 22 662 2sin sin sin sin sin

n d n d n n n
L D g D g D g D g D g

x dx x dx x x x    
      

2 2
' '

51 16 16 16 26 26 26 262 2 2 2

1 1 1 1
2

sin

d d d d n
L B g B g B g B g B g B g B g

dx x dx x dx xdx x x 
        

'
52 44 26 26

1
2

tan sin sin

n n d
L KA g B g B g

x x x dx  
    

'
53 26 44 26 26 2

1 1 1

tan sin tan tan

d n
L B g KA g B g B g

x dx x x x   
     

'
54 66 12 66 66 222 2sin sin sin sin sin

n d n d n n n
L D g D g D g D g D g

x dx x dx x x x    
    

2 2
' ' 2

55 66 66 66 44 66 66 22 32 2 2 2

1 1 1

sin

d d d n
L D g D g D g KA g D g D g D g I

x dx dx xdx x x



         

The following non-dimensional parameters are introduced: 

x a
X

l


 ,   a x b    and  [0,1]X   

1

11

I

A
  ,  a frequency parameter 

0 0, '
a

h h

r a
   ,  ratios of thickness to radius and to a length 

a

b
  ,  a length ratio 

k
k

h

h
   ,  relative layer thickness of the k -th layer. 

 (X) sinsG C X  , thickness variation.                   (12) 
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The new set of differential equations are obtained as 

* * * * *

11 12 13 14 15

* * * * *

21 22 23 24 25

* * * * *

31 32 33 34 35

* * * * *

41 42 43 44 45

* * * * *

51 52 53 54 55

0

0

0

0

0

X

L L L L L U

L L L L L V

L L L L L W

L L L L L

L L L L L 

                    
    

     
    
         

                     (13) 

where 

2 ' '
2 2 2 2 2

11 2 3 102
cosec

d G d G
L p s p s p s n p

G dX GdX
 

 
       

 
 

 
'

12 2 10 2 3 10cosec cosec
d G

L s s np s s p s p np
dX G

 
 

     
 

 

'

13 2 2 3cot cot
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2.1 Spline collocation procedure 

 
The displacement functions U, V, W and rotational functions ΨX, ΨΘ are approximated by cubic 

spline functions in the range of X∈[0,1] as 

2 1
3

0 0

( ) ( ) ( )
N

i
i j j j

i j

U X a X b X X H X X


 

      

2 1
3

0 0

( ) ( ) ( )
N

i
i j j j

i j

V X c X d X X H X X


 

      
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2 1
3

0 0

( ) ( ) ( )
N

i
i j j j

i j

W X e X f X X H X X


 

    

2 1
3

0 0

( ) ( ) ( )
N

i
X i j j j

i j

X g X p X X H X X


 

     
 

2 1
3

0 0

( ) ( ) ( )
N

i
i j j j

i j

X l X q X X H X X




 

                     (14) 

Here, H(X−Xj) is the Heaviside step functions. The range of X is divided in to N subintervals, at the 

points X=Xs, s=1,2,3,...,N−1. The width of each subinterval is 1/N and Xs=s/N (s=0,1,2,...,N), since 

the knots Xs are chosen equally spaced.  

The assumed spline functions given in Eq. (14) are approximated at the nodes (coincide with 

the knots) and these splines satisfy the differential equations given in Eq. (13), at all Xs and 

resulting into the homogeneous system of (5N+5) equations in the (5N+15) unknown spline 

coefficients.   

The boundary conditions considered are as follows. 

(i) Clamped–Clamped (C–C). Both ends are clamped. 

0 at 0  and 1XU V W X X         

(ii) Simply supported  (S–S). Both ends are simply-supported. 

0 at 0  and 1X XV W N M X X         

(iii) Clamped–Free (C–F). (Small end is clamped and the large end is simply supported) 

0 at 0  and 0 at 1X X X X X XU V W X N M Q N M X                

By applying any one of the boundary conditions, one can obtain 10 more equations on spline 

coefficients. Combining these 10 equations with the earlier (5N+5) equations, we get (5N+15) 

homogeneous equations in the same number unknowns.  Thus, we have a generalized eigenvalue 

problem in the form 

2[ ]{ } [ ]{ }M q P q                              (15) 

where [M] and [P] are the square matrices, {q} is the column matrix of the spline coefficients and 

λ is the eigenfrequency parameter. 

 

 

3. Numerical results and discussion 
 

The present formulation is applied to investigate the free vibration of anti-symmetric angle-ply 

conical shells having sinusoidal thickness variation under three different support conditions. All 

numerical computations in this section, unless otherwise stated, three materials are considered: 

Kevlar-49/epoxy (KE), Graphite/Epoxy (AS4/3501-6) (GE) and E-glass epoxy (EGE). Two and 

four layered shells having ply orientations 30°/−30°, 45°/−45°, 30°/−45°/45°/−30°, 

30°/−60°/60°/−30°, 60°/−45°/45°/−60° and three support conditions C-C, S-S and C-F are 

considered. 

 
3.1 Convergence study 
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In this subsection the frequency parameter with respect to different configurations are carried 

out to confirm the convergence of the cubic spline method for anti-symmetric angle-ply conical 

shells having variable thickness. The number of subintervals N of the range X∈[0,1]. The value of 

N started from 4 and finally it is fixed for N=16, since for the next value of N, the percent changes 

in the values of λ are very low, the maximum being 3%. 

 

3.2 Validation 
 

The comparative study have been made for constant thickness of the conical shells and given in 

Viswanathan et al. (2015). The results are the reduced case of the present study to a constant 

thickness of the shells. 

 

3.3 Effect of different parameters of the conical shell and support conditions 
 

Tables 1-3 shows the effect of sinusoidal thickness variation on fundamental frequency 

parameter for C-C, S-S and C-F support conditions respectively. Table 1 shows that ply-angle 

30°/−45°/45°/−30° shows the highest frequency parameter value and 45°/−45° shows lowest. For 

Table 2 ply-angle 45°/−45° depicts the highest frequency parameter and 30°/−30° depicts lowest. 

In Table 3 contrary to Table 1 ply-angle 45°/−45° shows the highest and 30°/−45°/45°/−30° shows  

 

 
Table 1 Influence of sinusoidal thickness variation Cs on the fundamental frequency parameter λ under C-C 

support condition. n=2, γ=0.05, α=60° and β=0.5 

Cs 

30°/−30° 

(KE/KE) 

45°/−45° 

(KE/KE) 

30°/−45°/45°/−30° 

(KE/EGE/EGE/KE) 

30°/−60°/60°/−30° 

(KE/EGE/EGE/KE) 

λ λ λ λ 

-0.5 1.89811 1.69789 1.978668 1.80633 

-0.3 1.90091 1.66187 1.988876 1.84567 

-0.1 1.85594 1.65801 1.989119 1.87303 

0.1 1.87737 1.61623 1.985853 1.89316 

0.3 1.87101 1.65929 1.981819 1.84567 

0.5 1.89773 1.68451 1.977488 1.80719 

 
Table 2 Influence of sinusoidal thickness variation Cs on the fundamental frequency parameter λ under S-S 

support condition. n=2, γ=0.05, α=60° and β=0.5  

Cs 

30°/−30° 

(KE/KE) 

45°/−45° 

(KE/KE) 

30°/−45°/45°/−30° 

(KE/EGE/EGE/KE) 

30°/−60°/60°/−30° 

(KE/EGE/EGE/KE) 

λ λ λ λ 

-0.5 0.464538 0.846208 0.658875 0.768956 

-0.3 0.448166 0.830173 0.673435 0.754662 

-0.1 0.441287 0.822360 0.679602 0.747286 

0.1 0.439051 0.817331 0.682040 0.745142 

0.3 0.439343 0.813349 0.682908 0.748210 

0.5 0.441047 0.834038 0.683260 0.755064 
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Table 3 Influence of sinusoidal thickness variation Cs on the fundamental frequency parameter λ under C-F 

support condition. n=2, γ=0.05, α=60° and β=0.5 

Cs 

30°/−30° 

(KE/KE) 

45°/−45° 

(KE/KE) 

30°/−45°/45°/−30° 

(KE/EGE/EGE/KE) 

30°/−60°/60°/−30° 

(KE/EGE/EGE/KE) 

λ λ λ λ 

-0.5 0.459758 0.669860 0.216367 0.483233 

-0.3 0.462389 0.676056 0.215041 0.467554 

-0.1 0.456876 0.678195 0.228210 0.452433 

0.1 0.448064 0.669158 0.235597 0.453609 

0.3 0.437928 0.657365 0.208621 0.460534 

0.5 0.427357 0.664105 0.216380 0.483723 

 

 
(a) C-C (b) S-S (c) C-F 

Fig. 2 The angular frequency discrepancies with respect to aspect ratio for two layered shells: Cs=0.25, 

n=2 and γ=0.05 

 

 

the lowest frequency parameter value. It is evident from three tables that fundamental frequency 

parameter differs with the increase of sinusoidal thickness variation. In addition to that 

fundamental frequency discrepancies shows that the values of fundamental frequency is highest 

for C-C followed by S-S and C-F support conditions. Except for 30°/−30° ply-angle for which the 

frequency value is almost same for S-S and C-F support condition. 

Figs. 2 (a)-(c) enables us to examine the effect of aspect ratio which is actually length ratio of 

the conical shell on angular frequency behavior. The lamination angle 30°/−30°, material KE/KE, 

cone angle α=30°, coefficient of sinusoidal variation Cs=0.25, circumferential node number n=2 

and ratios of thickness to radius γ=0.05 are fixed. The general behavior of three angular frequency 

curves is similar to each other, in which the angular frequency value ωm (m=1,2,3)
 
remains almost 

same between 0.1<β<0.2 and increases afterwards between 0.3<β<0.8. For conical shell with C-C  

0 030 / 30

/KE KE

 

030 
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(a) C-C (b) S-S (c) C-F 

Fig. 3 The angular frequency discrepancies with respect to aspect ratio for two layered shells: Cs=0.25, 

n=2 and γ=0.05 

 

 
(a) C-C (b) S-S (c) C-F 

Fig. 4 The angular frequency discrepancies with respect to aspect ratio for two layered shells: Cs=0.25, 

n=2 and γ=0.05 

 

 

and S-S support conditions the trend of the curves are identical as compare to the curve of C-F 

support condition. Examining the angular frequency discrepancies of three support conditions 

shows that the value of the angular frequency is highest for C-C support conditions followed by S-

S and C-F. 

Effect of different cone angles on the relationship between aspect ratio and angular frequency is 

presented in Figs. 3 and 4. The characteristic curve are similar as for Fig. 2. Finally concluded that  

0 030 / 30

  

045 

/KE KE



0 030 / 30

/KE KE
060 


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(a) C-C (b) S-S (c) C-F 

Fig. 5 The influence of aspect ratio on the fundamental angular frequency of two layered shells having 

different lamination materials: Cs=0.25, n=2 and γ=0.05 

 

 
(a) C-C (b) S-S (c) C-F 

Fig. 6 The influence of aspect ratio on the fundamental angular frequency of four layered shells having 

different lamination materials: Cs=0.25, n=2 and γ=0.05 

 

 

the angular frequency value varies for different cone angles with the increase of aspect ratio. 

Fig. 5 demonstrates the different lamination materials effecting the fundamental angular 

/KE KE

  

0 030 / 30

060 

 

0 0 0 030 / 60 / 60 / 30 
060 
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frequency with the increase of aspect ratio of two layered shell for different support conditions. 

Figs. 5 (a)-(c) exhibits that the value of angular frequency for lamination material GE >KE>EGE 

for all the support conditions considered. The curvature of the curves for C-F support conditions is 

slightly different with that of C-C and S-S support conditions. 

Two different combination of layer materials are considered in Figs. 6(a)-(c). Generally the 

angular frequency increases as the aspect ratio increases. The increase is slow between 0.1<β<0.3 

and strict afterwards. Moreover, lamination combination KE/EGE/EGE/KE intends lower 

frequency than GE/KE/KE/GE under three support conditions considered. 

Four layered shells with lamination and material scheme as 30°/−45°/45°/−30° 

(GE/KE/KE/GE) are considered to study the effect of cone angle on the frequency parameter value 

in Figs. 7(a)-(c). Characteristics curve shows nearly similar pattern for three figures showing strict 

decrease in the value of frequency parameter between 10°<α<30° and becomes slow afterwards. 

Different lamination angle 30°/−60°/60°/−30° (GE/KE/KE/GE) is considered in Fig. 8 as 

compare to Fig. 7. The frequency parameter values for C-C support condition is lowest as compare 

to other two. The curvature of the curve is similar as in Fig. 7. Moreover for S-S support 

conditions the difference between the values of first and second mode is more than other boundary 

condition. 

The influence of cone angle on the variation of frequency parameter value is studied four 

layered shells in Fig. 9 under C-C support conditions. The frequency value decreases until α=30° 

and becomes almost linear afterwards. Examining the effect of circumferential node number n=2 

and n=4 it is concluded the value of the frequency parameter lowers with the increase of 

circumferential node number. 

Fig. 10 (a) and (b) intends to study the effect of different lamination material scheme and cone 

angle on frequency parameter value for C-C support conditions. The general behavior of three  

 

 

 
(a) C-C (b) S-S (c) C-F 

Fig. 7 The frequency parameter discrepancies with respect to cone angle for four layered shells: Cs=0.25, 

n=2, γ′=0.5 and β=0.5 
 

0 0 0 030 / 45 / 45 / 30 

/ / /GE KE KE GE

m



m

 

m
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(a) C-C (b) S-S (c) C-F 

Fig. 8 The frequency parameter discrepancies with respect to cone angle for four layered shells: Cs=0.25, 

n=2, γ′=0.5 and β=0.5 

 

 
(a) n=2 (b) n=4 

Fig. 9 The frequency parameter discrepancies with respect to cone angle for four layered shells under C-C 

boundary conditions: Cs=0. 5, γ′=0.5 and β=0.5 

 

 

modes is similar. Specifically, curvature of the modes m=2,3 is steeper than that of m=1 for both 

figures. Moreover, it is concluded that shell consisting of KE/EGE/EGE/KE shows higher 

frequency as compare to EGE/GE/GE/EGE material.  

Four layered shells consisting of different lamination materials are studied in Fig. 11 under C-C 

m



m

0 0 0 030 / 60 / 60 / 30 

/ / /GE KE KE GE

m

0 0 0 030 / 60 / 60 / 30 

/ / /GE KE KE GE



m

 

m
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(a) 60°/−45°/45°/−60° (KE/EGE/EGE/KE) (b) 60°/−45°/45°/−60° (EGE/GE/GE/EGE) 

Fig. 10 The frequency parameter discrepancies with respect to cone angle for four layered shells under C-

C boundary conditions: n=2, Cs=0.25, γ′=0.5 and β=0.5 

 

 
(a) 30°/−45°/45°/−30° (GE/KE/KE/GE) (b) 30°/−45°/45°/−30° (EGE/GE/GE/EGE) 

Fig. 11 The frequency parameter discrepancies with respect to cone angle for four layered shells under C-

C boundary conditions: n=2, Cs=0.25, γ′=0.5 and β=0.5 

 

 
support conditions. It is seen that with the increase of cone angle the frequency parameter value 

decreases strictly until α=30° and the decrease is slow afterwards. Moreover, the difference in the 

frequency value of mode m=2,3 is less for GE/KE/KE/GE than EGE/GE/GE/EGE material shell. 

Fig. 12 presents the impact of cone angle on the frequency parameter for two layered shells 

comprise of different materials KE and GE under S-S support conditions. General trend of the 

curvature for three modes is similar but the effects of using different materials alter the frequency 

which may be beneficial for designers to design required structure. 

m



m

m



m
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(a) 30°/−30° (KE/KE) (b) 30°/−30° (GE/GE) 

Fig. 12 The frequency parameter discrepancies with respect to cone angle for four layered shells under S-

S boundary conditions: n=2, Cs=0.25, γ′=0.5 and β=0.5 

 

 

4. Conclusions 
 

The present study investigates the free vibration of anti-symmetric angle-ply conical shells 

having sinusoidal thickness variation under shear deformation theory. The vibrational behavior of 

conical shells is analyzed for three different support conditions. The vibration characteristic of the 

shells is examined for cone angle, aspect ratio, sinusoidal thickness variation, layer number and 

stacking sequence. It is concluded that variation of the geometric parameters and materials affect 

the frequency, whether this effect is significant or marginal may be valuable for the engineers of 

related field.  
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