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Abstract.  In this study, the free vibration analysis of axially moving beams is investigated according to 

Reddy-Bickford beam theory (RBT) by using dynamic stiffness method (DSM) and differential transform 

method (DTM). First of all, the governing differential equations of motion in free vibration are derived by 

using Hamilton’s principle. The nondimensionalised multiplication factors for axial speed and axial tensile 

force are used to investigate their effects on natural frequencies. The natural frequencies are calculated by 

solving differential equations using analytical method (ANM). After the ANM solution, the governing 

equations of motion of axially moving Reddy-Bickford beams are solved by using DTM which is based on 

Finite Taylor Series. Besides DTM, DSM is used to obtain natural frequencies of moving Reddy-Bickford 

beams. DSM solution is performed via Wittrick-Williams algorithm. For different boundary conditions, the 

first three natural frequencies that calculated by using DTM and DSM are tabulated in tables and are 

compared with the results of ANM where a very good proximity is observed. The first three mode shapes 

and normalised bending moment diagrams are presented in figures. 
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1. Introduction 
 

Dynamic analysis of axially moving beams has became important for engineering systems due 

to developments in industrial technology. A large literature exists about investigation of free 

vibration analysis of axially moving beams using Euler-Bernoulli beam theory (EBT) and 

Timoshenko beam theory (TBT). Wickert and Mote (1989) derived the governing equations of 

motion of axially moving Euler-Bernoulli beams. In this study, the variation of the total 

mechanical energy between supports is investigated for simply supported and fixed supported 

beams. Ö zkaya and Ö z (2002) investigated the free vibration analysis of axially moving simply 

supported beams according to EBT by using artificial neural networks (ANN). In this research, the 

axial speed is assumed as harmonically varying about a constant speed. The input data of ANN are 

flexural stiffness, mean axial speed and speed fluctuation frequencies. The authors stated that the 

results obtained from ANN are close to analytical solutions. Lee et al. (2004) researched the free 
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vibration analysis of axially moving Timoshenko beams by using exact Dynamic Stiffness Method 

(DSM). In this research, the effects of axial speed and axial tensile force on vibration 

characteristics are investigated analytically. Banarjee and Gunawardana (2007) investigated the 

free vibration analysis of axially moving Euler-Bernoulli beams by using DSM. In this study, the 

first three natural frequencies are calculated for simply supported and fixed supported beams with 

different axial speed and axial tensile force values. The fundamental mode shapes are figured for 

both two boundary conditions. Chen et al. (2010) studied on dynamic stability of axially 

accelerating viscoelastic Timoshenko beams using with Kelvin viscoelastic model. The effects of 

shear deformation and rotational inertia on stability conditions are emphasized with graphs. In 

another study about axially accelerating viscoelastic Timoshenko beams, periodic responses of 

system are investigated by using Galerkin method and fourth order Runge-Kutta algorithm (Yan et 

al. 2014). Bağdatli et al. (2011) obtained natural frequencies of simply supported two span Euler-

Bernoulli beam by using perturbation techniques. In this study, the influences of axial speed, 

flexural rigidity and intermediate support on dynamic behaviour of the beam are investigated. In 

the literature summarized above, EBT or TBT are considered for the free or forced vibration 

analysis. The free vibration analysis of axially moving beams according to high order shear 

deformation theories has not been investigated by any of the researches yet. In this study, Reddy-

Bickford beam theory (RBT), also known as parabolic shear deformation theory, is used.  

Even the shear deformation and rotational inertia are considered in TBT, the assumption about 

the cross section that remains plane after bending is still valid like EBT. The more realistic 

behaviour of cross sections of beams under bending is described by high order shear deformation 

theories. In the last years, studies about high order shear deformation theories have been noticed 

by many of the researchers. Levinson (1981) obtained the governing equations of motion of beams 

for different boundary conditions by using third order shear deformation theory which predicts that 

the cross section does not remain plane after bending. The displacement and moment functions are 

compared with TBT. Bickford (1982), Reddy (1984) independently presented a new shear 

deformation theory. The study of Bickford is restricted for beams. However, the research of Reddy 

is valid for laminated composite plates. Heyliger and Reddy (1988) investigated the linear and 

nonlinear transverse vibrations of rectangular beams using high order beam theory for different 

boundary conditions. In this study, it is stated that high order beam theories provide successful 

results for low modes. Reddy, Wang and Lee (1997) obtained the relationships between EBT, TBT 

and RBT alphanumerically. In this research, the displacement and moment functions are 

investigated by using the obtained relationships. Soldatos and Sophocleous (2001) studied on free 

vibrations of beams according to EBT, TBT and RBT. The frequency equations are obtained and 

first six natural frequencies are presented for different boundary conditions in this study. 

Eisenberger (2003a) obtained displacement and rotation functions analytically for a simply 

supported beam according to RBT. The results of numerical analysis that performed for Reddy-

Bickford beams by using DSM are compared to EBT and TBT. In another study of Eisenberger 

(2003b), the normalized end moments of cantilever and simply supported beams for various 

loading types and length/height ratios are presented by using RBT.  

DTM which is an effective mathematical technique was first presented by Zhou (1968). In the 

study of Chen and Ho (1986), DTM was applied to eigenvalue problem for the first time. Ho and 

Chen (2006) applied DTM to investigate free vibration analysis of axially loaded nonuniform 

spinning Timoshenko beams. In this study, the effects of axial compression load and angular speed 

are discussed and obtained results are compared with EBT. Arikoglu and Ozkol (2010) 

investigated the free vibration analysis of a three layered composite beam with an elastic core by 
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using DTM for the first time. In this study, the results obtained from DTM were compared with 

the findings of previous studies and a good proximity was observed. Lal and Ahlawat (2015) 

applied DTM for the analysis of the axisymmetric vibrations of functionally graded circular plates 

subjected to uniform in-plane force using classical plate theory. The critical buckling loads for 

simply supported and clamped boundary conditions were calculated and two dimensional mode 

shapes were plotted. Yesilce (2011) obtained the governing equations of motion of multi span 

Reddy-Bickford beams that have mass-spring systems on spans by using Hamilton’s principle. In 

this study, the free vibration analysis is investigated by using DTM and the effects of spring-mass 

systems on the free vibration characteristics of multi span beams are discussed. Yesilce and Catal 

(2009) investigated free vibration analysis of axially loaded Reddy-Bickford beam on elastic 

foundation using DTM. The first three natural frequencies are represented for different axial 

compression load and modulus of subgrade reaction values. Catal and Catal (2006) applied 

differential transformation for buckling analysis of partially embedded pile in elastic soil. In 

another research of Catal (2014), differential transformation is used for buckling analysis of semi-

rigid connected partially embedded beams on elastic foundation. Free vibration analysis of beams 

on elastic foundations is investigated using DTM by Catal (2006, 2008). Catal (2012) researched 

response of forced beams via differential transformation according to EBT. Wattanasakulpong and 

Charoensuk (2015) researched vibration characteristics of stepped beams made of functionally 

graded materials and natural frequencies are obtained with various boundary conditions by using 

DTM. Yesilce (2015) investigated the natural frequencies and mode shapes of axially loaded 

Timoshenko beams carrying a number of intermediate lumped masses and rotary inertias by using 

numerical assembly technique and DTM. In the other studies of Yesilce (2010, 2013), the free 

vibration analysis of moving beams according to EBT and TBT are investigated by using DTM. In 

the study of Ebrahimi and Salari (2015), vibrations of functionally graded size dependent 

nanobeams were investigated by using DTM and Navier-based analytic method. Nondimensional 

frequencies for different material distribution parameters are presented for various boundary 

conditions. Semnani et al. (2013) studied the free vibration analysis of thin plates with varying 

thickness by using two-dimensional DTM. It was stated that the results obtained from 2D-DTM 

were consistent with the results in the literature. 

DSM that based on exact shape functions obtained from exact solutions, is used for solving free 

or forced vibration problems of structures. As the method uses the exact shape functions, the 

results obtained from DSM are exact natural frequencies for free vibration analysis. A nonlinear 

eigenvalue problem is experienced due to characteristics of the method. Thus, the Wittrick-

Williams algorithm can be used as a reliable root-finding algorithm (Banerjee 1997). In the recent 

years, DSM was applied to various type of beams and plates. Jun et al. (2008) investigated the 

effects of axial compressive force on natural frequencies of laminated composite beams by using 

DSM. It is stated that DSM is effective for solving free vibration problem of laminated composite 

beams. Bao-hui et al. (2011) studied on free vibration analysis of Timoshenko element pipe 

conveying fluid. In this study, first three natural frequencies of a multiple-span pipe conveying 

fluid are obtained and some of the results are compared with Abaqus. Banarjee (2012) searched 

free vibrations of beams carrying spring-mass systems by using DSM. The effect of spring-mass 

systems on natural frequencies of beams is emphasized. Banerjee and Jackson (2013) obtained 

natural frequencies of rotating tapered Rayleigh beams using DSM. Percentage error in the first 

three natural frequencies between Bernoulli-Euler beam theory and Rayleigh beam theory is 

presented. In the study of Su and Banarjee (2015), DSM is used to obtain non-dimensional natural 

frequencies of functionally graded Timoshenko beams with various boundary conditions. 
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Nefovska-Danilovic and Petronijevic (2015) applied DSM to in-plane free vibration and response 

analysis of isotropic rectangular plates. Different boundary conditions and length/width ratios are 

considered in the analysis.  

The free vibration analysis of axially moving beams using a high order beam theory has not 

been investigated yet by any of the studies in open literature. In this study, the free vibration 

analysis of moving beams with different boundary conditions such as fixed supported, one end 

fixed, the other end simply supported and simply supported are investigated according to RBT by 

using DTM and DSM. First of all, Hamilton’s principle is applied to obtain the governing 

equations of motion. Secondly, the parameters for the nondimensionalized multiplication factors 

for axial speed (α) and axial tensile force (β) are incorporated into the equations of motion in order 

to investigate their effects on the natural frequencies. The natural frequencies are obtained from 

analytical solution of differential equations according to RBT. After the ANM solution, DTM 

which is an effective mathematical technique based on finite Taylor series, is used to solve the 

governing equations of motion. Also dynamic stiffness matrix of axially moving Reddy-Bickford 

beam is constructed and the natural frequencies of the beam are obtained using Wittrick-Williams 

algorithm. The natural frequencies obtained from DTM and DSM are presented in tables for three 

different boundary conditions. Moreover, the results of DTM and DSM are compared with ANM 

and very good proximity is observed. Finally, the mode shapes and normalised bending moment 

diagrams are presented in graphs for the first three modes.  

 

 

2. Theory, model and formulation  
 

The free vibration analyses of beams have been investigated using EBT and TBT in numerous 

studies. Even if TBT considers the shear deformation and rotational inertia, the assumption about 

cross section that remaining plane after bending is still valid like EBT. EBT which does not 

consider shear deformation is not preferred for the analysis of thick and short beams as shear 

deformation becomes very important for them.  

According to TBT, a uniform shear deformation distribution is predicted. Thus, shear 

correction factor is used to consume the mistakes of this assumption. However, high order shear 

deformation theories do not need any shear correction factor due to assumption of variable shear 

strain and shear stress along the height of the cross-section. The real behaviour of cross sections 

after bending is defined by high order shear deformation theories. These theories are due to 

Bickford, Levinson, Heyliger and Reddy, Wang et al. and others all consider the warping of the 

cross-section. The cross-sectional displacements are presented in Fig. 1, where w0(x,t) is the lateral 

displacement of the beam neutral axis and z is the distance from the beam neutral axis (Reddy et 

al. 1997). In this study, RBT also known as Parabolic Shear Deformation Theory (PSDT) is used. 

The cross-sectional displacements of Reddy-Bickford beam are presented in Fig. 1(c). 

The following assumptions about axially moving Reddy-Bickford beams are considered in this 

study: 

1. The cross-sectional area is uniform. 

2. The beam material is homogenous and isotropic. 

3. The behaviour of the beam is linear and elastic. 

4. The axial tensile force acting along the beam length is constant. 

5. The damping is neglected.      

RBT defines the displacements functions as (Yesilce 2011) 
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Fig. 1 Cross-section displacements in different beam theories (Yesilce 2011), (a) EBT (b) TBT  (c) RBT 

 

 

Fig. 2 Axially moving Reddy-Bickford beam with coordinate system 

 

 

3 0( , , ) . ( , ) . ( , )
dw

u x y t y x t y x t
dx

 
     

 
                                      (1) 

, ,0w(x,y t)= w (x t)                                  (2) 

 2

4

3h
                        (3) 

Here, u(x,y,t) is the axial displacement function, w(x,y,t) is the lateral displacement function, 

w0(x,t) is the lateral displacement of the neutral beam axis, ϕ(x,t) is the rotation of a normal to axis 

of the beam, h is the height of the beam and t is the time.  

An axially moving Reddy-Bickford beam model is presented with coordinate system in Fig. 2 

where; N is the axial tensile force, m is the distributed mass, E is elastic modulus, I is area moment 

of inertia, A is cross-sectional area, G is shear modulus and v is the axial speed.  

The governing equations of motion of Reddy-Bickford beams under axial tensile force are 

obtained by using Eqs. (1)-(2) with Hamilton’s principle 
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 (5) 

The axial speed v is incorporated into Eqs. (4)-(5) to obtain the governing equations of motion 

of axially moving Reddy-Bickford beams by using Eq. (6) 

.
d

v
dt t x

 
 
 

                                                               (6) 
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   
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                        (8) 

Eqs. (7)-(8) are obtained as the governing equations of motion of axially moving Reddy-

Bickford beams where w(x,t) is the lateral displacement function and ϕ(x,t) is the rotation of a 

normal to axis of the beam. 

It is assumed that the motion is harmonic, w(x,t) and ϕ(x,t) can be written as 

 ( , ) ( ). i tw x t w x e                                              (9) 

 ( , ) ( ). i tx t x e                                             (10) 

where ω is the natural frequency and 1i   . 

Eqs. (7)-(8) are turned into ordinary differential equations by using Eqs. (9) and (10). 

3 2

3 3 2 2
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       
                  (11) 
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               
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15
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                                               (12) 

where z=x/L. 

Nondimensional w(z) and ϕ(z) can be assumed as 

( ) . iszw z C e                                                                  (13) 

( ) . iszz De                                                                  (14) 
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Eqs. (13)-(14) are integrated into Eqs. (11)-(12) to construct the coefficient matrix that is used 

for calculating natural frequencies. 

   
3 2
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   

                   (15) 
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                                            (16) 

Eqs. (15)-(16) can be written in matrix form for the two unknowns C  and D  as 

11 12

21 22

J J C
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For non-trivial solution, determinant of the coefficient matrix must be equal to zero. Since a 

sixth order equation with unknowns is encountered, the general solutions that have six unknowns 

for both w(z,t) and ϕ(z,t) can be written as 

  3 4 5 61 2 is z is z is z is zis z is z i t

1 2 3 4 5 6w(z,t)= C .e +C .e +C .e +C .e +C .e +C .e .e  
   (22) 

  3 4 5 61 2 is z is z is z is zis z is z i t

1 2 3 4 5 6(z,t)= D .e + D .e + D .e + D .e + D .e + D .e .e      (23) 

The bending moment M(z,t) and shear force Q(z,t) functions can be obtained by using Eqs. 

(22)-(23) as 
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The high order moment function Mh(z,t) can be obtained as 

2

2 2

16. ( ) 68. ( )
( , ) .

105. 105.

i t

h

EI d w z EI d z
M z t e

L dz L dz

 
    
 

                                   (26) 

The slope w′(z,t) of the cross-section can be defined as 

1 ( )
'( , ) i tdw z

w z t e
L dz

                                                          (27) 

The six boundary conditions must be applied by using Eqs. (22)-(23) with Eqs. (24)-(27) to 

construct the coefficient matrix that is used for calculating the natural frequencies of the beam. 

 

 

3. Differential Transform Method (DTM) 
 

DTM is a semi-analytic transformation technique based on Taylor series expansion and is an 

effective tool to obtain analytical solutions of the differential equations. Certain transformation 

rules are applied and the governing differential equations and the boundary conditions of the 

system are transformed into a set of algebraic equations in terms of the differential transforms of 

the original functions in DTM. The solution of these algebraic equations gives the desired solution 

of the problem. The difference of DTM from high-order Taylor series method is; Taylor series 

method requires symbolic computation of the necessary derivatives of the data functions and is 

expensive for large orders. DTM is an iterative procedure to obtain analytic Taylor series solutions 

of differential equations (Yesilce 2011). 

Consider a function y(z), which is analytic in a domain D, can be represented by a power series 

with a center at z=z0, any point in D. The differential transform of the function y(z) is given by Eq. 

(28) 

 
 

.

0

k

k

z=z

d y z1
Y k =

k! dz

 
  
 

                                                     (28) 

where y(z) is the original function and Y(k) is the transformed function. The inverse transformation 

is defined as 

     0

0

k

k

y z z z Y k





                                                      (29) 

Using Eqs. (28) and (29), Eq. (30) is obtained as 

0

0

0

( ) ( )
( )

!

k k

k

k z z

z z d y z
y z

k dz



 

 
  

 
                                              (30) 

Eq. (30) implies that the concept of the differential transformation is derived from Taylor’s 

series expansion, but the method does not evaluate the derivatives symbolically. However, relative 

derivatives are calculated by iterative procedure that are described by the transformed equations of 

the original functions. In real applications, the function y(z) in Eq. (29) is expressed by a finite 

series and can be written as 
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Table 1 DTM theorems used for equations of motion 

Original Function Transformed Function 

y(z)=u(z)±v(z) Y(k)=U(k)±V(k) 

   .y z = a u z     .Y k = aU k  

 
 m

m

d u z
y z =

dz
  

 
 

k + m !
Y k = U k + m

k!
  

     .y z = u z v z       .
k

r=0

Y k = U r V k - r  

  my z = z     
0   if    k m

Y k = k - m =
1    if    k = m


 



 

 
Table 2 DTM theorems used for boundary conditions 

Original Boundary 

Conditions 

Transformed Boundary 

Conditions 

Original Boundary 

Conditions 

Transformed Boundary 

Conditions 

(0) 0y   (0) 0Y   (1) 0y   
0

( ) 0
k

Y k




  

(0) 0
dy

dz
  (1) 0Y   (1) 0

dy

dz
  

0

( ) 0
k

k Y k




   

2

2
(0) 0

d y

dz
  (2) 0Y   

2

2
(1) 0

d y

dz
  

0

( 1) ( ) 0
k

k k Y k




     

3

3
(0) 0

d y

dz
  (3) 0Y   

3

3
(1) 0

d y

dz
  

0

( 1) ( 2) ( ) 0
k

k k k Y k




       

 

 

 

*

.

N

k

0

k=0

y(z)= (z - z ) Y(k)  (31) 

Eq. (31) implies that  
*

0

1

( ) ( )k

k N

z z Y k



 

  is negligibly small. Where N* is series size and the value 

of N*depends on the convergence of the eigenvalues. 

DTM theorems that are frequently used in differential transformation of the differential 

equations and the boundary conditions are introduced in Table 1 and Table 2, respectively.  

 

3.1 Application of DTM to solve equations of motion  
 

The procedure is started with using Eqs. (11) and (12) in the form as follows 

      
3 22

3 2

3 3 3

8 68 8

( ) ( ) ( )15 105 15
( )

16 16 16

105 105 105

AG EI
AG

d w z dw z d zL L
z

EI EI EIdz dz dz

L L L

     
        

     
     
     

       
     

                    (32) 
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8 2 16

15 105

1 1 1
-

21 21 21

2

2 2 24 2 33

4 2 3

4 4 4

N AG m.v .m.v.i. EI
+

L L Ld w(z) d w(z) dw(z) d (z)L L
= + +

EI EI EIdz dz dz dz

L L L

            
     

  
     
        
     

 

 2

4 4

8
.( )15

. ( )
1 1

21 21

AG
md zL

w z
EI EIdz

L L

 
   

  
   
      
   

                                         (33) 

DTM is applied to Eqs. (32) and (33) by using the theorems presented in Table 1 and the 

following expressions are obtained 

        
 

8 68 8

1 215 105 15
? 34

16 16 162 3 3 1 2 3

105 105 105

2

3 3 3

AG EI
AG

W(k + ) (k + ) (k)L L
W(k +3)= +

EI EI EIk + k + k + k + k + k +

L L L

     
       

      
   
     

       
     

(34) 

      

2

2 2 2

4 4

8 . 2. . . .

15 ( 2) ( 1)
( 4)

1 13 4 2 3 4

21 21

N AG m v m v i

L L L W k W kL
W k

EI EIk k k k k

L L

        
    

     
       

    
   

 

 
  

 2
3

4 4 4

16 8
.( 3) ( 1)105 15

( )
1 1 1( 4) ( 2) 3 4

21 21 21

EI AG
mk kL L

W k
EI EI EIk k k k

L L L

   
           

    
        

       
     

          (35) 

where W(k) is the transformed function of w(z) and Φ(k) is the transformed function of ϕ(z). 

The boundary conditions of an axially moving Reddy-Bickford beam are tabulated in Table 3: 

 

 
Table 3 The boundary conditions of axially moving Reddy-Bickford beam 

Fixed - Fixed Fixed - Simple Simple - Simple 

 0 0w z     0 0w z     0 0w z    

( 0)
0

dw z

dz


  

( 0)
0

dw z

dz


  ( 0) 0M z    

 0 0z     0 0z     0 0hM z    

 1 0w z     1 0w z     1 0w z    

( 1)
0

dw z

dz


  ( 1) 0M z    ( 1) 0M z    

 1 0z     1 0hM z     1 0hM z    
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Table 4 Transformed boundary conditions of axially moving Reddy-Bickford beam 

Boundary Condition z=0 z=1 

Fixed - Fixed    
( 0)

0 0 0
dW z

W
dz


        

* * *

0 0 0

( )
0

N N N

k k k

dW k
W k k

dz
  

       

Fixed - Simple    
( 0)

0 0 0
dW z

W
dz


        

* * *

0 0 0

( ) 0
N N N

h

k k k

W k M k M k
  

      

Simple - Simple    0 2 (1) 0W W       
* * *

0 0 0

( ) 0
N N N

h

k k k

W k M k M k
  

      

 

 

The transformed boundary conditions of an axially moving Reddy-Bickford beam are obtained 

as shown in Table 4 by applying DTM to boundary conditions presented in Table 3: 

where  M k  and ( )hM k  are transformed functions of M(z) and Mh(z), respectively. 

For fixed supported beam, taking W(2)=n1, Φ(1)=n2, Φ(2)=n3; for one end (z=0) fixed, the other 

end (z=1) simply supported beam, taking W(2)=n1, Φ(1)=n2, Φ(2)=n3 ; for simply supported beam, 

taking W(0)=n1, W(2)=n2, Φ(1)=n3 and substituting the transformed boundary conditions given in 

Table 4 into Eqs. (34) and (35) for each boundary condition, the matrix given below is obtained. 

     

     

     

* * *

* * *

* * *

( ) ( ) ( )

11 12 13 1

( ) ( ) ( )

21 22 23 2

( ) ( ) ( )
331 32 33

0

0

0

N N N

N N N

N N N

A A A n

A A A n

nA A A

            
        
     

        

                                   (36) 

where n1, n2, n3 are constants and  
*( )

1

N

jA  ,  
*( )

2

N

jA  ,  
*( )

3

N

jA   (j=1, 2, 3) are polynomials of ω  

corresponding N*. 

   Finally, the natural frequencies are obtained by non-trivial solution for which determinant of 

coefficient matrix equal to zero.  

     

     

     

* * *

* * *

* * *

( ) ( ) ( )

11 12 13

( ) ( ) ( )

21 22 23

( ) ( ) ( )

31 32 33

0

N N N

N N N

N N N

A A A

A A A

A A A

  

   

  

                                          (37)  

The jth estimated eigenvalue, 
*( )N

j corresponds to N*and the value of N*is determined as 

* *( ) ( 1)N N

j j

                                                             (38) 

where 
*( 1)N

j

  is the jth estimated eigenvalue corresponding to (N*-1) and ε is the small tolerance 

parameter. If Eq. (38) is satisfied, the jth estimated eigenvalue, ( )

jω
*N is obtained.  

The normalised bending moment diagrams and mode shapes can be plotted by using 

transformed functions. As n2 and n3 can be written in terms of n1 by using Eq. (39), the 

transformed functions W(k), Φ(k) and  M k  can be expressed in terms of ω and n1 as follows 

     11 1 12 2 13 3 0A n A n A n                                                     (39) 
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   1,W k W n                                                           (40)  

   1,k n                                                            (41) 

   1,M k M n                                                          (42) 

The mode shapes and normalised bending moment diagrams can be plotted for different values 

of ω by using Eq. (40) and (42), respectively. 

 

 

4. Dynamic stiffness approach  
 

The dynamic stiffness matrix of an axially moving Reddy-Bickford beam is constructed using 

displacements and forces at the ends of the beam according to boundary conditions. The vector of 

end displacements of beam and the vector of coefficients are defined in Eq. (43) and (44), 

respectively. 

0 0 0 1 1 1[ ' ' ]Tw w w w                                                  (43) 

1 2 3 4 5 6[ ]TC C C C C C C                                               (44) 

where 

0 0 0 0 1 1 1( 0), ' ' ( 0), ( 0), ( 1), ' '( 1) ( 1)w w z w w z z w w z w w z z                 (45) 

Using Eqs. (22)-(23) and Eq. (27), the matrix form of Eq. (45) can be written as 

 
3 5 61 2 4

3 5 61 2 4

3 5 61 2 4

10

1 2 3 4 5 6 20

1 2 3 4 5 6 30

1

1 2 3 4 5 61

1 2 3 4 5 61

1 1 1 1 1 1

'

'

is is isis is is

is is isis is is

is is isis is is

Cw

is is is is is is Cw

K K K K K K C

e e e e e e Cw

is e is e is e is e is e is ew

K e K e K e K e K e K e

  
  
  
  

   
  
  
  

      

4

5

6

C

C

 
 
 
 
 
 
 
 
  

                       (46) 

where 

Kj = Dj / Cj , j=1, 2, 3, 4, 5, 6 

The closed form of Eq. (46) is given in Eq. (47) 

δ = ΔC                                                                   (47) 

where 

3 5 61 2 4

3 5 61 2 4

3 5 61 2 4

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 1 1 1 1 1

=
is is isis is is

is is isis is is

is is isis is is

is is is is is is

K K K K K K

e e e e e e

is e is e is e is e is e is e

K e K e K e K e K e K e

 
 
 
 

  
 
 
 
  
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 The vector of end forces of the beam is written in Eq. (48) 

0 10 0 1 1[ ]T

h hF Q M M Q M M                                         (48) 

where 

0

1

0 0

1 1

( 0), ( 0), ( 0),

( 1), ( 1), ( 1)

h h

h h

Q Q z M M z M M z

Q Q z M M z M M z

     

     
                             (49) 

It should be noted that according to sign convention, the following relations are valid.  

0 10 1 0 1, , ,h hQ Q M M M M                                            (50) 

The matrix form of force functions given in Eq. (49) is written below by using Eqs. (24)-(26) 

0

1

0 1 2 3 4 5 6 1

1 2 3 4 5 6 2

1 2 3 4 5 6 30

1 2 3 4 5 6 41

1 2 3 4 5 6 5

1 2 3 4 5 6 61

h

h

Q C

M C

CM

CQ

CM

CM

          
     

          
          
      

          
          
     

              

                             (51) 

where 

3 2

3 4 5 6 7

2

1 2

2

1 8

3 2

3 4 5 6 7

2

1 2

, 1,2,3,4,5,6

, 1,2,3,4,5,6

, 1,2,3,4,5,6

( ), 1,2,3,4,5,6

( ), 1,2,3

j

j

j j j j j j j j

j j j j

j j j j

is

j j j j j j j j

is

j j j j

R is K R is R s K R is R K j

R s R is K j

R K is R s N j

e R is K R is R s K R is R K j

e R s R is K j

      

    

    

      

    

2

1 8

,4,5,6

( ), 1,2,3,4,5,6jis

j j j je R K is R s N j    

                    (52) 

The constants R1-R8 are used to simplificate the solution process and are listed below 

2

1 2

3

3 4

2 2

5 6

2 2

7 8

(16 ) / (105 ), ( 68 ) / (105 )

( 8 ) / (15 ), ( ) / (21 )

( 16 ) / (105 ), ( ) / (21 )

(16 ) / (105 ), ( ) / (21 )

R EI L R EI L

R AG L R EI L

R EI L R m I A

R mI A R EI L

  

  

   

   

                                     (52) 

The closed form of Eq. (51) is presented in Eq. (53) 

F C                                                                     (53) 

where 
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1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

=

      
 
     

 
      

  
      
      
 
       

 

 Finally, the relations between Eqs. (47) and (53) are used to derive the dynamic stiffness 

matrix. 

1F                                                                   (54) 

1*K                                                                  (55) 

K* represents the dynamic stiffness matrix of an axially moving Reddy-Bickford beam. Eq. 

(56) is used to obtain natural frequencies of the beam. 

 * 0K                                                                   (56) 

 

 

5. Numerical analysis and discussions  
 

For numerical analysis, axially moving Reddy-Bickford beams with different boundary 

conditions such as fixed supported, one end fixed, the other end simply supported and simply 

supported are considered in this study. The first three natural frequencies, ωi (i =1,2,3) of moving 

Reddy-Bickford beams are calculated by using computer programs prepared in Matlab by the 

authors. ANM and DTM solutions are based on determining values for which the determinant of 

the coefficient matrix is equal to zero. The change of sign method is applied in programs which is 

based on iterations. If there is a sign changing between two trial of ωi (i=1,2,3), there must be a 

root in this interval. For DSM solution, the values that equals the determinant of dynamic stiffness 

matrix to zero are obtained using Wittrick-Williams algorithm. The numerical analysis is 

performed based on uniform, rectangular Reddy-Bickford beams with the following data: 

L=5.0 m; m=0.89195 kN.sec2/m2; EI=6.4×105 kN.m2 ; AG=1.536×105kN; β=0.20, 0.40 and 0.60;  

α=0.20, 0.40 and 0.60 where β=N.L2/EI and /v m N   

The calculated first three natural frequency values by using ANM, DTM and DSM solutions 

with different nondimensionalised factors for axial tensile force and axial speed are presented in 

Tables 5-7 for fixed-fixed boundary conditions, in Tables 8-10 for fixed-simple boundary 

conditions, in Table 11-13 for simple-simple boundary conditions.  

For β=0.20 and α=0.60; the first three mode shapes of axially moving fixed supported Reddy-

Bickford beam are shown in Fig. 3, the first three mode shapes of axially moving Reddy-Bickford 

beam with fixed-simple boundary conditions are shown in Fig. 4 and the first three mode shapes of 

axially moving simply supported Reddy-Bickford beam are presented in Fig. 5. 

For β=0.20 and α=0.60; the normalised bending moment diagrams for the first three modes of 

axially moving fixed supported Reddy-Bickford beam are shown in Fig. 6, the normalised bending 

moment diagrams for the first three modes of axially moving Reddy-Bickford beam with fixed- 
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Table 5 Natural frequencies of axially moving Reddy-Bickford beams with β=0.20 under fixed-fixed 

supported boundary conditions 

Natural 

Frequency 

α=0.20 α=0.40 α=0.60 

Method Method Method 

ANM DSM DTM ANM DSM DTM ANM DSM DTM 

1st mode 

(rad/sec) 
239.5346 239.5346 

239.5346 

(N*=62) 
238.2855 238.2855 

238.2855 

(N*=62) 
236.2039 236.2039 

236.2039 

(N*=62) 

2nd 

mode(rad/sec) 
501.5633 501.5633 

501.5633 

(N*=66) 
499.7285 499.7285 

499.7285 

(N*=66) 
496.6692 496.6692 

496.6692 

(N*=66) 

3rd mode 

(rad/sec) 
810.3140 810.3140 

810.3140 

(N*=70) 
808.0597 808.0597 

808.0597 

(N*=70) 
804.3061 804.3061 

804.3061 

(N*=70) 

 
Table 6 Natural frequencies of axially moving Reddy-Bickford beams with β=0.40 under fixed-fixed 

supported boundary conditions 

Natural 

Frequency 

α=0.20 α=0.40 α=0.60 

Method Method Method 

ANM DSM DTM ANM DSM DTM ANM DSM DTM 

1st mode 

(rad/sec) 
244.3027 244.3027 

244.3027 

(N*=64) 
241.8587 241.8587 

241.8587 

(N*=64) 
237.7868 237.7868 

237.7868 

(N*=62) 

2nd 

mode(rad/sec) 
510.7113 510.7113 

510.7113 

(N*=68) 
507.0788 507.0788 

507.0788 

(N*=66) 
501.0199 501.0199 

501.0199 

(N*=66) 

3rd mode 

(rad/sec) 
823.0298 823.0298 

823.0298 

(N*=70) 
818.5509 818.5509 

818.5509 

(N*=72) 
811.0985 811.0985 

811.0985 

(N*=70) 

 
Table 7 Natural frequencies of axially moving Reddy-Bickford beams with β=0.60 under fixed-fixed 

supported boundary conditions 

Natural 

Frequency 

α=0.20 α=0.40 α=0.60 

Method Method Method 

ANM DSM DTM ANM DSM DTM ANM DSM DTM 

1st mode 

(rad/sec) 
248.9701 248.9701 

248.9701 

(N*=64) 
245.3805 245.3805 

245.3805 

(N*=64) 
239.4008 239.4008 

239.4008 

(N*=64) 

2nd 

mode(rad/sec) 
519.6764 519.6764 

519.6764 

(N*=70) 
514.2826 514.2826 

514.2826 

(N*=66) 
505.2834 505.2834 

505.2834 

(N*=68) 

3rd mode 

(rad/sec) 
835.5267 835.5267 

835.5267 

(N*=70) 
828.8524 828.8524 

828.8524 

(N*=72) 
817.7548 817.7548 

817.7548 

(N*=72) 

 
Table 8 Natural frequencies of axially moving Reddy-Bickford beams with β=0.20 under fixed-simple 

boundary conditions 

Natural 

Frequency 

α=0.20 α=0.40 α=0.60 

Method Method Method 

ANM DSM DTM ANM DSM DTM ANM DSM DTM 

1st mode 

(rad/sec) 
211.5277 211.5277 

211.5277 

(N*=64) 
210.3156 210.3156 

210.3156 

(N*=64) 
208.2955 208.2955 

208.2955 

(N*=62) 

2nd 

mode(rad/sec) 
471.6519 471.6519 

471.6519 

(N*=66) 
469.7452 469.7452 

469.7452 

(N*=66) 
466.5670 466.5670 

466.5670 

(N*=64) 

3rd mode 

(rad/sec) 
764.6574 764.6574 

764.6574 

(N*=72) 
762.3954 762.3954 

762.3954 

(N*=70) 
758.6260 758.6260 

758.6260 

(N*=70) 
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Table 9 Natural frequencies of axially moving Reddy-Bickford beams with β=0.40 under fixed-simple 

boundary conditions 

Natural 

Frequency 

α=0.20 α=0.40 α=0.60 

Method Method Method 

ANM DSM DTM ANM DSM DTM ANM DSM DTM 

1st mode 

(rad/sec) 
216.7110 216.7110 

216.7110 

(N*=66) 
214.3393 214.3393 

214.3393 

(N*=66) 
210.3860 210.3860 

210.3860 

(N*=66) 

2nd 

mode(rad/sec) 
480.9647 480.9647 

480.9647 

(N*=68) 
477.1997 477.1997 

477.1997 

(N*=66) 
470.9231 470.9231 

470.9231 

(N*=68) 

3rd mode 

(rad/sec) 
777.6534 777.6534 

777.6534 

(N*=70) 
773.1600 773.1600 

773.1600 

(N*=70) 
765.6735 765.6735 

765.6735 

(N*=72) 

 
Table 10 Natural frequencies of axially moving Reddy-Bickford beams with β=0.60 under fixed-simple 

boundary conditions 

Natural 

Frequency 

α=0.20 α=0.40 α=0.60 

Method Method Method 

ANM DSM DTM ANM DSM DTM ANM DSM DTM 

1st mode 

(rad/sec) 
221.7643 221.7643 

221.7643 

(N*=66) 
218.2803 218.2803 

218.2803 

(N*=66) 
212.4728 212.4728 

212.4728 

(N*=64) 

2nd 

mode(rad/sec) 
490.0852 490.0852 

490.0852 

(N*=68) 
484.5080 484.5080 

484.5080 

(N*=66) 
475.2094 475.2094 

475.2094 

(N*=66) 

3rd mode 

(rad/sec) 
790.4144 790.4144 

790.4144 

(N*=74) 
783.7202 783.7202 

783.7202 

(N*=74) 
772.5684 772.5684 

772.5684 

(N*=72) 

 
Table 11 Natural frequencies of axially moving Reddy-Bickford beams with β=0.20 under simple-simple 

boundary conditions 

Natural 

Frequency 

α=0.20 α=0.40 α=0.60 

Method Method Method 

ANM DSM DTM ANM DSM DTM ANM DSM DTM 

1st mode 

(rad/sec) 
189.6443 189.6443 

189.6443 

(N*=58) 
188.4528 188.4528 

188.4528 

(N*=62) 
186.4666 186.4666 

186.4666 

(N*=60) 

2nd 

mode(rad/sec) 
443.3437 443.3437 

443.3437 

(N*=62) 
441.4135 441.4135 

441.4135 

(N*=64) 
438.1961 438.1961 

438.1961 

(N*=64) 

3rd mode 

(rad/sec) 
722.7985 722.7985 

722.7985 

(N*=68) 
720.5043 720.5043 

720.5043 

(N*=68) 
716.6802 716.6802 

716.6802 

(N*=68) 

 
Table 12 Natural frequencies of axially moving Reddy-Bickford beams with β=0.40 under simple-simple 

boundary conditions 

Natural 

Frequency 

α=0.20 α=0.40 α=0.60 

Method Method Method 

ANM DSM DTM ANM DSM DTM ANM DSM DTM 

1st mode 

(rad/sec) 
195.1364 195.1364 

195.1364 

(N*=60) 
192.8062 192.8062 

192.8062 

(N*=62) 
188.9207 188.9207 

188.9207 

(N*=62) 

2nd 

mode(rad/sec) 
452.8119 452.8119 

452.8119 

(N*=64) 
449.0056 449.0056 

449.0056 

(N*=68) 
442.6604 442.6604 

442.6604 

(N*=64) 

3rd mode 

(rad/sec) 
736.0047 736.0047 

736.0047 

(N*=68) 
731.4516 731.4516 

731.4516 

(N*=70) 
723.8620 723.8620 

723.8620 

(N*=68) 
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Table 13 Natural frequencies of axially moving Reddy-Bickford beams with β=0.60 under simple-simple 

boundary conditions 

Natural 

Frequency 

α=0.20 α=0.40 α=0.60 

Method Method Method 

ANM DSM DTM ANM DSM DTM ANM DSM DTM 

1st mode 

(rad/sec) 
200.4734 200.4734 

200.4734 

(N*=60) 
197.0518 197.0518 

197.0518 

(N*=62) 
191.3456 191.3456 

191.3456 

(N*=62) 

2nd 

mode(rad/sec) 
462.0775 462.0775 

462.0775 

(N*=66) 
456.4458 456.4458 

456.4458 

(N*=66) 
447.0573 447.0573 

447.0573 

(N*=64) 

3rd mode 

(rad/sec) 
748.9631 748.9631 

748.9631 

(N*=70) 
742.1859 742.1859 

742.1859 

(N*=70) 
730.8885 730.8885 

730.8885 

(N*=68) 
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Fig. 3 The first three mode shapes of axially moving Reddy-Bickford beam under fixed-fixed 

boundary condition, β=0.20 and α=0.60 

 

 

simple boundary conditions are shown in Fig. 7 and the normalised bending moment diagrams for 

the first three modes of axially moving simply supported Reddy-Bickford beam are presented in 

Fig. 8. 

 For all of the boundary conditions, the results reveal that increasing axial speed decreases the 

natural frequency values with constant axial tensile force. Contrary, an augmentation in axial 

tensile force with a constant axial speed causes higher natural frequency values for all beams. As 

expected, for the same axial speed and axial tensile force, the maximum frequency values are 

obtained in the case of fixed supported Reddy-Bickford beam and the minimum values can be seen 

from simply supported Reddy-Bickford beam. 

The convergences of natural frequency values are very important in the application of DTM. 

As can be seen from Tables 5-13, the natural frequency values of the third modes are obtained for 

fixed supported beams when the series size is taken 72, for one end fixed, the other end simple 
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supported beams when the series size is taken 74, for simply supported beams when series size is 

taken as 70. It is observed that, higher modes appear when more terms are taken into account in 
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Fig. 4 The first three mode shapes of axially moving Reddy-Bickford beam under fixed-simple 

boundary condition, β=0.20 and α=0.60 
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Fig. 5 The first three mode shapes of axially moving Reddy-Bickford beam under simple-simple 

boundary condition, β=0.20 and α=0.60 
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Fig. 6  The normalised bending moment diagrams for the first three modes of axially moving 

Reddy-Bickford beam under fixed-fixed boundary condition, β=0.20 and α=0.60 
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Fig. 7 The normalised bending moment diagrams for the first three modes of axially moving 

Reddy-Bickford beam under fixed-simple boundary condition, β=0.20 and α=0.60 

 

 

DTM applications. The convergences of fundamental frequencies in DTM are presented in Fig. 9 

when β=0.20 and α=0.60. For the first three modes, the mode shapes are presented in Figs. 3-5 and 

the normalised bending moment diagrams are presented in Figs. 6-8 for different boundary 
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Fig. 8 The normalised bending moment diagrams for the first three modes of axially moving 

Reddy-Bickford beam under simple-simple boundary condition, β=0.20 and α=0.60 

 

 

Fig. 9 Natural frequency convergences of DTM solutions for axially moving Reddy-Bickford 

beams, β=0.20 and α=0.60 

 

 

conditions. It is seen that from Figs. 6-8; for the fundamental mode, taking β=0.20, α=0.60, the 

maximum bending moments occur at the end (z=1) of fixed supported beam, near z=0.70 of one 

end fixed, the other end simple supported beam and at the middle (z=0.5) of simply supported 

beam.  
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5. Conclusions  
 

In this study, the free vibration analysis of axially moving beams is investigated according to a 

high order shear deformation theory for the first time. The fixed supported, one end fixed, the 

other end simple supported and simply supported beams are considered for the analysis. Different 

values of nondimensionalised factors for axial speed and axial tensile force are studied to have 

information about their effects on the free vibration of moving beams. DTM algorithms are 

developed and computer programs that based on iterations are prepared by using Matlab to 

calculate the natural frequencies. In addition to this, dynamic stiffness formulation is performed 

and natural frequencies are obtained from DSM solution. The obtained natural frequencies from 

DTM and DSM solutions are compared with ANM solutions and very good agreement is 

observed. The effectiveness of DTM and DSM for solving free vibration problems of moving 

beams are experienced. It is seen that the computer programs prepared for DTM are working 

significantly fast in comparison with ANM and DSM. 
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