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Abstract.  A finite element model for the non-linear dynamic analysis of a reinforced concrete (RC) 

containment shell of a nuclear power plant subjected to extreme loads such as impact and earthquake is 

presented in this work. The impact is modeled by using an uncoupled approach in which a load function is 

applied at the impact zone. The earthquake load is modeled by prescribing ground accelerations at the base 

of the structure. The nuclear containment is discretized spatially by using 20-node brick finite elements. The 

concrete in compression is modeled by using a modified Drücker-Prager elasto-plastic constitutive law 

where strain rate effects are considered. Cracking of concrete is modeled by using a smeared cracking 

approach where the tension-stiffening effect is included via a strain-softening rule. A model based on 

fracture mechanics, using the concept of constant fracture energy release, is used to relate the strain 

softening effect to the element size in order to guaranty mesh independency in the numerical prediction. The 

reinforcing bars are represented by incorporated membrane elements with a von Mises elasto-plastic law. 

Two benchmarks are used to verify the numerical implementation of the present model. Results are 

presented graphically in terms of displacement histories and cracking patterns. Finally, the influence of the 

shear transfer model used for cracked concrete as well as the effect due to a base slab incorporation in the 

numerical modeling are analyzed. 
 

Keywords:  reinforced concrete structures (RC); finite element method (FEM); impact and seismic loads 

 
 
1. Introduction 
 

Containment shells are an important component of nuclear power plants and are normally 

constructed from reinforced concrete (RC). Because these structures are necessary for the 

production of nuclear energy, special consideration must be taken in their analysis and design. The 

nuclear containment structures provide biological and nuclear shielding to limit the radiation close 

to the atmosphere in cases of accidents. The nuclear containment structure is a double shell 

structure where the outer containment structure is made up of concrete to protect the inner 
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containment from any external impact (Pandey et al. 2006, Pandey 2010, Sadique et al. 2015, 

Sayed et al. 2015). The vulnerability of these structures is an important aspect when they are 

constructed in seismic zones (Kamagata and Takewaki 2013) or when they are exposed to 

accidental or deliberate crash of aircrafts in zones with hectic air traffic (Sadique et al. 2015, Iqbal 

et al. 2012). While these structures are invariably designed to remain elastic under normal service 

conditions, they may suffer distress under the action of unforeseen extreme loads (Manjuprasad et 

al. 2001). In this work, a numerical model based on the finite element method is presented for the 

analysis of RC shells under aircraft impacts and seismic actions. For this purpose, 20-node brick 

finite elements are used to model the concrete walls of the containment while reinforcing steel bars 

are considered to be smeared within each finite element. Concrete cracking, nonlinearity of 

concrete in compression, yielding of the steel bars in tension and compression and strain rate 

effects are considered properly in the present material model. The RC model combines different 

features of some previous models proposed by other authors that makes it suitable and different for 

the analysis of the examples presented in this paper (see Tamayo et al. 2013a, b, Dias et al. 2015).  

The numerical model is verified by analyzing the outer containment structure of the General 

Electric Mark-III nuclear reactor under impact and seismic loads. This containment structure has 

been previously studied by other researches (see e.g., Cervera 1986, Cervera et al. 1988, Liu 1985, 

Kukreja 2005, Abbas et al. 1996) using elasto-viscoplastic algorithms to perform stress 

integration. Generally, this structure has been analyzed with a coarse finite element mesh. In this 

work, a more refined finite element mesh is used and the solution phase of the nonlinear algorithm 

is optimized by using the PARDISO solver (Schenk and Gartner 2004), which is a thread-safe, 

high-performance and memory efficient package for solving large sparse symmetric linear systems 

of equations on shared-memory and distributed-memory multiprocessors. This package was 

incorporated in the present finite element code in order to take advantage of parallel computation 

by using OpenMP directives.  

A parametric study is carried out in order to assess the importance of the shear retention model 

used for cracked concrete and the influence of a concrete base slab in the numerical model. 

Generally, the base slab is omitted in the model and the outer walls of the containment are 

considered to be clamped to the ground directly. The effect of these two last issues were 

investigated in the work of Hu and Liang (2000) for ultimate analysis of BWR Mark III RC 

containment subjected to internal static pressure, however they have not been addressed before for 

the Mark III outer containment under impact and seismic loads.   

 

 

2. Finite element formulation and constitutive model for the brick element 
 

The 20-node isoparametric quadratic brick element shown in Fig. 1 is used here to represent the 

concrete shell structure while the reinforcing steel bars are modeled using a smeared layer 

approach (mesh reinforcement is modeled as a membrane element). The displacement field within 

the element is defined in terms of the shape functions and displacement values at the nodes.  Each 

nodal point has three degrees of freedom u, v and w along the Cartesian coordinates x, y, z, 

respectively. Therefore, for each element the displacement vector is expressed in the following 

manner 

 202020222111 ,,............,,,,, wvuwvuwvuU                    (1) 

The strain components vector, in terms of displacement components, is defined by 
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Fig. 1 Natural system: 20-node brick element 
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or 

B.Uε                                    (3) 

where Nk is the shape function of node k and B is the usual strain-displacement matrix. The stress 

and strain components are related by the following expression 

  D.εσ 
T

xzyzxyzyx                      (4) 

where D is the material constitutive matrix in the global system. Equivalent nodal forces, at a 

given iteration i, are expressed in the following manner 

  di

V

i
σBP

T                                (5) 

while the stiffness matrix for a concrete element of volume Ω can be expressed as 

 

V

i
et

i dBDBK
T                               (6) 

where Det is the uncracked, cracked or elasto-plastic constitutive matrix for the concrete material 

and the elastic or elasto-plastic constitutive matrix for the steel reinforcement. A reduced 

integration rule of eight points is found to be suitable to diminish shear locking effect. Concrete in 

compression is modeled using the associated theory of plasticity (Tamayo et al. 2013a, b); a 

modified Drucker-Prager yield criterion (see Fig. 2(a)), which was proposed by Cervera (1986), is 

used in this work. Due to nonlinear hardening behavior, this yield criterion defines an initial yield 

surface at an effective stress equal to σ0=0.3 fc (which is the beginning of the plastic deformation, 

where fc is the concrete compressive strength) and a limit surface separating a nonlinear state from  

x 
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z 
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Fig. 2 Constitutive models for concrete: (a) Bi-axial representation (b) Uni-axial representation 

 

 

a perfect elasto-plastic one, as it is shown in Fig. 2(b). The yield criterion is defined as 

  )(3)(
21

2
2
1

2
1 pomJIccIF σ                      (7) 

where I1 and J2 are the first and the deviatoric second stress invariants, respectively. In addition, σ0  

is the effective stress which depends on the effective plastic deformation p , being this last  

parameter defined in terms of the plastic work developed by the material. The constants c and m 

are evaluated from experimental test and are equal to 0.1775 and 1.355, respectively. The 

associated flow rule is defined as 
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with the flow vector given by 
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In Eq. (8), dε contains the components of the total strain, 
p

ijd  is a component of the plastic  

strain tensor, De is the elastic constitutive matrix and H′ is the hardening parameter established as 

the slope of the one-dimensional curve which defines the hardening rule. This curve known as 

“Madrid parabola” (see Fig. 2(b)) is defined by the following expression 

  2/122)( pocpcpy EEH                        (10) 

where Ec is the elastic modulus, εo represents the total strain at maximum compression stress fc. 

The elasto-plastic constitutive relation is expressed in the following differential form 
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where Det is the elasto-plastic constitutive matrix. Finally, the crushing condition is given by 

  uJmIcIc 
21

2

2

1
2

1 3                          (12) 

where 1I   and 2J   are the first and the deviatoric second strain invariants, respectively and εu  

represents the ultimate deformation extrapolated from experimental tests (it is taken here as 

0.0035). Otherwise, earlier developments and studies (Liu 1985) suggest that a concrete model 

intended for transient analysis should be rate and history dependent. To describe rate effects, the 

constitutive law, which was first introduced in Eq. (7), can be rewritten as 

























3302.0

510
0279.01)(





pood                      (13) 

in which σod is now a yield function both of the strain history and the current strain rate  . The 

reader is referred to the works of Tamayo et al. (2013a, b) for more details about this 

consideration. Otherwise, because the cracking tensile strain of concrete is almost invariable in 

dynamic loading, the cracking is governed by a maximum tensile strain criterion. Then, the 

response of concrete under tensile stresses is assumed to be linear elastic until the fracture surface 

is reached (see Fig. 2(a)) and then, its behavior is characterized by an orthotropic material. Cracks 

are assumed to occur in planes perpendicular to the direction of the maximum tensile strain as 

soon as this strain reaches the specified concrete tensile strain εct. After cracking has occurred the 

elastic modulus and Poisson’s ratio are assumed to be zero in the perpendicular direction to the 

cracked plane, and a reduced shear modulus is employed. Due to bond effects, cracked concrete 

carries, between cracks, a certain amount of tensile force normal to the cracked plane. This effect 

is considered through a relationship between the strain and the stress normal to the cracking plane 

direction via a softening rule, as shown in Fig. 3(a). In this figure, ft is the maximum tensile stress 

associated to the tensile strain εct and the normal stress σj is determined from the current strain εj as 

established in the following expression 







)( ctj

ef t



                               (14) 

where α is a softening parameter obtained from the concept of concrete fracture energy Gf, 

property which is determined based on the characteristic length of the representative point under 

consideration. The use of the fracture energy guarantees that the numerical response will be 

independent of the finite element mesh (Cervera 1986, Tamayo et al. 2013a, b). Under transient 

loading, the interaction of the cracked sampling points and the redistributions of stresses due to 

cracking at previously uncracked points may cause closing of the existing cracks or re-opening of 

previously closed cracks for further loading. During the softening stage a record of the maximum 

tensile stress and strain is kept. If the current strain is smaller than its reference value, then the new 

stress is following the secant unloading path (see Fig. 3(a)). An open crack is allowed to close if 

the value of the normal strain across the crack is compressive. For any strain smaller than εj stress 

is interpolated according to the secant path. Upon further loading, if the value of the current strain 

exceeds the value εj the stress is calculated as before according to Eq. (14) and the reference values  
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Fig. 4 Shear transfer model: Shear modulus versus crack normal tensile strain for various values of 

exponent k (shear retention model adapted from Tamayo 2015) 

 

 

of stress and strain are updated. The steel reinforcement is modeled as a one-dimensional elasto-

plastic material with a constant elastic modulus Es and a tangential modulus Es′ according to the 

bilinear stress-strain relation shown in Fig. 3(b). This relation is the same for tension and 

compression stresses and hysteretic loops are allowed to be formed.  

During fracture propagation in reinforced concrete, shear tractions can arise across the cracking 

surfaces taking place aggregate interlock and dowel action. A simple implementation of these 

phenomena into the smeared crack approach is to assume a constant value of the shear modulus 

after cracking. Some authors consider that in the full shear retention model, the shear modulus is 

constant and its value is equal to that of the uncracked shear modulus Go, while in the no shear 

retention model, the shear modulus is null after cracking. Both models may be criticized for their 

unreliability, since in these cases the shear modulus at cracking is given by an arbitrary estimation. 

To overcome this difficulty a modified model is adopted considering a decreasing power function 

for the shear stiffness across the cracked plane as a function of the normal cracking strain εt (see 

Fig. 4). Obviously, for an increased value of εt the ability of concrete to transfer shear stresses is 

reduced. According to this power law the reduced shear modulus Gcr can be expressed as a 

function of the initial shear modulus Go by the following expression 
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   o

k

sutcr GG .1                                 (15) 

where εt is the normal tensile strain at the cracking zone, k is a parameter that varies between 0.30 

and 1.0 and the value εsu can be taken equal to 0.005. In this investigation, a no shear retention 

model is used if any other specification is given. 

 
2.1 Numerical simulation procedure 
 

In order to introduce the implicit numerical algorithm for the solution of the nonlinear dynamic 

equation, it is necessary to describe the predictor and corrector form of the Newmark scheme for 

the integration of the semi-discrete system of governing equations. Typically, at time station tn+1 

these equations take the following form (Tamayo 2015) 

11111 )(    nnn
T

nn d fdσBCvMa                    (16) 

where M and C are the mass and damping matrices, respectively while an+1, vn+1 and dn+1 are the 

acceleration, velocity and displacement vectors, respectively, and the vectors σn+1 and fn+1 

represent the stresses and the external forces. The tangential stiffness matrix etK is related to the 

internal forces in the following manner 

   dd nn
T

nn
T

net )()( 11 dσBdσBdK                  (17) 

with, 

  det
T

et BDBK                             (18) 

In the Newmark scheme displacement and velocity at time tn+1 can be expressed in the 

following form 

1
2

11

~
  nnn t add                            (19) 

111
~

  nnn t avv                             (20) 

with 

1
2

1 )21(
~

  nnnn tt avdd                        (21) 

nnn t avv )1(~
1                             (22) 

Note that dn, dn+1 and dn+1 are the approximations to d(tn), )( ntd  and )( ntd  and β and γ are 

free parameters which control the accuracy and stability of the method. 1

~
nd  and 1

~
nv are the  

predictor values and dn+1 and vn+1are the corrector values. Initially, displacements d0 and velocities 

v0 are provided and the acceleration a0 is obtained from the following expression 

0000 dKCvfMa e                           (23) 

where Ke is the elastic stiffness matrix of the system. By using Eqs. (16)-(22), an effective static 

problem is formed which is solved using a Newton Raphson scheme. This algorithm may be 

summarized in the following manner: 
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1. Set iteration counter i=0 

2. Begin predictor phase in which we set 

nn
i
n ddd   11

~
                              (24) 

nn
i
n vvv   11

~                               (25) 

  )/(
~ 2

111 tn
i
n

i
n   dda                          (26) 

3. Evaluate residual forces 

    di
n

i
n

Ti
n

i
nn

i
11111 dσBCvMafψ                   (27) 

4. If required, form the effective stiffness matrix using the following expression 

)()()( 1
2* i

nTT tt  dKCMK                     (28) 

5. Factorize, forward reduction and back substitute as required to solve 

ii
ψdK .*                                (29) 

6. Enter corrector phase in which we set 

ii
n

i
n ddd  

 1
1
1                              (30) 

   2
11

1
1 /

~
tn

i
n

i
n  

 dda                           (31) 

1
1

1
1





  i

nn
i
n t avv                              (32) 

7. If Δd
i
 and/or ψ

i
 do not satisfy the convergence conditions then set i=i+1 and go to step 3, 

Otherwise continue. Set 

1
11


  i

nn dd                                 (33) 

1
11


  i

nn vv                                 (34) 

1
11


  i

nn aa                                 (35) 

8. Set n=n+1, form    d. nn
T

n )( 111 dσBvC  and begin the next time step.  

In this work, when the nuclear containment shell is subjected to the action of an earthquake 

load, the Johnson-Epstein sinesweep analytical earthquake will be used as a prescribed horizontal 

acceleration history at the base of the structure. The sinesweep accelerogram is energetically 

equivalent to the El Centro accelerogram with a maximum acceleration level of 0.33 g, as it is 

shown in Fig. 5, and whose values are defined as 

 ))(sin()()( max tdtd g
g                              (36) 

where 

 2/)(t                                (37) 
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Fig. 5 Sine sweep earthquake 

 

 

NBtAtt )(                               (38) 

gd g .22.0max 
   

5.1                          (39) 

gd g .33.0max 
   

5.35.1                           (40) 

where, )(td g
 is the ground acceleration time history, gd max

  is the maximum ground acceleration  

as a function of specific forcing frequency ω, g is the acceleration due to gravity and sin(θ(t)) is 

the variable frequency sinusoidal signal. The free parameters A and B in Eq. (38) are defined as 1.0 

and 3.0, respectively, with N=3.0. In addition, the generalized force fn+1
 
due to earthquake load on 

the right hand side of Eq. (27) is defined in the following manner: 

 tdgn
MIf 1    

                           (41) 

where M is the mass matrix and I is a vector indicating the direction of the earthquake component. 

 

 

4. Numerical examples 
 

4.1 Reactor containment shell subjected to aircraft impact (Cervera et al. 1988) 
 

The horizontal impact of an aircraft (Boeing 707-320, Cervera et al. 1988) on the shield 

building of a nuclear power plant is analyzed. The geometry, the loading function and the 

reinforcement are specified in Fig. 6. The built-in reinforced concrete shell is composite of 

cylindrical and spherical parts of constant thickness. The reinforcement placed circumferentially 

and meridionally on the interior and exterior surfaces consist of bars of 40 mm diameter, spaced at 

8 cm. The material properties are shown in Table 1. The impact is assumed to occur horizontally 

and is analyzed following an uncoupled approach in which its effect onto the nuclear containment 

is considered through the application of an impact load function (see e.g., Cervera 1986, Abbas et 

al. 1996, Kukreja 2005). The location of the area of impact of 28 m
2
 is also shown in Fig. 6. The 

load history is also indicated and it is noted that the load has a maximum value of 9000 ton. Since  
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Fig. 6 Nuclear containment structure: general layout and loading time history for aircraft impact 

taken from Cervera (1986) 

 
Table 1 Material properties (kN, m) 

Concrete Steel 

Elastic modulus   Ec=30×10
6
 Elastic modulus     Es=21×10

7
 

Poisson’s coefficient    Tangential modulus     Es’=0.0 

Ultimate compressive strength   fc=35000 Yield stress     

Ultimate tensile strain   εct=0.0002  

Ultimate compressive strain   εu=0.0035  

Fracture energy   Gf=0.20  

 

 

the loading and geometry of the shell are symmetric, only one half of the structure is modeled. 

Therefore, the applied distributed load is defined in a rectangular area of 14 m
2
. The implicit 

Newmark scheme with β=0.5 and γ=0.5 is used to integrate the equilibrium equations in time with 

a time step of Δt=0.00475 s. The selected time step corresponds to T/50, where T is the 

fundamental period of the structure, which is equal to 0.23 s. 

A proper mesh convergence study is carried out in order to verify the adequacy of the finite 

element mesh. For this purpose, three finite element meshes with 625 (mesh 1), 2500 (mesh 2) and 

7500 (mesh 3) 20-node hexahedral finite elements are considered (see Fig. 7). The numbers of 

equations to solve in each case are 13250, 82900 and 158000, respectively. Firstly, an elastic 

analysis is carried out and the maximum computed horizontal displacements for the control point 

A are -3.138 cm, -3.140 cm and -3.135 cm for mesh 1, mesh 2 and mesh 3, respectively. When the  
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(a) Mesh 1 (625 elements) (b) Mesh 2 (2500 elements) (c) Mesh 3 (7500 elements) 

Fig. 7 Three-dimensional and plant view of finite element meshes 

 

 
nonlinear behavior of concrete is considered with a cracking strain of 0.0002, these displacements 

are -4.78 cm,-4.56 cm and -4.57 cm, respectively. Other results expressed in terms of cracking 

patterns and concrete stresses at the outer walls of the nuclear containment are found to be similar 

for the three meshes. Next, a similar analysis was carried out for the seismic load case (see next 

section) and similar results were also found for the three meshes. In this manner, the objectivity of 

the finite element results with the present numerical model is proved. Because all meshes yielded 

similar results, any mesh can be used in the analysis. However, mesh 3 is preferred to verify 

examples, while for parametric studies (where several runs are needed, as in section 4.3) mesh 1 

can be used to save computational time. A typical simulation with mesh 3 for the seismic load case 

took about 3 CPU hours on a notebook Intel core i5 (Inspiron 14-3000) with 4 preprocessors. 

As commented before, the problem was analyzed previously by other researchers. Precisely, in 

Table 2 is presented a summary of the main characteristics of the numerical and constitutive 

models used by other references and those presented in this work. Only studies where hexahedral 

finite elements were used are listed. It may be observed that various studies have used a reduced 

number of finite elements in the numerical modeling in conjunction with an elasto-viscoplastic 

algorithm for the stress integration of steel and concrete. Nevertheless, Rebora and Zimmerman 

(1976) employed an elasto-plastic algorithm besides a cracking monitoring algorithm based on a 

maximum stress criterion where strain rate effects were omitted. Other authors have used 

hipoelasticity (Kukreja 2005) and damage plasticity (Iqbal et al. 2012) for modeling concrete. All 

works listed in Table 2 employed a particular computer code with exception of the work of Iqbal et 

al. (2012), where the commercial software ABAQUS was used. In the present work, elasto-

plasticity is adopted for modeling reinforced concrete. Concrete cracking is based on a maximum 

strain criterion and strain rate effects were included in the material model by using the numerical 

algorithm proposed by Liu (1985). To sum up, the present constitutive model combines different 

features from other constitutive models found in the technical literature (see e.g. Tamayo 2013a, b 

and Dias et al. 2015). Although the finite element mesh is not extremely refined in the present 

study, it is significantly comprised of more elements than previous works.  

Horizontal displacements at monitoring points A, B and C (these points are defined in the  

809



 

 

 

 

 

 

Jorge Luis Palomino Tamayo and Armando Miguel Awruch 

Table 2 Details of the discretization and numerical modeling  

Items 

Rebora and 

Zimmerman 

(1976) 

Cervera 

et al. 

(1988) 

Abbas 

et al. 

(1996) 

Pandey 

et al. 

(2006) 

Kukreja 

(2005) 

Iqbal 

et al. 

(2012) 

Present 

analysis 

Finite element discretization 

Nodes per 

element 
20 20 20 20 20 20 20 

Number of 

elements 
38 52 52 54 400 514640 7500 

Tensile cracking modeling 

Smeared yes yes yes yes yes yes yes 

Cracking 

Criterion 
stress strain strain strain -- stress strain 

TSOF/ 

TSTIF
(1)

 
TSOF TSOF TSOF 

TSOF+ 

TSTIF 
TSOF -- 

TSOF+ 

TSTIF 

Model: Elasto-plastic(EP)/Elasto-viscoplastic (EVP)/Hipoelastic (HE)/Damage-plasticity (DP) 

Concrete EP EVP EVP EVP HE DP EP 

Failure 

criterion
(2)

 
S D-P WW MW uniaxial 

uniaxial 

Sinha 
D-P 

Deviatoric 

Section 
noncircular circular noncircular noncircular -- -- circular 

Strain rate 

effect? 
No yes Yes Yes -- Yes yes 

Steel EP EVP EVP EVP EP EVP EP 

Solution procedure: Newmark (N) – Explicit (E) – Wilson Ɵ (W) 

Time 

integration 
W N N -- -- -- N 

G.I.
(3)

 27 15 15 -- -- 1 8 

EL/IL
(4)

 IL EL/IL IL IL IL IL EL/IL 

(1) TSOF/TSTIF: Tension softening / tension stiffening 

(2) D-P/WW/MW/S: Drucker-Prager / Willam and Warnke / Menetrey and Willam / Saugy 

(3) G.I: Gaussian integration 

(4) EL/IL: earthquake load / impact load 

 

 

spherical part as shown in Fig. 6) as functions of time obtained with the present numerical model 

and those obtained by Kukreja (2005) are compared and plotted in Fig. 8. In Kukreja (2005), a 

different material model and a finite element mesh composed of 400 20-node hexahedral finite 

elements were used. All these results correspond to a maximum tensile concrete strain of 0.0002 

and to a fracture energy of 0.2 kN/m. Moreover, in Abbas et al. (1996) history of normal stress 

components σx, σy and σz at different surfaces of the containment near the vicinity of the impact 

zone are presented. Precisely, in Figs. 9-11 are compared these stresses with those obtained in the 

present work for external, middle and internal surfaces, respectively. The spatial distributions for 

stress components σz and σy for an analysis time of 0.25s (time in which the maximum lateral 

displacement in the impact zone occurred) are shown in Figs. 12(a)-(b), respectively. Deformed 

shapes of the containment for times 0.25 s and 0.56 s (end of the analysis) are presented in Figs. 

13-14, respectively.  
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(a) Present analysis (b) Kukreja (2005) 

Fig. 8 Nonlinear analysis: lateral displacements at points A, B and C 
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Fig. 9 History of stresses at external surface 
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Fig. 10 History of stresses at middle surface 
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Fig. 11 History of stresses at internal surface 

 

  
(a) Stress σz (MPa) (b) Stress σy (MPa) 

Fig. 12 Stress distribution for maximum lateral displacement at 0.25 s 

 

  
(a) Isometric view (b) Back view 

Fig. 13 Lateral displacements (cm) at 0.25 s. (magnification factor: 120) 

 

 

Fig. 15 depicts the cracking patters obtained with the present numerical model and those 

published by Cervera et al. (1988) for times of 0.56 s and 0.38 s, respectively. It is important to 

mention that in Cervera et al. (1988) two maximum cracking strains were used (0.0002 and  
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(a) Isometric view (b) Back view 

Fig. 14 Lateral displacements (cm) at 0.56 s. (magnification factor: 200) 

 

    
(a) External face 

(present analysis at 

0.56 s for a maximum 

tensile strain of 0.0002) 

(b) Internal face 

(present analysis at 0.56 

s for a maximun tensile 

strain of 0.0002) 

(c) External face (Cervera 

1986 at 0.38 s for a 

maximum tensile strain of 

0.0002) 

(d) External face 

(Cervera 1986 at 0.38 s 

for a maximun tensile 

strain of 0.00015) 

Fig. 15 Cracking patterns for concrete containment 

 

 
0.00015). It may be observed that there are some differences in the cracking configuration for both 

responses and these may be attributed to the different number of finite elements used, the kind of 

integration rule and the chosen maximum tensile strain. Nevertheless, all results show that 

concrete cracking spreads out from the impact zone towards the base of the containment and to the 

upper region of the spherical part. The numerical results obtained in the present example in terms 

of lateral displacements, stresses and cracking patterns are in close agreement with results 

presented in other references.  

 

4.2 Reactor containment shell under earthquake loading (Liu 1985) 
 

The same containment shell previously analyzed for impact load is now analyzed for 

earthquake load with the load function shown in Fig. 5. This load function is applied at the base of 

the structure as a prescribed acceleration. For this purpose, it is supposed that the nuclear 

containment is supported by a rigid soil. The same geometry and mesh reinforcement of the 

previous example is also used. The selected time step for the analysis is 0.01 s which correspond  

Dir. x Dir. x 
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(b) Nonlinear response 
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(c) Comparison for linear and nonlinear responses 

Fig. 16 Nuclear containment structure under seismic load: Horizontal displacement at point A 
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Fig. 17 Nuclear containment structure under seismic load: Horizontal displacement at point B 
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to the value of T/23, where T is the fundamental period of the structure (Cervera et al. 1988). The 

implicit Newmark algorithm with β=0.25 and γ=0.50 is used. The nonlinear analysis was 

performed considering an ultimate tensile concrete strain of 0.00018. In Figs. 16(a)-(b) is 

compared the horizontal displacement history of point A obtained in the present work with that 

reported by Liu (1985) for the linear and nonlinear cases, respectively. In Fig. 16(c), present 

results for the linear and nonlinear cases are superimposed. As it can be seen, the vibration period 

is elongated and some dissipation due to nonlinear effect is evident. Also, the amplitude is smaller 

in the nonlinear analysis with respect to the linear case. Cracking affects the stiffness of the 

structure, changing its fundamental period. It is important to mention that in Liu (1985), shell 

finite elements were used in the numerical modeling. Similar results are depicted in Fig. 17, but 

now for the control point B. Comparisons of the linear and nonlinear responses obtained with the 

present model compare well with those obtained by Liu (1985) in terms of horizontal 

displacements.  

Finally, Fig. 18(a) shows the evolution of cracking patterns along time obtained with the 

present numerical model. In Fig. 18(b), the crack patterns obtained in Cervera et al. (1988), where 

only 40 20-node solid finite elements were used, are also shown. As it can be seen, both numerical 

models predict the progressively development of cracking from the left to the right side at the base 

of the containment.  

 

 

 
t=1.80 s 

 
t=1.95 s 

 
t=3.0 s 

(a) Present analysis 

 
t=1.65 s 

 
t=1.80 s 

 
t=1.95 s 

(b) Cervera et al. (1988) 

Fig. 18 Crack patterns at different times for concrete with a cracking strain of 0.00018 
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4.3 Parametric study  
 
4.3.1 Influence of shear retention  
It may be interesting to investigate how the shear retention model used for cracked concrete 

affects the global responses of the Mark III containment. For the impact load case, the impact 

force is acting along the x-direction and the deformation of the structure follows this direction near 

the impact zone. According to the work of Iqbal et al. (2012), normal stress components in the y 

and z directions are found to be dominant near the impact zone while other stresses are almost 

negligible. Shear stresses become dominant as the distance from the impact location increases. 

According to Abbas et al. (1996), the shear stress component τyz is negligible and the other two 

shear stresses, which correspond to the punching stresses, are obviously localized in the impact 

area with a maximum value of 5 MPa. All these previous findings are consistent with the present 

numerical results.  

Figs. 19-20 show the history of horizontal displacements of points A and B and the history of 

shear stress components τyz and τxz, respectively. These results are obtained by using the full shear 

retention, no shear retention and partial retention models. For full shear retention, the shear 

modulus of cracked concrete is assumed to be the same as that of intact concrete after concrete 

cracking. For no shear retention, the shear modulus of cracked concrete is assumed to be zero 

although a minimum value is used (10% of the shear modulus of intact concrete according to 

Cervera et al. 1988). The partial retention model follows the descending curve shown in Fig. 4 

taking k equal to 0.3. As it may be observed, all models almost predict the same responses. For the 

seismic load case, the same analysis was carried out and Fig. 21 shows the history of horizontal 

displacements of points A and B. Again, similar results are obtained. 

 

4.3.2 Influence of a base slab  
In previous sections, the containment is modeled including only the dome and the cylinder. 

Hence, it may be interesting to perform the finite element analysis again considering a base slab 

and to assume that the bottom of the base slab is clamped to the ground directly. Alternatively, the  
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(a) Point A (b) Point B 

Fig. 19 History of horizontal displacement at monitoring points (nonlinear analysis) 
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(a) Shear stress component τyz (b) Shear stress component τxz 

Fig. 20 History of shear stresses τyz and τxz at external surface near the impact zone (nonlinear analysis) 
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Fig. 21 Nonlinear analysis of nuclear contaiment under seismic load: horizontal displacements 

818



 

 

 

 

 

 

Numerical simulation of reinforced concrete nuclear containment under extreme loads 

 

   
(a) Finite element mesh (b) impact load (c) seismic load 

Fig. 22 Nuclear contaiment mesh and final cracking patterns for model with a RC base slab 

 

 

bottom of the base slab can be also connected to the ground surface by using especial purpose 16-

node zero thickness interface elements (Tamayo 2015). The interface elements allow the contact 

surfaces between the base slab and the ground to remain closed or open but no to penetrate each 

other. It was considered that the thickness of the base slab and its reinforcement mesh are similar 

to that of the concrete walls of the containment.  

Fig. 22(a) shows the finite element mesh used in the analysis while Figs. 22(b)-(c) show the 

final cracking patterns obtained with present numerical model for the same impact and seismic 

actions of the previous sections, respectively. As it is observed, the obtained cracking patterns are 

very similar (especially for the impact load) to those obtained in previous sections without the 

consideration of the base slab. Nevertheless, it is clear that some cracking take place at the 

perimeter of the base slab near the junction of the slab with the cylinder wall. 

For the impact load case, Fig. 23 shows the history of horizontal displacements of points A and 

B for three cases: 1) without the base slab; 2) with the base slab clamped to the ground directly 

and 3) with the base slab link to the ground by using contact elements where separation is allowed  
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(a) Point A (b) Point B 

Fig. 23 History of horizontal displacements at monitoring points (nonlinear analysis) 
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(a) Horizontal displacement at point C (b) Stress component σy at external surface 

Fig. 24 Different results for nonlinear analysis of contaiment under impact load 
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(b) Point B 

Fig. 25 Nonlinear analysis of nuclear contaiment under seismic load: horizontal displacements 
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to occur. Figs. 24(a)-(b) show the history of horizontal displacement of point C and the history of 

stress component σy near the impact zone, respectively. A similar analysis was carried out for the 

seismic load case and corresponding results for points A and B are shown in Fig. 25. As can be 

seen, the consideration of the base slab with contact elements does not differ significantly from the 

case of the clamped base slab to the ground directly. Therefore, contact elements can be omitted 

with safety for the present examples. Moreover, for the impact load case, the inclusion of the base 

slab in the numerical model significantly modifies the horizontal displacements of monitoring 

points A, B and C after 0.3 s. However, the normal stress component σy in the vicinity of the 

impact zone remains almost unchanged independently of the base slab. For the seismic action, 

horizontal displacements at monitoring points A and B are significantly damped out after 1.75 s.  

 
 
5. Conclusions 
 

A three-dimensional numerical model for the nonlinear dynamic analysis of reinforced concrete 

containment shells under extreme loads is implemented and presented in this work. A 20-node 

brick finite element is used to model reinforced concrete containments. The material model 

considers strain rate effects and is based on the theory of plasticity, while a cracking monitoring 

algorithm based on the smeared cracking approach is used for tensile stresses. Nonlinear finite 

element analyses of the General Electric Mark III reinforced concrete containment are performed. 

Firstly, verification of the numerical model is done by analyzing this structure under impact and 

seismic actions and obtained results are compared with those published by other authors. Good 

agreement is found for both loading cases in terms of cracking patterns, history of stresses and 

lateral displacements. A parametric study is carried out in order to investigate the importance of 

the shear transfer model used for cracked concrete and the effect of a base slab incorporation in the 

numerical model. These aspects have not been previously investigated by other researches for the 

Mark III containment under impact and seismic actions. The main conclusions of this study are: 

• A converge study was carried out and mesh independency of the finite element results was 

proved for the present material model.  

• Because 20-node finite elements are computational expensive, the PARDISO software 

package was successfully implemented and incorporated into the present finite element code 

and full advantage of the number of preprocessor was taken. 

• It was verified from the time history curves for the monitoring points in the earthquake 

loading case that the vibration period is elongated and some dissipation due to nonlinear effects 

occurs. Also, the amplitude is smaller in the nonlinear analysis than in the linear case. Cracking 

affects the stiffness of the structure, changing its fundamental period. The response to a seismic 

excitation is greatly dependent on the dynamic characteristics of the structure, as the energy 

absorbed by the system depends both on the forcing and the natural frequencies.   

• Shear retention has very little influence on the horizontal displacements history at monitoring 

points for both loading cases. Also, localized shear stresses near the impact zone for the impact 

load case do not change significantly for any of shear retention models. 

• For the calculation of stresses near the impact zone for the impact load case, the base slab 

may be excluded from the analysis of the containment and the cylinder part can be assumed to 

be clamped to the ground directly. Nevertheless, the base slab should be included in the 

analysis when a precise determination of horizontal displacements is needed. For the seismic 

load case, the horizontal displacements at the monitoring points are significantly damped out 
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after 1.75 s due to the base slab incorporation. Thus, the base slab should be considered in this 

case.     

• For the sake of saving computer time, contact elements at the bottom of the base slab to 

permit separation at this contact surface may be excluded from the analysis and the base slab 

can be assumed to be clamped to the ground directly. This observation is supported by the fact 

that the inclusion of contact elements does not change considerably the global response of the 

containment for both loading cases. Nevertheless, their inclusion significantly increases the 

number of iterations of the nonlinear algorithm.  
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