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Abstract.  Exact solutions for stresses, strains, and displacements of a perforated rectangular plate by an 

arbitrarily located circular hole subjected to both linearly varying in-plane normal stresses on the two 

opposite edges and in-plane shear stresses are investigated using the Airy stress function. The hoop stress 

occurring at the edge of the non-central circular hole are computed and plotted. Stress concentration factors 

(the maximum non-dimensional hoop stresses) depending on the location and size of the non-central circular 

hole and the loading condition are tabularized. 
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1. Introduction 
 

Numerous researchers have investigated the mechanical behaviors of perforated plates, with 

main concerns being classified into four categories; stress concentration (Savin 1961, 

Muskhelishvili 1963, Miyata 1970, Timoshenko and Goodier 1970, Peterson 1974, Iwaki and 

Miyao 1980, Theocaris and Petrou 1987, Mal and Singh 1991, Wanlin 1993, Fu 1996, Radi 2001, 

Yang and He 2002, Zhang et al. 2002, She and Guo 2007, Li et al. 2008, Yang et al. 2008, Yu et al. 

2008, Kang 2014, Woo et al. 2014), vibration, buckling, and fatigue. The various methods have 

been used to study them. The finite element method (FEM) is the most widely used for this 

perforated plate problems. Diverse methods other than FEM have been used like the complex 

variable method, three-dimensional stress analysis, the Ritz method, the boundary element 

method, the differential quadrature element method, semi-analytical solution method, experimental 

method, conjugate load/displacement method, and Galerkin averaging method. Most of the shapes 

of perforated holes have three types of circular, elliptical, and rectangular cutout. Most of the 

previous researchers have generated approximate solutions, and have dealt with perforated plates 

subjected to uni-axial or bi-axial uniform tension or compression at the most. 
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Fig. 1 A perforated rectangular plate by an arbitrarily located circular hole loaded by both linearly 

varying in-plane normal stresses on two opposite edges and in-plane shear loading τ0, and the 

rectangular coordinates (x,y) and (X,Y) and the polar coordinates (r, θ) 

 

 

In the present study, exact solutions for stresses, strains, and displacements of a perforated 

rectangular plate by an arbitrarily located circular hole subjected to both linearly varying in-plane 

normal stresses on two opposite edges and in-plane shear stresses are investigated using the Airy 

stress function. The present method of analysis is much simpler than the methods used by previous 

researchers, but it produces an exact solution which is its great strength. The hoop stresses (i.e., 

circumferential normal stresses) occurring at the edge of the non-central circular hole are 

computed and plotted. Stress concentration factors (the maximum non-dimensional hoop stresses) 

depending on the location and size of the non-central circular hole and the loading condition are 

tabularized.  

 

 

2. Airy stress function 
 

Fig. 1 shows a perforated rectangular plate of lateral dimensions L×h by an arbitrarily located 

circular hole of radius of R under both linearly varying in-plane normal stresses on two opposite 

edges at X=−L/2 and L/2 and in-plane shear stresses τ0. The origin of the rectangular coordinate 

system (X,Y) is located at the center of the rectangular plate. The origins of the other rectangular 

coordinates (x,y) and the polar coordinates (r, θ) coincide with the center of the non-central 

circular hole. The center of the non-central circular hole is located at (X,Y)=(a,b). The axes of x 

and y are parallel with X and Y axes, respectively. The plate is assumed to be very large compared 

with the circular hole. 

First of all, considering a rectangular plate with no hole subjected to both linearly varying in-

plane normal stresses on two opposite edges and in-plane shear stresses τ0, the stress components 

through the plate neglecting body forces are 
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where ϕ
0

 
is a fundamental Airy stress function, σ0 is the intensity of compressive stress at Y=−h/2, 

and α is a numerical loading factor. By changing α, we can obtain various particular cases. For 

example, by taking α=−1 we have the case of uniformly distributed compressive force. When α=0, 

the compressive force varies linearly from −σ0 at Y=−h/2 to zero at Y=+h/2. For α=1 we obtain the 

case of pure in-plane bending. With other α in the range −1<α<1, we have a combination of 

bending and compression. Examples of these cases are shown in Fig. 2. For α<−1 or α>1 the 

problems arising are identical with ones having −1<α<1. The fundamental Airy stress function ϕ
0
 

satisfies the governing equation 
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 is the bi-harmonic differential operator defined by 
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in rectangular coordinates (X,Y). From the relation of the Airy stress function and stress 

components in rectangular coordinates in Eq. (1), the fundamental Airy function ϕ
0
 can be 

assumed as 
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where A, B, and C are arbitrary integration constants. Since the relations of X=x+b and Y=y+b, Eq. 

(4) becomes 

 CbyBaxAbyaxbyby
h







 )()())(())(1(
4

)(
6

)1(
0

20300    (5) 

A linear function of x or y and a constant in the Airy stress function in rectangular coordinates 

are trivial terms which do not give rise to any stresses and strains (Fu 1996). Dropping the trivial 

terms in Eq. (5), the fundamental Airy stress function ϕ
0
 becomes 
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Fig. 2 Examples of in-plane normal stresses σxx along the edge X=−L/2 
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Fig. 3 Plot of non-dimensional shear stress σrθ/σ0 for β=0.1, γ=0.1, τ0/σ0=1, and θ=0 
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Using the relation of 

         cosrx ,  sinry  (7)
 

and the multiple angle formulas 

2

2cos1
sin 2 


                              

(8) 

4

3sinsin3
sin 3 


                            

(9) 

The fundamental Airy stress function ϕ
0

 
in Eq. (6) can be transformed into the bi-harmonic 

functions in polar coordinates (r, θ) as below 
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which satisfies the governing equation 
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in polar coordinates. From the following relations between stresses and the Airy stress function in  
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Fig. 4 Plot of non-dimensional circumferential displacement uθμ/σ0R for β=−0.1, γ=0.1, 

τ0/σ0=1, v=0.3 and θ=90° 

 

 

polar coordinates, stress components through the rectangular plate with no hole subjected to both 

linearly varying in-plane normal stresses on two opposite edges and in-plane shear stresses can be 

calculated as below 
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Let us return to the original problem of a perforated rectangular plate by an arbitrarily located 

circular hole under both linearly varying in-plane loading and in-plane shear loading. The total 

Airy function ϕ
 
becomes

  
*0 
                                 

(16) 

where ϕ
*

 
is an Airy stress function to cancel unwanted traction due to ϕ

0
 at the edge of the non-

central circular hole on r=R. The normal and shear stresses at the edge of the circular hole on r=R  
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Fig. 5 Plot of radial strain εrrμ/σ0 for β=0.1, γ=0.1, τ0/σ0=1, v=0.3 and θ=0° 

 

 

must be free as below 
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Therefore, *
rr  

and *
r  on r=R must have terms of sin θ, sin 2θ, sin 3θ, cos 2θ, or a constant 

and have cos θ, cos 2θ, cos 3θ, or sin 2θ, respectively, in order to eliminate the stresses on r=R due 

to ϕ
0
 in Eqs. (13) and (14). Tables 1 and 2 show the potential candidates of the bi-harmonic 

functions for the present problem from the tables by Dundurs (Fu 1996), which contain stresses 

and displacements of certain bi-harmonic functions in polar coordinates. However, the terms of 
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 in order not to disturb the traction in Eq. (1) at infinity. The terms of rln 
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function ϕ in Eq. (16) becomes 
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where C1~C8 are arbitrary integration constants to be determined by traction boundary conditions. 

In order to make the constants C1~C8 dimensionless, they are multiplied by R
2
, ...,R

5
. Applying the 

stress free boundary conditions at the edge of the circular hole on r=R 
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and using the property of identity, the unknown constants C1~C8 are computed as  
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It is observed from the total Airy stress function ϕ in Eq. (19) that the solutions are not 

depending on a distance a in the X-direction between the two centers of the rectangular plate and 

the non-central circular hole. 

 

 

3. Stresses 
 

Using the relations between the stresses and the Airy stress function in Eqs. (13)-(15) in polar 

coordinates, the stress components can be expressed as below  
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where ξ is the non-dimensional radial coordinate defined by r/R. As a numerical example, Fig. 3 

shows non-dimensional shear stress σrθ/σ0 for α=1, β=0.1, γ=0.1 and τ0/σ0=1 on θ=0° with α=−1, 

−0.5, 0, 0.5, and 1. 

The circumferential stress σθθ on the edge of the non-central circular hole (r=R), which is called 

the hoop stress σHoop, becomes 
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The limiting case of the plate with no hole (R→0, β→0, γ→0), the stress components become 

as below 
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Timoshenko and Goodier (1970) analyzed the exact stresses in a rectangular plate with a 

central circular hole subjected to uni-axial uniform compression (α=−1, β=0, τ0=0). Substituting 

α=−1, β=0 and τ0= into the stress components in Eqs. (23)-(25) results in 
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which are exactly same with those by Timoshenko and Goodier (1970). 

Mal and Singh (1991) presented the exact stresses in a perforated rectangular plate by a central 

hole under in-plane pure shear (σ0=0, β=0). Substituting σ0=0 and β=0 into Eqs. (3.1)-(3.3), the 

stress components become  



















 2sin

34
1

420rr  
















  2cos

32
1

420r  

 











 2sin

3
1

40                          (29) 

790



 

 

 

 

 

 

Exact deformation of an infinite rectangular plate with an arbitrarily located circular hole... 

Table 1 Stresses of potential candidates of bi-harmonic functions ϕ 

ϕ σrr σrθ σθθ 
2r  
rln  
rr ln2
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2/1 r  

1ln2 r  

0 
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which exactly coincide with those by Mal and Singh (1991).  

Woo et al. (2014) obtained the exact solutions for stresses of a perforated rectangular plate by a 

central circular (β=0) hole subjected to in-plane bending moment (α=1, τ0=0) on two opposite 

edges. The stress components in Eqs. (3.1)-(3.3) becomes 
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which are exactly same with those by Woo et al (2014). 

 

 

4. Displacements 
 

Using Table 2 by Dundurs (Fu 1996), the displacement components ur and uθ can be easily  
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Table 2 Displacements of potential candidates of bi-harmonic functions ϕ  
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obtained as selecting and summing displacement corresponding to each term of the total Airy 

stress functions ϕ in Eq. (2.19) as below 
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1/ 00   

 
0/ 00   

 
1/ 00   

Fig. 6 The non-dimensional hoop stress σθθ/σ0 at r=R for b/h=1/5, R/h=1/10, and τ0/σ0=−1,0,1, 0, 1 

 

 
5/1/ hb  

 
0/ hb  

 
5/1/ hb  

Fig. 7 The non-dimensional hoop stress σθθ/σ0 at r=R for R/h=1/10, τ0/σ0=1, and b/h=−1/5,0,1/5 

 

 

where μ
 
is shear modulus, κ is a secondary elastic constant defined as 
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As a numerical example, Fig. 4 shows non-dimensional circumferential displacement uθμ/σ0R 

for β=−0.1, γ=0.1, τ0/σ0=1, and v=0.3 on θ=90° with α=−1, 0.5, 0, 0.5, and 1. 

The circumferential displacement uθ on r=R, which is called the hoop displacement, becomes 

]2sin)}1)1(2){1(23cos)1)(1(cos)1)(1([
16

0 







R
u

Rr
 





 2cos)1(

2

0R
                            (34) 

The limiting case of the plate with no hole (R→0, β→0, γ→0), the displacements become as 

below 

 











 





 2sin

22

1
2cos)1(

8

00 r
r

ur                  (35) 

793



 

 

 

 

 

 

Yeong-Bin Yang and Jae-Hoon Kang 

Table 3 The stress concentration factors (σθθ)max/σ0 at r=R 
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5. Strains 
 

Substituting Eqs. (31) and (32) into the well-known relations of strain-displacement in polar 

coordinates 
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the strain components can be calculated as below 
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As a numerical example, Fig. 5 shows radial strain εrrμ/σ0 
for β=0.1, γ=0.1, τ0/σ0=1, and v=0.3 

on θ=0° with α=−1, 0.5, 0, 0.5, and 1. 

The circumferential stain εθθ on the edge of the non-central circular hole (r=R), which is called 

the hoop strain, becomes 
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The limiting case of the plate with no hole (R→0, β→0, γ→0), the strain components become 

as below 
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6. Stress concentration factors 
 

The circumferential stress σθθ occurring at the edge of the non-central circular hole (r=R) is 
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called the hoop stress 
Rr

Hoop
. By means of Eq. (26) the non-dimensional hoop stress 

becomes 
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It is seen that the hoop stress is independent of shear modulus   and Poisson's ratio v. Also it 

is not depending on a distance a in the X-direction between the two centers of the rectangular plate 

and the non-central circular hole. Figs. 6 and 7 show the non-dimensional hoop stresses σHoop/σ0. 

The stress concentration factor (SCF) is the non-dimensional maximum hoop stress defined by the 

ratio between the maximum hoop stress and a nominal stress (σHoop)max/σ0. Table 3 shows the stress 

concentration factors varying with α, β(=b/h), γ(=R/h), and τ0/σ0. 

 

 

7. Conclusions 
 

Exact solutions for stresses, strains, and displacement of a perforated rectangular plate by an 

arbitrarily located circular hole subjected to both linearly varying in-plane normal stresses on two 

opposite edges and in-plane shear stresses are investigated using the Airy stress function. The 

hoop stress occurring at the edge of the non-central circular hole are derived and plotted. The non-

dimensional maximum hoop stresses, which is called the stress concentration factor, are also 

computed.  

Considering multi-valuedness and singularity in stresses and displacements at infinity, the Airy 

stress function ϕ(r, θ) is obtained as selecting and summing proper bi-harmonic functions from the 

tables presented by Dundurs (Fu 1996), which contain stresses and displacements for certain bi-

harmonic functions. The Airy stress function ϕ(r, θ) satisfies the governing equation 
4
ϕ=0 and 

the stress free boundary conditions at the edge of the non-central circular hole.  

The stress components are calculated using the relations of stresses and the Airy stress 

function, the displacement components can be obtained as selecting and summing displacements 

corresponding to each term of the Airy stress functions from the table by Dundurs (Fu 1996), and 

then the strain components are computed using the relation of the strains and displacements. The 

solutions are not depending upon the location in the X-direction of the center of the non-central 

circular hole. 

The solutions for stress, strain, and displacement components for the present study can be used 

in cases of a very thick plate or a very long cuboid with a non-central circular cylindrical hole and 

subjected to both linearly varying normal stresses and shear stresses along the longitudinal 

direction, which is a kind of plane strain problems. In the plane strain problem, the secondary 

elastic constant κ in Eq. (33) must be changed to 3−4v
 
from (3−v)/(1+v). 
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