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Abstract.  Exact solutions for stresses, strains, and displacements of a perforated rectangular plate by an
arbitrarily located circular hole subjected to both linearly varying in-plane normal stresses on the two
opposite edges and in-plane shear stresses are investigated using the Airy stress function. The hoop stress
occurring at the edge of the non-central circular hole are computed and plotted. Stress concentration factors
(the maximum non-dimensional hoop stresses) depending on the location and size of the non-central circular
hole and the loading condition are tabularized.
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1. Introduction

Numerous researchers have investigated the mechanical behaviors of perforated plates, with
main concerns being classified into four categories; stress concentration (Savin 1961,
Muskhelishvili 1963, Miyata 1970, Timoshenko and Goodier 1970, Peterson 1974, Iwaki and
Miyao 1980, Theocaris and Petrou 1987, Mal and Singh 1991, Wanlin 1993, Fu 1996, Radi 2001,
Yang and He 2002, Zhang et al. 2002, She and Guo 2007, Li et al. 2008, Yang et al. 2008, Yu et al.
2008, Kang 2014, Woo et al. 2014), vibration, buckling, and fatigue. The various methods have
been used to study them. The finite element method (FEM) is the most widely used for this
perforated plate problems. Diverse methods other than FEM have been used like the complex
variable method, three-dimensional stress analysis, the Ritz method, the boundary element
method, the differential quadrature element method, semi-analytical solution method, experimental
method, conjugate load/displacement method, and Galerkin averaging method. Most of the shapes
of perforated holes have three types of circular, elliptical, and rectangular cutout. Most of the
previous researchers have generated approximate solutions, and have dealt with perforated plates
subjected to uni-axial or bi-axial uniform tension or compression at the most.
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Fig. 1 A perforated rectangular plate by an arbitrarily located circular hole loaded by both linearly
varying in-plane normal stresses on two opposite edges and in-plane shear loading 7, and the
rectangular coordinates (x,y) and (X,Y) and the polar coordinates (r, )

In the present study, exact solutions for stresses, strains, and displacements of a perforated
rectangular plate by an arbitrarily located circular hole subjected to both linearly varying in-plane
normal stresses on two opposite edges and in-plane shear stresses are investigated using the Airy
stress function. The present method of analysis is much simpler than the methods used by previous
researchers, but it produces an exact solution which is its great strength. The hoop stresses (i.e.,
circumferential normal stresses) occurring at the edge of the non-central circular hole are
computed and plotted. Stress concentration factors (the maximum non-dimensional hoop stresses)
depending on the location and size of the non-central circular hole and the loading condition are
tabularized.

2. Airy stress function

Fig. 1 shows a perforated rectangular plate of lateral dimensions Lxh by an arbitrarily located
circular hole of radius of R under both linearly varying in-plane normal stresses on two opposite
edges at X=—L/2 and L/2 and in-plane shear stresses z,. The origin of the rectangular coordinate
system (X,Y) is located at the center of the rectangular plate. The origins of the other rectangular
coordinates (x,y) and the polar coordinates (r, 8) coincide with the center of the non-central
circular hole. The center of the non-central circular hole is located at (X,Y)=(a,b). The axes of x
and y are parallel with X and Y axes, respectively. The plate is assumed to be very large compared
with the circular hole.

First of all, considering a rectangular plate with no hole subjected to both linearly varying in-
plane normal stresses on two opposite edges and in-plane shear stresses z,, the stress components
through the plate neglecting body forces are
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where ¢° is a fundamental Airy stress function, oy is the intensity of compressive stress at Y=—h/2,
and « is a numerical loading factor. By changing a, we can obtain various particular cases. For
example, by taking a=—1 we have the case of uniformly distributed compressive force. When =0,
the compressive force varies linearly from —ao at Y=—h/2 to zero at Y=+h/2. For «=1 we obtain the
case of pure in-plane bending. With other o in the range —1<a<1, we have a combination of
bending and compression. Examples of these cases are shown in Fig. 2. For a<—1 or a>1 the
problems arising are identical with ones having —1<a<1. The fundamental Airy stress function ¢°
satisfies the governing equation V*¢°=v?(V%%)=0 with no body forces, where the Laplacian
operator V? is expressed as

o> 0°
2 = +— 2
oX?  ov? @
and V* is the bi-harmonic differential operator defined by V(V?) and becomes
4 4 4
VvVt =Vv3(V?) = 0 ¢ 0 ©)

+2 +
oX* oX2ey? oav*

in rectangular coordinates (X,Y). From the relation of the Airy stress function and stress
components in rectangular coordinates in Eq. (1), the fundamental Airy function ¢° can be
assumed as

_ co(l+a)
6h

where A, B, and C are arbitrary integration constants. Since the relations of X=x+b and Y=y+b, Eq.
(4) becomes

¢° Ys—%(l—oc)Yz—rOXY+AX+BY+C (4)

¢° :W(y+b)3—%(l—a)(y+b)z —t(x+a)(y+b)+ A(x+a)+B(y+b)+C  (5)

A linear function of x or y and a constant in the Airy stress function in rectangular coordinates
are trivial terms which do not give rise to any stresses and strains (Fu 1996). Dropping the trivial
terms in Eq. (5), the fundamental Airy stress function ¢° becomes
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Fig. 2 Examples of in-plane normal stresses oy, along the edge X=—L/2
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Fig. 3 Plot of non-dimensional shear stress a,4/0, for f=0.1, y=0.1, 7o/0o=1, and 6=0
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Using the relation of

X=rcos6, y=rsin® (7)
and the multiple angle formulas
.5, 1-c0s20
sin“ 0= - (8)
5in® 0 w 9)

The fundamental Airy stress function ¢° in Eq. (6) can be transformed into the bi-harmonic
functions in polar coordinates (r, 8) as below

0 :ﬁ{—(“a) r®sin 6—%r35in 39+{1_Ta—@}r2 c0s26

(10)
_{1—_0(_ b(l+a)}r2 ~Tor2gin 29
2 h 2
which satisfies the governing equation V*¢°=V?(V?¢%)=0, where V? is
2 2
vee & 10,20 (11)

= -
or? ror r? o0
and V*=V*(V?) is expressed as
% 10 1Yo 10 1 82
Vis| 4o | o+ 12
£6r2 ror r? aez](arz ror r? oo’ (12)

in polar coordinates. From the following relations between stresses and the Airy stress function in
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Fig. 4 Plot of non-dimensional circumferential displacement ugu/ooR for f=—0.1, y=0.1,
tolop=1, v=0.3 and 6=90°

polar coordinates, stress components through the rectangular plate with no hole subjected to both
linearly varying in-plane normal stresses on two opposite edges and in-plane shear stresses can be
calculated as below

G, ==

o108 1%
"r o r? pp?

2b(1 .
= %[—1;(1 rsin 6+—1J;]a rsin 39—{1—(1— 20+ a) cos 20 —1+0t+—( h+ a)}rfo sin 26 (13)

h
o _ 169
o= ar[r aej

1+a _ 2b(1+ a)}sin ze}qo c0s20 (14)

:—{—Trcose+—rcos39+

0
Ggp =

8r

:%’{@rsne j; rsm39+{1 @}cosze—l+a+@}—rosinze (15)

Let us return to the original problem of a perforated rectangular plate by an arbitrarily located
circular hole under both linearly varying in-plane loading and in-plane shear loading. The total
Airy function ¢ becomes

0=¢"+¢" (16)

where ¢ is an Airy stress function to cancel unwanted traction due to ¢° at the edge of the non-
central circular hole on r=R. The normal and shear stresses at the edge of the circular hole on r=R
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Fig. 5 Plot of radial strain &.u/a, for =0.1, y=0.1, 7o/69=1, v=0.3 and 6=0°

must be free as below

Oy =R = [G?r + c;l:r] r=R = 0 (17)
Gro reR [G?e + CT’;e]r:R =0 (18)

Therefore, 0:, and 0:9 on r=R must have terms of sin 0, sin 26, sin 36, cos 26, or a constant

and have cos 6, cos 26, cos 36, or sin 20, respectively, in order to eliminate the stresses on r=R due
to ¢° in Egs. (13) and (14). Tables 1 and 2 show the potential candidates of the bi-harmonic
functions for the present problem from the tables by Dundurs (Fu 1996), which contain stresses
and displacements of certain bi-harmonic functions in polar coordinates. However, the terms of
r’sin 26, r’sin 6, r’sin 30, r’cos 26, and r? in the fundamental Airy stress function ¢° of Eq. (10)
must be excluded in ¢” in order not to disturb the traction in Eq. (1) at infinity. The terms of rin
rsind, r’In r, and r 6 cos @ give rise to muti-valued displacements u, and/or u,, in the directions of
r and 6, respectively. Singularity at infinity occurs in stresses and displacements because of the
terms of r'sin 26, r'cos 26, and r’sin 30. Omitting these inadequate terms, the total Airy stress
function ¢ in Eq. (16) becomes

p=20 a+o) r3sin9——(1+a)r3’sin39+ 1-a _b@+a) r?cos20— 1-a_bd+o) r?
4 2h 6h 2 h 2 h

+C,R?Inr +C,

C;——— +C,R?c0520+Cs —— Cs

R3sine+ R*c0s20 R5sin36+ R3sin36}
r r r

—%’(rzsin 20+C,R?sin 20 + C4R* il 29}

19
= (19)
where C,~Cg are arbitrary integration constants to be determined by traction boundary conditions.
In order to make the constants C,;~Cg dimensionless, they are multiplied by R?, ...,R®. Applying the
stress free boundary conditions at the edge of the circular hole on r=R
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and using the property of identity, the unknown constants C,~Cg are computed as
C,=-C,=1-a-2B(l+a), C,=C, =@,
c, =S =W ey (21)
2 3
where
b R
= —, = — 22
P=r v=1 (22)

It is observed from the total Airy stress function ¢ in Eq. (19) that the solutions are not
depending on a distance a in the X-direction between the two centers of the rectangular plate and
the non-central circular hole.

3. Stresses

Using the relations between the stresses and the Airy stress function in Egs. (13)-(15) in polar
coordinates, the stress components can be expressed as below

S, =%|:y(l+oc)£§—é—13}sin 6+y(1+a)(§—§%+g15jsin 36—{1—0(—2[3(1—1—(1)){1—&%)
4 3 4 3).
—{l-a-2B@1+ oc))(l—?+&—4}cosze} +ro[l—g+é—4jsm 20 (23)

Crp = %{{1— o—2B1+ oc))(l+ E,_ZZ - g—i}sin 20-y(1+ a)(& - é—lsjcose

+y(@+ a)(§+§—33—%)00539}10(“&%—54}00326 (24)
Gop = GTO{Y(H oc)(3§+§i3}sin 0—y(l+ q)[a—aia+§i5jsin 30

+{l-a-2BA+ oc))(1+ E%J c0s20 —{1- o — 2B+ a))(1+ éﬂ - ro[1+ E%Jsin 20  (25)
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where ¢£ is the non-dimensional radial coordinate defined by r/R. As a numerical example, Fig. 3
shows non-dimensional shear stress /oy for a=1, f=0.1, y=0.1 and zy/op=1 on 6=0° with a=-1,
-0.5,0, 0.5, and 1.

The circumferential stress o4, on the edge of the non-central circular hole (r=R), which is called
the hoop stress giq0p, DECOMES

Choop = Gee‘ - Gol:’\{(l-‘r a)(sin® —sin 30) +{L— o — 2B(1+ o) }c0s20 + B(L+ o) — 1_7(1} —41,45in 20

7 (26)

The limiting case of the plate with no hole (R—0, f—0, y—0), the stress components become
as below

o, =—%’(1—a)(00326+1)+rosin 26
G = c5740(1—(>c)sin 20+ 17,0526

Gop :%(1—00(005 20-1)—1,sin 26 (27)

Timoshenko and Goodier (1970) analyzed the exact stresses in a rectangular plate with a
central circular hole subjected to uni-axial uniform compression (a=—1, =0, 7,=0). Substituting
o=—1, =0 and 7= into the stress components in Egs. (23)-(25) results in

ST —6—20[1—%2 +(1—§i2+§4jc0529}
G =0_20£1+£2—§4]sin 20

Goo = —0—20{1+gi2—£1+ gjcosze} (28)

which are exactly same with those by Timoshenko and Goodier (1970).

Mal and Singh (1991) presented the exact stresses in a perforated rectangular plate by a central
hole under in-plane pure shear (,=0, £=0). Substituting 6,=0 and =0 into Egs. (3.1)-(3.3), the
stress components become

G, = 10[1—i2+i4jsin 20
& &

G = r{l+%—%)c0526
& &

— ro(l-k F%Jsin 20 (29)
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Table 1 Stresses of potential candidates of bi-harmonic functions ¢

¢ Orr Org Opo
r2 2 0 2
Inr 1/r? 0 —1/r?
r2Inr 2Inr+1 0 2Inr+3
r’sin® 2rsin® —2rcos0 6rsin®
rocoso -2sin0/r 0 0
rinrsin® sin0/r —coso/r sin0/r
sind/r —2sin@/r® 2coso/r? 2sin@/r?
r2cos20 —2¢0s20 2sin20 2¢0s520
r*cos20 0 6r?sin20 12r?cos260
cos20/r? —6c0s20/r* —6sin20/r* 6c0s20/r*
0520 —4c0s20/r? —2sin20/r? 0
r®sin30 —6rsin30 —6rcos30 6rsin30
r°sin30 —4r3sin30 —12r°cos360 20r®sin30
sin30/r? —12sin30/r° 12cos30/r° 12sin30/r°
sin30/r —10sin36/r® 6c0s30/r® 2sin30/r°
r2sin20 —2sin26 —2c0s20 2sin 20
sin 20 —4sin20/r? 2co0s20/r? 0
r'sin20 0 —6r2cos20 12r%sin20
sin20/r? —6sin20/r* 6co0s20/r* 6sin20/r*

which exactly coincide with those by Mal and Singh (1991).

791

Woo et al. (2014) obtained the exact solutions for stresses of a perforated rectangular plate by a
central circular (#=0) hole subjected to in-plane bending moment (a=1, 7=0) on two opposite

edges. The stress components in Egs. (3.1)-(3.3) becomes

_ ¥ || L g _5 A

G, = 5 l:(g asjsmeJ{g §3+&5Jsm36}
1 3 4

S :%{_(g—gjcose +(&+§—3—a—5]cos39}

Ogp = %K:ﬁ"'éjsm 9‘(&‘%"’%}“” 36:|

which are exactly same with those by Woo et al (2014).

4. Displacements

(30)

Using Table 2 by Dundurs (Fu 1996), the displacement components u, and u, can be easily
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Table 2 Displacements of potential candidates of bi-harmonic functions ¢

¢ 2puy 2y
r2 (xk=Dr 0
Inr =1/r 0

r’inr (k=Drinr—r (k+Dro

r’sin® (k—-2)r’sin® —(k+2)r?cosd

rocoso [(k—D6cosO—(k+1)Inrsin®+sin6]/2 [-(k—1DOsin0—(ik+1)Inrcos6—cosO]/2
rinrsin0 [-(k+1)6cosO+ (k-1 InrsinO—sin6]/2 [(x+1)0sin6+ (k—21)In rcos6+cos6]/2
sind/r sin@/r? —c0os0/r?

r2cos20 —2rcos20 2rsin20

r* cos20 ~(3-1)r’cos20 (B+x)r’sin20
c0s20/r? 2c0s20/r? 2sin20/r?

€0s20 (kx+1)cos20/r —(x=1sin20/r

r®sin30 —3r%sin20 —3r?cos26

r®sin30 —(4-x)rsin30 —(4+x)r*cos30

sin30/r3 3sin30/r* —3co0s30/r*

sin30/r (2+x)sin30/r’ ~(2-K)cos30/r?

r?sin20 —-2rsin26 —2r cos20

sin 20 (k+1)sin20/r (x—1)cos20/r

r*sin20 —(3-x)r’sin20 —(3+x)r’cos20

sin20/r? 2sin20/r® —2c0s20/r°

obtained as selecting and summing displacement corresponding to each term of the total Airy
stress functions ¢ in Eq. (2.19) as below

u, = %[@{(K— 2)&2 +éi2}sin 0+y(1+ a)(%—&—a ZZQKJSIH 30

—{l-a- 23(1+a)]{a——+%+1Jcosze {l-o— 2[3(1+oc))(—§+ H

+%(g+%—§i}sm 20 (31)

U :%5{{1—a—2[3(1+a){&+§—13+%_1j8in 29—@{(1«2)@2 +ai2}cose

+y(1+a)(§22 ;4 22%2KJC0536:| +%(§+%+E%JCOSZG (32)
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To/oy =0 To/oy =1

Fig. 6 The non-dimensional hoop stress oy4/oq at r=R for b/h=1/5, R/h=1/10, and 7o/oo=-1,0,1, 0, 1

b/h=-1/5 b/h=0 b/h=1/5
Fig. 7 The non-dimensional hoop stress oyloy at r=R for R/h=1/10, 7o/oy=1, and b/h=-1/5,0,1/5

where u is shear modulus, « is a secondary elastic constant defined as

KZS—V (33)
1+v

As a numerical example, Fig. 4 shows non-dimensional circumferential displacement ugu/ooR
for p=—0.1, y=0.1, 7/op=1, and v=0.3 on #=90° with a=—1,—0.5, 0, 0.5, and 1.
The circumferential displacement u, on r=R, which is called the hoop displacement, becomes

u9|r:R = %[y(l+ a)(l—x)cosO+y(d+ o)+ Kk)cos30 —2(1+ «){2B(L+ o) + o —1) }sin 20]

+ 2R 44 ) cos 20 (34)
2u

The limiting case of the plate with no hole (R—0, f—0, y—0), the displacements become as
below

u =—G—°r(1—oc) cosze+K—_1 +=% rsin 20 (35)
' 8u 2 2u
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Table 3 The stress concentration factors (ogg)max/oo at r=R

Yeong-Bin Yang and Jae-Hoon Kang

Tg R b a
S, h h -1 —05 0 0.5 1
0.2 5.472 -5.213 -4.966 -4.732 -4.513
0.05 0 5.472 -5.037 -4.643 -4.297 +4.003
0.2 5.472 -4.869 -4.357 4.055 4513
-1 0.2 5.472 -5.265 -5.060 -4.857 -4.657
0.2 0 5.472 -5.083 -4.714 -4.367 + 4.046
0.2 -5.472 -4.910 -4.403 4.088 4.657
0.2 -3 26 22 18 14
0.05 0 -3 23 16 -0.9 +0.2
0.2 -3 -2 1 0.3 1.4
0 0.2 -3 -2.75 25 -2.25 -2
0.2 0 -3 -2.45 1.9 -1.35 +08
0.2 -3 -2.15 1.3 0.75 2
0.2 5.472 -5.213 -4.966 -4.732 -4.413
0.05 0 -5.472 -5.037 -4.643 -4.297 +4.003
. 0.2 -5.472 -4.869 -4.357 4.055 4513
0.2 5.472 -5.265 -5.060 -4.857 -4.657
0.2 0 -5.472 -5.083 -4.714 -4.367 + 4.046
0.2 -5.472 -4.910 -4.403 4.088 4.657
uy = 297 (1— a)sin 20+~ r cos 20 (36)
8u 21
5. Strains

Substituting Egs. (31) and (32) into the well-known relations of strain-displacement in polar

coordinates

ou
T o

1
Sre:E r

Ug. +16ur
r r 00

the strain components can be calculated as below

SI‘I’

_5%o

}’ €9 =~

{y(l+ OL){(K —2)¢— is}sin 0+vy(1+ oc)(E_, +
H g g

Z;KJsin 30

—{l-a-2B+ oc))(1+§4—1;:—2KJc0526+ A-a-2p+ a»[i_lz__

(37)
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+2—[1 (1+K)§ +§}sm26 (38)

1!

€9 = gﬁ{yaga)cose+y(1+a){ ; ;jcos% +{l-a- 2[3(14—(1))(14— ;Jsinze}
+;—&{1+é—§4}c0326 (39)

g0 = g—;{y(lnt oc){(1<—2)§+§—];}sin 0—y(1+ a)(ﬁ—ké—t—sstin 30
+{l-a- ZB(1+OL))(1+ jCOSZO {1-a- 2B(1+oc))(———ﬂ

To 3-x 3 |.
Zu{l & @4}"126 (40)

As a numerical example, Fig. 5 shows radial strain &qu/oo for p=0.1, y=0.1, 7o/op=1, and v=0.3
on 6=0° with a=—1,—-0.5, 0, 0.5, and 1.

The circumferential stain ¢y on the edge of the non-central circular hole (r=R), which is called
the hoop strain, becomes

899|r:R = g—:[y(lJr a)(k=1)sin 0 —y(L+ o)1+ «)sSin 30 +{1—a—2p(L+ o) }(1+ k) c0s 26

fl-o- 2[3(1+oc))(1——ﬂ——(1+1<)sm 20 (41)

The limiting case of the plate with no hole (R—0, f—0, y—0), the strain components become
as below

1
= 1-a)| 0520 +—— |+—2sin 20 42
b == 2200 cos20+ 1 |20 @)
sre_—o(l o) sin 20 +—2 cos 20 (43)
8y 2n
k—1) 71,
=—2(1-a) cos20 - —=|--2sin 20 44
suo = g2 0-a) cos20 -1 - (@4

6. Stress concentration factors

The circumferential stress oy occurring at the edge of the non-central circular hole (r=R) is
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called the hoop stress GHoopzcee‘ . By means of Eg. (26) the non-dimensional hoop stress

r=R

becomes

O Hoop _ [Y(“ a)(sin 0—sin 30) +{l-a— 21+ a)}cos 20 + P(L+ a)—l_Ta}—ﬂ:—osin 20 (45)

Go Gy

It is seen that the hoop stress is independent of shear modulus p and Poisson's ratio v. Also it

is not depending on a distance a in the X-direction between the two centers of the rectangular plate
and the non-central circular hole. Figs. 6 and 7 show the non-dimensional hoop stresses gioop/co.
The stress concentration factor (SCF) is the non-dimensional maximum hoop stress defined by the
ratio between the maximum hoop stress and a nominal stress (6ioop)max/co. Table 3 shows the stress
concentration factors varying with a, g(=b/h), y(=R/h), and zy/a.

7. Conclusions

Exact solutions for stresses, strains, and displacement of a perforated rectangular plate by an
arbitrarily located circular hole subjected to both linearly varying in-plane normal stresses on two
opposite edges and in-plane shear stresses are investigated using the Airy stress function. The
hoop stress occurring at the edge of the non-central circular hole are derived and plotted. The non-
dimensional maximum hoop stresses, which is called the stress concentration factor, are also
computed.

Considering multi-valuedness and singularity in stresses and displacements at infinity, the Airy
stress function ¢(r, 6) is obtained as selecting and summing proper bi-harmonic functions from the
tables presented by Dundurs (Fu 1996), which contain stresses and displacements for certain bi-
harmonic functions. The Airy stress function ¢(r, 6) satisfies the governing equation V*$=0 and
the stress free boundary conditions at the edge of the non-central circular hole.

The stress components are calculated using the relations of stresses and the Airy stress
function, the displacement components can be obtained as selecting and summing displacements
corresponding to each term of the Airy stress functions from the table by Dundurs (Fu 1996), and
then the strain components are computed using the relation of the strains and displacements. The
solutions are not depending upon the location in the X-direction of the center of the non-central
circular hole.

The solutions for stress, strain, and displacement components for the present study can be used
in cases of a very thick plate or a very long cuboid with a non-central circular cylindrical hole and
subjected to both linearly varying normal stresses and shear stresses along the longitudinal
direction, which is a kind of plane strain problems. In the plane strain problem, the secondary
elastic constant « in Eq. (33) must be changed to 3—4v from (3—v)/(1+v).
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