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Abstract.  The main objective of the present paper is to investigate, by means of a boundary value problem 

permitting a semi-analytic solution, qualitative behaviour of solutions for two pressure-dependent yield 

criteria used for plastically incompressible polymers. The study mainly focuses on the regime of friction 

(sticking and sliding). It is shown that the existence of the solution satisfying the regime of sticking depends 

on other boundary conditions. In particular, there is such a class of boundary conditions depending on the 

yield criterion adopted that the regime of sliding is required for the existence of the solution independently 

of the friction law. 
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1. Introduction 
 

There are a great number of experimental observations demonstrating that skin layers are 

generated in the vicinity of frictional interfaces in injection molding of polymers. A review of 

these experimental observations is provided in Pantani et al. (2005). Temperature is one of the 

main contributory mechanisms responsible for skin layer generation (Viana 2004). In turn, friction 

is responsible for the temperature field in the vicinity of friction surfaces. In many cases, the effect 

of friction on temperature is investigated assuming a friction law in terms of stress. For example, 

Amontons’s law has been adopted in Heise (2016). However, the friction laws in terms of stress 

are only applicable in the regime of sliding whereas typical friction laws include two regimes, 

sliding and sticking. Moreover, the relative velocity between the workpiece and tool vanishes in 

the regime of sticking and no heat is generated at the interface. Therefore, it is of importance to 

study the qualitative behaviour of solutions in the vicinity of frictional interfaces. In particular, the 

constitutive equations that are usually adopted for metallic materials may or may not be 

compatible with the regime of sticking (Alexandrov and Harris, 2006, Alexandrov and Mishuris, 

2009). The present paper extends these results to constitutive equations that can be used for 

describing flow of polymers. 

A class of polymers can be treated as rigid plastic materials under certain conditions (Harren 
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1995, 1997). In general, the yield criterion of isotropic materials may include three stress 
invariants. However, in most cases yield criteria for polymers are assumed to be independent of 
the cubic invariant of the stress tensor (Harren 1995, 1997, Deshpande and Fleck 2001, Mills 
2010). On the other hand, a sensible yield criterion must depend of the linear invariant of the stress 
tensor (Raghava et al. 1976). The associated flow rule is often adopted for polymers (Harren 1995, 
1997, Deshpande and Fleck 2001). However, for several polymers the volume change is similar to 
that observed in metals (Spitzig and Richmond 1979). It is evident that the associated flow rule 
used in conjunction with a pressure-dependent yield criterion is not valid for such polymers. The 
present paper deals with such polymers assuming that elastic strains can be neglected. The plastic 
potential function is taken in the form of Mises. Then, the boundary value problem formulated in 
Alexandrov and Harris (2006) is solved to study solution behaviour in the vicinity of the friction 
surface for the two yield criteria proposed in Raghava et al. (1976), Spitzig and Richmond (1979). 
 
 
2. Material models 

 
The yield criterion for isotropic materials can always be represented as a function of the three 

stress invariants, I1, I2 and I3, where 

  
   2 2 2 3 3 33

1 1 2 3 2 1 2 3 3 1 2 3

1 1 1
1 1 2 2 3 3

3 9
, , ,

2 2

, , .
3 3 3

I I s s s I s s s

I I I
s s s

        

     

  

  
  (1) 

In these equations, σ1, σ2 and σ3 are the principal stresses and s1, s2 and s3 are the principal 
deviator stresses. A linear combination of the three stress invariants has been adopted as the yield 
criterion for polyethylene and polycarbonate in Spitzig and Richmond (1979). Then, it has been 
shown experimentally that the term involving I3 is insignificant for polyethylene but is significant 
for polycarbonate. Thus the yield criterion for polyethylene is 

  2 1 1I c I c    (2) 

where c and c1 are material constants. Macroscopic yielding of polyvinylchloride and 
polycarbonate has been studied experimentally in Raghava et al. (1973). It has been found that the 
yield criterion for these materials can be represented as 

   2
2 1I C T I CT     (3) 

where C and T represent the absolute values of the compressive and tensile yield strengths 
respectively. It is assumed that both C and T are constant. In what follows, the yield criteria (2) 
and (3) will be used. It has been demonstrated in both, Raghava et al. (1973), Spitzig and 
Richmond (1979), that the materials considered are practically incompressible. The associated 
flow rule in conjunction with Eqs. (2) and (3) does not reflect this material property. Therefore, the 
plastic potential function of Mises is adopted in the present paper. In this case the flow rule is 

  1 1 2 2 3 3, ,s s s        .  (4)  

Here ξ1, ξ2 and ξ3 are the principal strain rates and λ is a non-negative multiplier. The models are 
co-axial (i.e., the principal stress and strain rate directions coincide). 
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3. Statement of the boundary value problem 
 

The boundary value problem that consists of a planar deformation comprising the simultaneous 
shearing and expansion/contraction of a hollow cylindrical specimen of material is an ideal 
benchmark problem for understanding qualitative features of solution behaviour in the vicinity of 
frictional interfaces (Alexandrov and Harris 2006, Alexandrov and Mishuris 2009). Therefore, in 
the present paper this boundary value problem is used in conjunction with the models introduced 
in Section 2.  

Consider an infinite circular hollow cylinder of internal radius a0 and external radius b0. It is 
convenient to introduce a cylindrical coordinate system (r,θ,z) with its z-axis coinciding with the 
axis of symmetry of the cylinder. Then, the internal surface of the cylinder is given by the equation 
r=a0 and the external surface by the equation r=b0. Both surfaces are rough. In particular, it is 
assumed that the regime of sticking occurs at these surfaces, unless such a solution does not exist. 
Let ur and uθ denote the radial and circumferential velocities respectively. The internal radius is 
fixed against rotation. Therefore 

  0u   (5) 

for r=a0, unless the regime of sliding occurs at the internal surface. The rate of 
expansion/contraction of the internal surface is denoted by U. Then, 

  ru U   (6) 

for r=a0. It is evident that the cylinder expands if U>0 and contracts if U<0. The final velocity 
boundary condition is 

  u V   (7) 

for r=b0. The stress boundary condition is 

  0rr p     (8) 

for r=a0. Here σrr is the radial stress (σθθ and σrθ will stand for the circumferential and shear 
stresses respectively). p involved in Eq. (8) is given.  

The constitutive equations should be supplemented with the equilibrium equations. The 
prescribed boundary conditions dictate that the solution is independent of both θ and z. Therefore, 
the equilibrium equations reduce to 

  
2

0, 0rr r rrr

r r r r

 
   

 
     

.  (9) 

In the case of the material models under consideration, it is sufficient to find an instantaneous 
solution. 
 
 
4. General solution 

 
Under plane strain deformation, ξ3=0, it follows from Eq. (4) that  

  3 0s  .   (10) 
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Then, it can be found from the identity s1+s2+s3=0 that 

  1 2s s  .  (11) 

It is possible to assume, without a loss of generality, that σ1>σ2. Then, s1>s2 and, as follows from 
Eq. (11), s1>0. In this case, substituting Eqs. (10) and (11) into Eq. (1) leads to 

  2 1 2 23 , 3I s I s   .  (12) 

Let φ be the inclination of the principal stress axis corresponding to the principal stress σ1 to the r-
axis, measured anti-clockwise. Then, the transformation equations for stress components result in 

  
     1 2 1 2 1 21 1cos2 , cos2 , sin 2

3 2 3 2 2rr r

I I  
     

     
      .  (13) 

Since σ1−σ1=s1−s2, Eqs. (12) and (13) combine to give 

  1 2 1 2 2cos2 , cos2 , sin 2
3 33 3 3

rr r

I I I I I
           .  (14) 

Without a loss of generality, it is possible to assume that 

  0r  .  (15) 

Note that this inequality dictates that V>0 in Eq. (7). In the case of the expansion of the cylinder 
σθθ>σrr and in the case of the contraction of the cylinder σθθ<σrr. Therefore, it follows from Eqs. 
(14) and (15) that 

  
4 2
 

    (16) 

in the case of expansion of the cylinder and 

  0
4

 
   (17) 

in the case of contraction of the cylinder. 
It is seen from Eq. (4) that the material is incompressible,  

  1 2 3 0     .  (18) 

Under plane strain deformation, ξ3=0, this equation becomes ξ1+ξ2=0 or, in the cylindrical system 
of coordinates 

  0r ru u

r r


 


. (19) 

It has been taken into account here that the solution is independent of both θ and z. Since the 
models under consideration are co-axial, it follows from Eqs. (13) and (18) that the strain rate 
components in the cylindrical coordinate system are 

  
     1 2 1 2 1 2cos2 , cos2 , sin 2

2 2 2rr r

  
    

     
      .  
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Eliminating ξ1−ξ2 between these equations leads to 2ξrθ=(ξrr−ξθθ)tan2φ or  

  tan 2r ru u u u

r r r r

       
   .  (20) 

It has been taken here into account that  

  r
rr

u

r





 , ru

r
  and 

1

2r

u u

r r

    
 

  

in the case under consideration.    
The solutions to Eqs. (9)2 and (19) are independent of the yield criterion chosen. In particular 

  
2

0
2

0

r r

r



  (21)  

where r0 is a constant of integration and σ0 is a constant introduced for further convenience. Also 

  0r au

U r
 . (22) 

This solution of Eq. (19) satisfies the boundary condition (6). Eqs. (14) and (21) combine to give 

  
2

02
2

0

sin 2
3

rI

r



. (23) 

Eliminating ur in Eq. (20) by means of Eq. (22) yields 

  0
2

2 tan 2
0

u u a U

r r r


  


  

.  (24) 

In what follows, the dimensionless radii ρ and b defined as 

  0

0 0

,
br

b
a a

    (25) 

will be used. 
 
 
5. Solution for the yield criterion (2) 
 

It is convenient to put σ0=c. Then, using Eq. (25) it is possible to transform Eq. (23) to 

  
2

02
2 2
0

sin 2
3

rI

ac



.  (26) 

Eliminating I1 in Eq.(14) by means of Eq. (2) yields 

  2 2

1 1 1 1

1 1
3 cos 2 , 3 cos 2

3 3 3 3rr

I Ic c

c c c c

   
        

   
    .  (27) 

Substituting these expressions for σrr and σθθ into Eq. (9)1 and using Eq. (25) result in 

711



 
 
 
 
 
 

Elena A. Lyamina and Prashant P. Date 

  
 2 2 2

1

cos2 2 cos21
0

3

I I I

c

 
  

 
 

  
. (28) 

Using the identity 

  
   2

2 22
2

cos2 cos 2
2 cos2

I I
I

 
 

 

  
  

 
  

Eq. (28) can be transformed to 

  
 2 2

2 2

1

cos 2
0.

3

I I

c

 
 

 

  
 

  

Eliminating I2 in this equation by means of Eq. (23) and using Eq. (25) yield 

  
 1

sin 2

3 cos2

d

d c




 
  

.  (29) 

This equation can be immediately integrated to give 

  1sin 2 cot 3
,

sin 2 cot 2

m

a a c
m

 
  

 

 
 

.  (30) 

Here φa is the value of φ at ρ=1. Using Eqs. (25), (29) and (30) it is possible to rewrite Eq. (24) as 

  
  2

2 2 cos 2 tan 2 cot
0

sin 2 cot

m

a a

mw   
    

  
  

  (31) 

where 

  
u

w
U

 


.  (32) 

Using this definition for w, the definition for φa and Eq. (25) the solution to Eq. (31) satisfying the 
boundary condition (5) can be written as 

  
  2
cos2 2 tan 2 cot

2
sin 2 cot

a

m

a a

m
w d

  
  

 





   
 

  (33) 

where χ is a dummy variable of integration. Then, the boundary condition (7) leads to 

  
  2
cos 2 2 tan 2 cot

2
sin 2 cot

b

a

m

a a

mV
d

Ub

  
  

 





   
 

.  (34) 

Here φb is the value of φ at ρ=b. Therefore, it follows from Eq. (30) that 

  
sin 2 cot

sin 2 cot

m

a a

b b

b
 

  
 

 
 

.  (35) 
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Equations (34) and (35) constitute a system for determining φa and φb at given values of b, m and 
V/U. This system may or may not have a solution. Of special interest is the existence of the 
solution as the ratio V/|U| increases whereas the other parameters are kept constant. In this case, 
the non-existence of the solution means that the regime of sticking at the friction surface ρ=1 is not 
compatible with other boundary conditions and the only possibility to find a solution is to assume 
that the regime of sliding occurs at that friction surface.  

The integrand in Eq. (34) reduces to the expression 0·∞ at φ=0 and φ= π/2. However, it is 
evident from Eq. (14) that φ=0 and φ=π/2 are the special solutions of the boundary value problem 
corresponding to expansion/contraction with no twist. Therefore, these special cases are not of 
interest. The integrand in Eq. (34) vanishes at φ=φcr where φcr should be found from the equation 

  cos 2 2 0cr m  . (36) 

This equation has no solution if cos2φ<0. It is seen from Eq. (16) that this case corresponds to 
expansion of the cylinder. In the case of contraction, Eq. (36) has no solution if 

  
1

2
m  .  (37) 

If Eq. (36) has a solution then φcr<π/4. Consider the function f(φ)=sin(2φ)cot2mφ. Differentiating 
gives 

   
  22

2
2

2 4 2 cos2 1 cos4 cot
2 cos2 2 cot ,

sin 2

m
m

m mdf d f
m

d d

      
  

 
  

.  (38) 

It is seen from Eqs. (36) and (38) that df/dφ=0 and d2f/dφ2<0 at φ=φcr. Therefore, the function f(φ) 
attains a maximum at φ=φcr. Then, it is seen from Eq. (35) that 

  
2cr a b  
    (39) 

and 

  0 b a cr     . (40) 

Eq. (39) is valid in the case of expansion. The integrand in Eq. (34) is positive in the range of φ 
given in Eq. (16). This condition and Eq. (39) ensure that U is positive. Assume that φa→π/4. 
Since 

  
1 1

1
tan 2

2 4 4
o

            
     

      

as φ→π/4, the integral involved in Eq. (34) is divergent and V/U→∞ as φa→π/4. Thus the solution 
satisfying the regime of sticking at ρ=1 always exists.  

Equation (40) is valid in the case of contraction. Equation (39) can also be valid in the case of 
contraction if φa<π/4. Assume that Eq. (40) is valid. The integrand in Eq. (34) is positive in the 
range 0<φ<φcr. This condition and Eq. (40) ensure that U is negative. Since φcr<π/4, the integrand 
in Eq. (34) is bounded in the range 0<φ<φcr. Therefore, the ratio V/|U| is bounded and no solution 
satisfying the regime of sticking at ρ=1 exists if this ratio is large enough. In order to determine the 
maximum possible value of the ratio V/|U| at which the solution at sticking exists, it is necessary to 
find a maximum of the right hand side of Eq. (34) with the subsidiary condition (35). 
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Differentiating the right hand side of Eq. (34) with respect to φa gives 

  

     

   

2

2
2 2

2 cos 2 2 tan 2 2 cos2 2cot

sin 2 cot cos2

4 cos 2 2
cos 2 2 cot tan 2 .

cot sin 2

b

a

m

b b ab b

a a a a a

a m
m

a a

m md V U d

bd d

m
m d

  
   

 







   
    


   

 

  (41) 

Differentiating Eq. (35) with respect to φa results in 

     2 2 2cos2 2 cot cos2 2 cotm mb
b b a a

a

d
b m m

d
  

   


.  (42) 

It follows from Eqs. (36), (41) and (42) that the ratio V/U considered as a function of φa is  
stationary at φa=φcr. The derivative 2 2

b ad d   at the point φa=φcr is found from Eq. (42) as 

  
 

2 2

2 2 2

2sin 2 cot

cos2 2 cot

m
b cr cr

m
a bc bc

d

d b m
 


  
  

  (43) 

where φbc is the value of φb at φa=φcr. This value depends on b and should be found from the 
solution of Eq. (35) in which φa should be replaced with φcr. Differentiating the right hand side of 
Eq. (41) with respect to φa, putting φa=φcr and using Eq. (43) give 

  
    22

2 2

cos2 2 tan 22sin 24 cot
tan 2 8

sin 2 cot

bc

cr

m

cr
bc

a cr cr

d V U m
Q d

bd b m

  
      

 





   
  

  (44) 

at φa=φcr. If Q>0 then the function V/U attains a minimum at φa=φcr. Therefore, the function V/|U| 
attains a maximum at this point. The maximum possible value of V/(|U|b) is denoted by s. The 
dependence of s on b for several values of c1 is depicted in Fig. 1. The broken line corresponds to 
c1=0.022 (Spitzig and Richmond 1979). 
 
 

 
Fig. 1 Variation of s with b for several values of c1 
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The integrand in Eq. (34) is negative in the range φcr<φ<π/4. This condition and Eq. (39) ensure 
that U is negative. However, this case is not important for applications since the range in which b 
can vary is very small. For example, if c1=0.022 (Spitzig and Richmond 1979) it is possible to find 
from Eq. (35) that 1<b<1.00036.  

 
 
6. Solution for the yield criterion (3). 
 

It is convenient to put σ0=(C+T)/2. Then, using Eq. (25) it is possible to transform Eq. (23) to 

  
 

2
02

2 2
0

2
sin 2 .

3

rI

aC T






  (45) 

Eliminating I1 in Eq. (14) by means of Eq. (3) yields 

  
       

2 2
2 2 2 2cos2 , cos2

3 3 3 33 3
rr

I I I ICT CT

C T C T C T C T
     

       .  (46) 

Eliminating I2 in these equations by means of Eq. (45) and substituting the resulting expressions 
for the normal stresses into Eq. (9)1 yield 

  
   

 

2 2
0
2
0

2 cot 2
,

2 2

C T rd

d C T a

 
 



    
 

.  (47) 

Note that C>T (Raghava et al. 1973) and, therefore, α>0. The solution to this equation satisfying 
the condition ρ=1 for φ<φa is 

   
1

2 2 2 tan
ln

sin 2 sin 2 tana a

g


  

    
  

   
  

.  (48) 

Then 

  
1

2 tan2 2
ln

sin 2 sin 2 tan
b

b a a

b


  

   
  

 
  

 . (49) 

This equation connects φa and φb. Using Eqs. (25), (47) and (48) it is possible to rewrite Eq. (24) 
as 

  
 
 

2 tan 2
.

gdw

d g




  
  

  (50) 

Integrating and using the boundary condition (5) give 

  
 

1 2
tan 2 .

a

w d
g

 
  

 





  
 

  (51) 

Then, the boundary condition (7) leads to 

  
 

1 2
tan 2 .

b

a

V
d

Ub g

 
  

 





  
 

  (52) 
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Fig. 2 Variation of h with b for several values of α 

 
 
Consider the expansion of the cylinder. In this case Eq. (16) is valid. Therefore, tan2φ<0 and 

the integrand involved in Eq. (52) is positive. Moreover, it is seen from Eq. (47) that dρ/dφ>0 in 
the range π/4≤φ≤π/2. Therefore, φa<φb, the integral in Eq. (52) is positive and the right hand side 
of this equation approaches infinity as φa→π/4. Thus it is always possible to find the solution 
satisfying the regime of sticking at the friction surface ρ=1.  

Consider the contraction of the cylinder. In this case Eq. (17) is valid and, therefore, tan2φ>0. It  
is seen from Eq. (47) that dρ/dφ=0 at 2 2 2 cot 2cr cr     . Differentiating Eq. (47) with respect to 
φ and putting ρ=ρcr give 2 2 0d d    at φ=φcr. Therefore, the function ρ(φ) attains a minimum at  
φ<φcr. Since ρ≥1, the condition φ=φcr can be satisfied if and only if φcr=φa. Thus Eqs. (39) and (40) 
are valid. In the case of Eq. (40) the integral involved in Eq. (52) is convergent as φ→φcr 
independently of the value of φb. Therefore, the ratio V U  is bounded at φa=φcr and no solution 

satisfying the regime of sticking at ρ=1 exists if  

  
2

V
h

U b



  (53) 

The variation of h with b is shown in Fig. 2 for several values of α.  
In the case of Eq. (39) the integral involved in Eq. (52) is divergent if φb=π/4. Substituting this 

value of φb and φa=φcr into Eq. (49) gives 

  
 

2 sin 2

2 sin 2 ln tan
cr

m
cr cr

b 


 
  

.  (54) 

The dependence of bm on α is depicted in Fig. 3. The physical sense of bm is as follows. If b<bm  
then Eq. (49) can be solved for φb at φa=φcr and φb<π/4. In this case the ratio V/|U| is bounded at 
φa=φcr and no solution satisfying the regime of sticking at ρ=1 exists if  

  
2

V
k

U b



  (55) 
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Fig. 3 Variation of bmwith α 

 

 
Fig. 4 Variation of k with b for several values of α 

 
 
The variation of k with b is shown in Fig. 4 for several values of α. If b=bm then V/|U|→∞ as 

φa→φcr. Therefore, the regime of sticking always occurs at ρ=1. Finally, no solution exists if b>bm. 
 
 
7. Conclusions 
 

Using the boundary value problem formulated in Alexandrov and Harris (2006) the qualitative 
behaviour of solutions in the vicinity of the friction interface for the yield criteria proposed in 
Raghava et al. (1976), Spitzig and Richmond (1979) has been studied. From this work, the 
following conclusions can be drawn. 

1. In the case of expansion of the cylinder, the solution satisfying the regime of sticking at the 
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inner radius exists independently of the other boundary conditions for both yield criteria 
considered in the present paper.  
2. In the case of contraction of the cylinder obeying the yield criterion (2), the solution 
satisfying the regime of sticking does not exist if the ratio of the circumferential velocity at the 
outer radius to the radial velocity of the inner radius is large enough. The dependence of 
s=V/(|U|b) on b is illustrated in Fig. 1. It is worthy of note that s depends on the material 
parameter c1 but is independent of p involved in the stress boundary condition (8). 
3. In the case of contraction of the cylinder obeying the yield criterion (3), the solution 
satisfying the regime of sticking does not exist if the ratio of the circumferential velocity at the 
outer radius to the radial velocity of the inner radius is large enough. The dependences of 
h=V/(|U|bα2) and k=V/(|U|bα2) on b are illustrated in Figs. 2 and 4, respectively. The different 
symbols, h and k, are used to distinguish two cases corresponding to Eqs. (39) and (40). In 
contrast to the yield criterion (2), both h and k are affected by p because the definition for α 
involves r0 and this constant of integration should be found by means of the boundary condition 
(8). 
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