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Abstract.  The analysis of thermally induced stresses in engineering structures is a very important and 

necessary task with respect to design and modeling of pressurized containers, heat exchangers, aircrafts 

segments, etc. to prevent them from failure and improve working conditions. So, the purpose of this study is 

to investigate elasto-plastic thermal stresses and deformations in a thin annular plate embedded into rigid 

container. To this end, analytical research devoted to mathematically and physically rigorous stress/strain 

analysis is performed. In order to evaluate the effect of logarithmic thermal gradients, commonly applied to 

structures which incorporate thin plate geometries, different thermal parameters such as temperature 

mismatch and varying constraint temperature were introduced into the model of elastic perfectly-plastic 

annular plate obeying the von Mises yield criterion with its associated flow rule. The results obtained may be 

used in sensitive to temperature differences aircraft structures where the thermal effects on equipment must 

be kept in mind. 
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1. Introduction 
 

Annular plates embedded into rigid containers are versatile models for many civil, mechanical, 

aeronautical, marine and chemical engineering applications (Ventsel and Krauthammer 2001), 

especially useful for pressure vessels, heat exchangers, aircraft segments, and loose-material 

containers. In structural mechanics these applications particularly include various types of 

structural steel or aluminum members working in varying temperature ambient. Design of a 

common structure to minimize the thermal stresses for a given temperature distribution usually 

tends to cause loss of strength and stiffness of its members, a loss which has to be rectified by 

addition of extra material. In fact, reduction of thermal stresses by choice of another material is 

possible only to a limited extent. If one material is the most suitable on mechanical grounds and is 

able to withstand the required temperatures, one would be reluctant to abandon it because of 

thermal stresses. Hence, when the weight penalty is crucial for structural performance such as in 

aircraft industry, the detailed analysis of temperature induced stresses and related deformations is 

of great demand.  

For this reason, the classical problem of thin annular plate (to admit plane-stress solution which 
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is most suitable for specific engineering applications) subjected to thermal fields has been the topic 

of a variety of theoretical investigations. It is treated in a purely thermo-elastic stress state by 

Timoshenko and Goodier (1970), Ugural and Fenster (2012); and in the thermo-elasto-plastic 

stress state by Alexandrov (2015).  

Temperature fields which are suitable for modeling structural engineering applications in a 

preliminary design stage may be divided into two types: uniform temperature distributions and 

steady state temperature distributions (logarithmic or linear). Based on the uniform temperature 

distribution and Tsai-Hill yield criterion, Sen and Sayer (2006) carried out numerical elasto-plastic 

thermal stress-strain analysis in a composite disk. Since the composite disk has different thermal 

expansion coefficients in radial and tangential directions, thermal stresses were produced in it by 

the applied uniform temperature loading. The obtained results showed that the thermal stresses 

were considerably affected by increasing temperature values. Within the same uniform 

temperature assumption and von Mises yield criterion, thermal effects on the development of 

plastic zones in thin annular axisymmetric plates were investigated by Alexandrov and 

Alexandrova (2001). However, here the thermal stresses were due to displacement constraints 

applied at the outer radius of the plate. It was shown that the plate becomes fully plastic at an 

insignificant rise of temperature from the beginning of plastic flow. Recently, the combined effect 

of uniform temperature field and inner pressure loading on the plastic collapse mechanism of thin 

annular constrained (at the outer radius) plates was studied by Alexandrov and Pham (2014) based 

on the Hill’s quadratic orthotropic yield criterion. It was shown that two different plastic collapse 

mechanisms may occur depending on loading combinations, namely, localization of plastic strain 

at the inner radius of the plate or/and loss of load carrying capacity (when the plate reaches fully 

plastic state). For the same plate geometry, the effect of temperature-dependent mechanical 

properties such as yield stress, modulus of elasticity, thermal expansion coefficient and Poisson 

ratio on the load carrying capacity of steel plates was investigated by Alexandrov et al. (2014). It 

was shown that this effect is more pronounced for higher temperatures and smaller inner radii.  

The importance of temperature dependence of material properties in successful engineering design 

was also earlier outlined by Zabaras et al. (1987), Zhu and Chao (2002). However, it was revealed 

(Zhu and Chao 2002) that, at least for aluminum structures, all thermal and mechanical properties, 

except for the yield stress, can be simply taken as the room temperature values. Only the 

assumption of constant yield stress overestimates the material yield ability whereas the real yield 

stress actually reduces with increasing temperature. As concerning spatial temperature profile, it 

was shown (Zabaras et al. 1987) that the radial temperature gradient dominates over the axial one 

such that the axial temperature gradient may be assumed to be negligible. 

To this end, for constrained thin structures, both the effect of rigid constraints and radial 

temperature gradients on stress/strain performance of the structure should be included in the 

analysis. The temperature gradient in terms of steady state temperature distribution has been 

studied extensively for thick cylinders and related engineering applications both in purely elastic 

(Timoshenko and Goodier 1970, Harvey 1985, Vullo 2014) and partially plastic stress states 

(obeying the Tresca yield criterion with its associated flow rule) (Bland 1956, Chakrabarty 2006, 

Eraslan and Apatay 2008).  

So, the purpose of this research is to extend the previous work (Alexandrov and Alexandrova 

2001) by including steady state temperature distributions and derive complete analytical 

stress/strain solution which predicts development of plastic zones in the constrained annular plate. 

The material of the plate is assumed to be elastic perfectly-plastic obeying the von Mises yield 

criterion with its associated flow rule to avoid the drawbacks of piecewise nature of the Tresca  
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Fig. 1 Geometrical model of an annular plate embedded into rigid container 

 

 

yield criterion and improve the solution in this way.   

 
 
2. General equations of the problem  
 

The unrestrained structural segment expands or contracts in proportion to temperature variation 

freely. But the imposed constraints may prevent the material from flow and, as a consequence, the 

thermal stresses develop in the constrained structural member. In cylindrical coordinate system rθz  

with non-zero radial, rr̂ , and circumferential, ̂ , stress tensor components, let’s consider an  

annular plate of inner radius a and outer radius b embedded into a rigid container (Fig. 1).  

Then, one of the most prevalent cases of thermal stresses occurs when heat is flowing between 

the sides of the structure in a steady manner causing the temperature differences between the inner 

and outer radii to remain constant, that is the temperature, T, satisfies the Laplace equation 
2
T=0, 

the solution to which may be written as  

 
 
 ab

rb
TTTT bab

ln

ln
                                                      (1) 

where Ta and Tb are the temperatures at the inner and outer surfaces, respectively. Similar 

logarithmic temperature distributions were also considered by Bland (1956), Timoshenko and 

Goodier (1970), Harvey (1985), Chakrabarty (2006), and Eraslan and Apatay (2008). Fig. 2 shows 

various combinations of a fixed temperature at the outer radius, Tb, and corresponding temperature 

mismatch, δT=Ta−Tb, for the case b/a=2 and Ta>0. It is assumed that the yield criterion and the 

plastic stress-strain relations are unaffected by the variation in temperature, provided the variation 

is not large enough to change the material properties appreciably. It is both the boundary constraint 

and the temperature drop throughout the width of the plate that give rise to the thermal stresses. 

So, the following mixed boundary conditions should be satisfied 
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0ˆ rr   at ar                                                              (2) 

and  

0ˆ u   at br                                                               (3) 

where 0ˆ u  is the radial displacement. Thermal effects are then included in the constrained plate 

problem by the standard modification of the elastic stress-strain equations (Timoshenko and  

Goodier 1970) taking into account plane-stress state geometry, 0ˆ zz . If the coefficient of  

thermal expansion is denoted by α, the dilatation produced by a rise in temperature T is equal to 

αT, and the general thermo-elastic stress-strain-temperature relations take the following form 



r

a

rr Trdr
r

E

r

Bb
A

22

2

ˆ


 ,     TETrdr
r

E

r

Bb
A

r

a




  22

2

ˆ                      (4) 

      









r

a

Trdr
rr

Bb
Ar

E
u


 111

1
ˆ

2

                                   (5) 

after satisfying the requirement of mechanical equilibrium 

0
ˆˆˆ





rdr

d rrrr 
                                                     (6) 

strain-displacement relations 

drudrr ˆˆ  ,   rûˆ                                                      (7)   

and generalized Hooke’s law 

  T
E

rrrr   
1

ˆˆˆ ,     T
E

rr   
1

ˆˆˆ                            (8) 

where E is the Young’s modulus, v is the value of Poisson’s ratio;  A, B are the constant of  

integrations determined from the appropriate boundary conditions; rr̂  and ̂  are the radial and  

tangential strains, respectively.  

To deal with the partially plastic state, the von Mises yield criterion is adopted. For plane stress 

state and in the absence of in-plane shear stresses, it simplifies to 

222 ˆˆˆˆ Yrrrr                                                  (9) 

and is automatically satisfied by the following parametric substitution 

     3cos32ˆ,cos32ˆ    YYrr                            (10) 

where Y is the yield stress in tension and   is an auxiliary variable. In partially plastic state, the 

plastic zone propagates up to some unknown radius c which should be determined in the course of 

the solution.   

Due to the circular symmetry of the problem and plane stress assumption, )(ˆˆ rrrrr   , 

)(ˆˆ r   , 0ˆ zz , there is only one non-trivial equilibrium Eq. (6) which isvalid both in  
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elastic and plastic zones.  

 

 

3. Thermo-elastic solution and initiation of plastic flow 
 

To conduct further analysis, the dimensionless parameters may be introduced at this point:

;
~

ˆ,
~

ˆ,
~

;,,;ˆ,ˆ 0 EEYEEbcbarbrYY rrrrrrrr     

    2
~

,2
~

;
~

ˆ TETTETbEuu b   . 

Then, combining Eqs. (1)-(5), the purely thermo-elastic states are described by 

 
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where here and later on 
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rTI   ;  

0
2
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r
TTI


           (13) 

For sufficiently small values of temperature, the whole plate is entirely elastic. The elastic 

carrying capacity (when the plate starts yielding) may then be determined by substitution of Eq. 

(11) into Eq. (9) observing that the initial yield starts from the inner edge of the plate (where the 

left hand side of Eq. (9) attains its maximum).  

     For higher temperatures, the plate in general consists of two zones-inner plastic (which will be 

denoted by upper index “Pz”) and outer elastic (which will be denoted by upper index “E”)-divided 

by the elastic/plastic boundary, γ. 

In the outer elastic zone, one has boundary condition in displacement (3): u=0 at β=1. Then, 

from Eqs. (4)-(5), the stresses and displacement become  
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             (14) 

        


 11 11
11

1 IIAuE 







            (15) 

where functions I1 and I2 are defined by Eq. (13), and the constant of integration A (together with 

the radius of propagation of plastic zone) should be determined from the stress continuity 

conditions at the elastic-plastic boundary γ  

    0  E
rr

P
rr

z ,       0  
EPz                                           (16) 
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4. Plastic solution for stresses in the plastic zone  
 

In the inner plastic zone, the stress state is defined by Eq. (10) which is in dimensionless form 

may be rewritten as  

     3cos32,cos32    zz PP
rr                                   (17) 

Substitution of Eq. (17) into the equilibrium Eq. (6) leads to an analytical expression defining the 

relation between the radial coordinate β and auxiliary variable φ

 

 
 













 




 



2

3
exp

6sin

6sin
0r                                          (18) 

where φα is the value of φ at β=r0, and is obtained from the boundary condition in stress (2): 

0zP
rr   at β=r0 such as φα=−π/2. 

So, substitution of Eqs. (14) and (17) into Eq. (16) gives two final equations: one for constant A 

to complete stress/strain fields (14), (15) in the outer elastic zone 

   6cos2    IA                                                    (19) 

and another-for an auxiliary function φγ (the value of φ at the elastic-plastic boundary γ 
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  (20) 

Eq. (20) directly leads to the determination of the plastic border radius   taking into account Eq. 

(18) rewritten for this purpose in the form  

 
 

  















 3exp

6sin

6sin11
2

0
2 r

                                         (21) 

 

 

5. Kinematic analysis for temperature gradient loaded plates  
 

According to the mathematically and physically rigorous procedure exploited in the present 

research, the total strain in the inner plastic zone is assumed to be the sum of thermo-elastic and 

plastic portions. The thermo-elastic portion is obtained from the Hooke’s law (8) and stress 

distributions (10)  

    

    



 2

2

23sin3cos21

,23sin3cos2

I

I

e

e
rr




                                    (22) 

where β as a function of φ is given by Eq. (18) with φα=−π/2. The plastic portion is related to the 

associated (with the Mises yield criterion (9)) flow rule 

 ssrr
pp

rr                                                           (23) 
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where p
rr  and p

  are the radial and tangential plastic portions of strain rate tensor components,  

respectively; srr and sθθ are the radial and circumferential deviatoric components of stress tensor,  

respectively. At small strains, tp
rr

p
rr    and t

pp
   , where p

rr  and p
  are the radial  

and tangential plastic portions of strains, respectively, and t is a time factor. It follows from Eqs. 

(10) and (18) that the deviatoric components of stresses are independent of time. Therefore, Eq. 

(23) may be immediately integrated to give 

     sin2sincos3 
pp

rr                (24) 

Due to the general statement of the problem, in the plastic zone   zz Pp
rr

e
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P
rr u  and
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zz PpeP

u . Substituting  Eqs. (22) and (24) into these equalities gives 
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Elimination of p
  from Eq. (25) results in differential equation for radial displacement in the 

plastic zone 
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which may be rewritten in terms of derivative with respect to variable φ  
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This equation may be resolved analytically to give 
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where C is a constant and 
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Since the radial displacement u is a continuous function across the elastic-plastic boundary, the 
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constant C in Eq. (28) may be determined from the continuity condition for displacements  

   uu zP
                                              (29) 

here uγ
 
is the value of u at the elastic-plastic border γ, and is obtained from Eqs. (15), (19) by 

putting β=γ  
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Combining Eqs. (28)-(30) yields the constant C in Eq. (28) 
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where uγ is given by Eq. (30); φγ
 
 and  are calculated from Eqs. (20)-(21); φα=−π/2. 

As soon as the displacement in the plastic zone is obtained, the total tangential strain in this  

zone follows directly from Eq. (28) dividing zP
u by dimensionless radius β. The elastic portion of  

tangential strain is given by Eq. (22)2 where φ as a function of β is in turn given by Eq. (18).  

Then, the plastic portion of tangential strain is defined as the difference between the total strain 

and the elastic portion. Knowing the plastic portion of tangential strain, the corresponding plastic 

portion of radial strain is obtained by Eq. (24) and the elastic portion-by Eq. (22)1, both with the 

help of Eq. (18). In the plastic zone the coordinate β goes up to the elastic-plastic border  which is 

defined for specific values of temperature parameters Tβ, ΔT and geometric ratio r0 by Eqs. (20)-

(21).  

 

 

 

Fig. 2 Logarithmic temperature gradient field for several variations of temperature parameters: 1-

Tβ=ΔT=0.15; 2-Tβ=ΔT=0.3; 3-Tβ=ΔT=0.45 
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Fig. 3 Initiation of plastic yielding curves with two responsible parameters: fixed temperature at the 

outer radius and temperature differences (between inner and outer surfaces) 

 

 

In the outer elastic zone, the kinematic analysis is straightforward and based on Eqs. (15), (19) 

and (7) with parameter φγ derived from Eqs. (20)-(21) for the same values of temperature 

parameters Tβ, ΔT and geometric ratio r0. 

 

 

6. Results and discussion  
 

Numerical calculations are performed for a typical mild steel with the following mechanical  

properties: Y=219.97 MPa, E=200 GPa, α=18×10
-6

/°C
 
and three temperature parameters ○1  

Tβ=ΔT=0.15, ○2  Tβ=ΔT=0.30 and  ○3  Tβ=ΔT=0.45. The temperature distributions along the radius  

are shown in Fig. 2. It is worth noting that, in contrast to the pressure vessels with similar 

logarithmic temperature gradients but free of stress boundary conditions and no displacement 

restraints (Harvey 1985), the elastic carrying capacity of constrained annular plate depends both on 

the uniform temperature distribution (initial fixed temperature at the outer radius) and temperature 

differences as shown in Fig. 3 for various inner radii.  

To compare these results with the ones obtained from the assumption of the dependence of 

mechanical properties on temperature (Alexandrov et al. 2014), the relative increase in 

temperature, namely, the parameter (Tβp−Tβe)/Tβe as a function of dimensionless inner radius r0 for 

several values of temperature mismatches ΔT is plotted in Fig. 4 where Tβp is the temperature at 

the outer radius corresponding to the loss of load carrying capacity and Tβe is the temperature at the 

outer radius corresponding to the elastic carrying capacity. It is seen from this figure that the curve 

for ΔT=0.3 has a maximum corresponding to r0=0.28. This curve has the same shape as the curves 

published by Alexandrov et al. (2014). 
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Fig. 4 Relative increase in temperature parameter versus dimensionless inner radius for various 

values of temperature mismatches 

 

 

Fig. 5 Radial stress distributions for several variations of temperature parameters: 1-Tβ=ΔT=0.15; 2-

Tβ=ΔT=0.30; 3- Tβ=ΔT=0.45 

 

 

When temperature at the inner surface Ta is positive, the radial stresses are compressive 

throughout the width of the plate and become zero at the inner surface as it is required by the stress 

boundary condition (Fig. 5). Circumferential stresses are also compressive but they behave 

differently in elastic state (curve 1) and plastic states (curves 2 and 3) as opposite to the same 
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behavior for the radial stresses (Fig. 6). For elastic state, the maximum circumferential stress is 

reached at the inner surface but, in plastic state, the maximum values are observed at the elastic 

plastic border. Particularly, the negative stress at the inner surface demonstrates the tendency for 

material to grow but it is then restricted by adjacent material at a lower temperature. 

Moreover, plastic flow starts at the inner edge during the temperature loading, and plastic zone 

steadily propagates toward the outer surface. Finally, the plate becomes totally plastic in contrast 

to the pressurized annular plate embedded into a rigid container without temperature effects 

(Aleksandrova 2015). 

The results of kinematic analysis are depicted in Figs. 7-8 where the radial displacement and 

strain tensor components (radial and tangential), respectively, are plotted as a function of β. 

   

 

 

Fig. 6 Circumferential stress distributions for several variations of temperature parameters: 1-

Tβ=ΔT=0.15; 2-Tβ=ΔT=0.30; 3-Tβ=ΔT=0.45 

 

 

Fig. 7 Radial displacements for for several variations of temperature parameters: 1-Tβ=ΔT=0.15; 2-

Tβ=ΔT=0.30; 3-Tβ=ΔT=0.45 
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Fig. 8 Radial and tangential strain distributions for several variations of temperature parameters: 1-

Tβ=ΔT=0.15; 2-Tβ=ΔT=0.30; 3-Tβ=ΔT=0.45 

 

 

It is interesting to note that the displacements are distributed evenly between purely elastic and 

plastic states, and reach maximum values at the inner surface. This fact manifests that the most 

probable mechanism of failure in the outer-radius constrained plates with temperature gradient is 

the loss of load carrying capacity rather than the loss of decohesive carrying capacity, that is the 

plate gets fully plastic first rather than experiences discontinuity due to the separation of the plate 

material from the rigid container. This is also confirmed by the radial strain distributions  (Fig. 8)  

which are positive but finite in contrast to the positive infinite radial strains in the similar problems 

of annular plates with rigid inclusion where the decohesive carrying capacity occurs first and is the 

leading mechanism of failure (Szuwalski 1990). The tangential strains are negative and as much as 

two times less than the radial ones.   

 

    

7. Conclusions  
  

An extension of the constrained at the outer-radius annular plate subjected to uniform 

temperature field is presented to investigate the effect of radial logarithmic temperature gradient 

on the stress/strain distributions. The closed form solution is obtained which permits to analyze 

various thermal, mechanical and geometrical parameters involved in the process such as initial 

temperature, temperature differences, Poisson coefficient, inner to outer radius ratio of the plate. 

The main results of the study are as follows:  

• The most probable mechanism of failure is the loss of load carrying capacity; 

• Both elastic and load carrying capacities depend on geometric ratio (inner to outer radius) and 

Poisson coefficient; 

• Plastic yielding provokes the flow of the material from the inner edge but simultaneously this 
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flow has the tendency to be restricted by an adjacent material at a lower temperature. 

• At the inner surface, the displacements reach maximum (negative) value and then steadily 

vanish at the outer radius for whole course of temperature loading.  
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