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Optimum design of laterally-supported castellated beams
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Abstract. In this paper, the recently developed meta-heuristic algorithm called tug of war optimization is
applied to optimal design of castellated beams. Two common types of laterally supported castellated beams
are considered as design problems: beams with hexagonal openings and beams with circular openings. Here,
castellated beams have been studied for two cases: beams without filled holes and beams with end-filled
holes. Also, tug of war optimization algorithm is utilized for obtaining the solution of these design problems.
For this purpose, the minimum cost is taken as the objective function, and some benchmark problems are
solved from literature.
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1. Introduction

Since the 1940’s, the manufacturing of structural beams with higher strength and lower cost has
been an asset to engineers in their efforts to design more efficient steel structures. Due to the
limitations on maximum allowable deflections, using of section with heavy weight and high
capacity in the design problem cannot always be utilized to the best advantage. As a result, several
new methods have been created for increasing the stiffness of steel beams without increase in the
weight of steel required. Castellated beam is one of them that become basic structural elements
within the design of building, like a wide-flange beam (Konstantinos and D’Mello 2012).

A castellated beam is constructed by expanding a standard rolled steel section in such a way
that a predetermined pattern (mostly circular or hexagonal) is cut on section webs and the rolled
section is cut into two halves. The two halves are shifted and connected together by welding to
form a castellated beam. In terms of structural performance, the operation of splitting and
expanding the height of the rolled steel sections helps to increase the section modulus of the
beams.

The main initiative for manufacturing and use of such sections is to suppress the cost of
material by applying more efficient cross sectional shapes made from standard rolled beam. Web-
openings have been used for many years in structural steel beams in a great variety of applications
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Fig. 1 (a) A castellated beam with circular opening, (b) A castellated beam with hexagonal opening
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Fig. 2 Example of a beam with filled opening

because of the necessity and economic advantages. The principle advantage of the steel beam
castellation process is that designer can increase the depth of a beam to raise its strength without
adding steel. The resulting castellated beam is approximately 50% deeper and much stronger than
the original unaltered beam (Soltani et al. 2012, Zaarour and Redwood 1996, Redwood and
Demirdjian 1998, Sweedan 2011, Konstantinos and D’Mello 2011).

In recent years, a great deal of progress has been made in the design of steel beams with web-
openings, and a cellular beam is one of them. A cellular beam is the modern form of the traditional
castellated beam, but with a far wider range of applications in particular as floor beams. Cellular
beams are steel sections with circular openings that are made by cutting a rolled beam web in a
half circular pattern along its centerline and re-welding the two halves of hot rolled steel sections
as shown in Fig. 1. An increase in beam depth provides greater flexural rigidity and strength to
weight ratio.
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In practice, in order to support high shear forces close to the connections, sometimes it
becomes necessary to fill certain openings. In cellular beams, this is achieved by inserting discs
made of steel plates and welding from both sides, Fig. 2. The openings are usually filled for one of
two reasons:

i) At positions of higher shear, especially at the ends of a beam or under concentrated loads.

il) At incoming connections of secondary beams.

It should be noted that for maximum economy infills should be avoided whenever possible,
even to the extent of increasing the section mass.

In the last two decades, many metaheuristic algorithms have been developed to help solving
optimization problems that were previously difficult or impossible to solve using mathematical
programming algorithms. Metaheuristic algorithms provide mechanisms to escape from local
optima by balancing exploration and exploitation phases, being based either on solution
populations or iterated solution paths, for instance, by using neighborhoods. In general, these
algorithms are simple to implement, present (near) optimal solutions in acceptable computational
times even in complex search spaces. There are different meta-heuristic optimization methods;
Genetic Algorithms (GA) (Goldberg and Holland 1988), Ant Colony Optimization (ACO) (Dorigo
et al. 1996), Harmony Search algorithm (HS) (Geem et al. 2001), Particle Swarm Optimizer
(PSO) (Eberhart and Kennedy 1996), Charged System Search method (CSS) (Kaveh and
Talatahari 2010), Bat algorithm (Yang 2011), Ray optimization algorithm (RO) (Kaveh and
Khayatazad 2012), Krill-herd algorithm (Gandomi and Alavi 2012), Dolphin Echolocation
Optimization (DEO) (Kaveh and Farhoudi 2013), Colliding Bodies Optimization (CBO) (Kaveh
and Mahdavi 2014), are some of such meta-heuristic algorithms. In this study, one of the newly
developed algorithms called tug of war optimization (Kaveh and Zolghadr 2016) is used for
optimal design of castellated beams. TWO is a multi-agent meta-heuristic algorithm, which
considers each candidate solution X={x;;} as a team engaged in a series of tug of war
competitions.

The main aim of this study is to optimize the cost of castellated beams with and without end-
filled openings. For this purpose, the tug of war optimization approach is utilized for design of
such beams with circular and hexagonal holes.

The present paper is organized as follows: In the next section, the design of castellated beam is
introduced. In Section 3, the problem formulation including the mathematical model is presented,
based on the Steel Construction Institute Publication Number 100 and Eurocode3. In Section 4, the
algorithm is briefly introduced. In Section 5, numerical examples are studied, and finally the
concluding remarks are provided in Section 6.

2. Design of castellated beams

The theory behind the castellated beam is to reduce the weight of the beam and to improve the
stiffness by increasing the moment of inertia resulting from increased depth without usage of
additional material. Due to the presence of holes in the web, the structural behavior of castellated
steel beam is different from that of the standard beams. At present, there is no prescribed design
method due to the complexity of the behavior of castellated beams and their associated modes of
failure (Soltani er al. 2012). The strength of a beam with different shapes of web opening is
determined by considering the interaction of the flexure and shear at the openings. There are many
failure modes to be considered in the design of a beam with web opening, consisting of lateral-
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torsional buckling, Vierendeel mechanism, flexural mechanism, rupture of welded joints, and web
post buckling. Lateral-torsional buckling may occur in an unrestrained beam. A beam is
considered to be unrestrained when its compression flange is free to displace laterally and rotate.
In this paper it is assumed that the compression flange of the castellated beam is restrained by the
floor system. Therefore, the overall buckling strength of the castellated beam is omitted from the
design consideration. These modes are closely associated with beam geometry, shape parameters,
type of loading, and provision of lateral supports. In the design of castellated beams, these criteria
should be considered (EN 1993-1-1 2005, Ward 1990, Erdal et al. 2011, Saka 2009, Raftoyiannis
and loannidis 2006, British Standards 2000, LRFD-AISC 1986).

2.1 Overall beam flexural capacity

This mode of failure can occur when a section is subjected to pure bending. In the span
subjected to pure bending moment, the tee-sections above and below the openings yields in a
manner similar to that of a standard webbed beam. Therefore, the maximum moment under
factored dead and imposed loading, should not exceed the plastic moment capacity of the
castellated beam (Soltani ef al. 2012, Erdal et al. 2011).

MUSMP:ALTPYHU (1)

where A;r is the area of lower tee, Py is the design strength of steel, and Hy is distance between
center of gravities of upper and lower tees.

2.2 Beam shear capacity

In the design of castellated beams, two modes of shear failure should be checked. The first one
is the vertical shear capacity and the upper and lower tees should undergo that. The vertical shear
capacity of the beam is the sum of the shear capacities of the upper and lower tees. The factored
shear force in the beam should not exceed the following limits

F,, =0.6F, (0.9AWUL) circular opening

2
7 )

Py :TPY(AWUL)

hexagonal opening

The second one is the horizontal shear capacity. It is developed in the web post due to the
change in axial forces in the tee-section as shown in Fig. 3. Web post with too short mid-depth
welded joints may fail prematurely when horizontal shear exceed the yield strength. The horizontal
shear capacity is checked using the following equations (Soltani et al. 2012, Erdal et al. 2011)

B, =0.6F, (0.94,, ) circular opening

3)
€ N
P, = Y P,(4,,) exagonal opening

where Ay is the total area of the webs of the tees and Ayp is the minimum area of web post.
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Fig. 3 Horizontal shear in the web post of castellated beams, (a) Hexagonal opening, (b) Circular opening

2.3 Flexural and buckling strength of web post

In this study, it is assumed that the compression flange of the castellated beam is restrained by
the floor system. Thus the overall buckling of the castellated beam is omitted from the design
consideration. The web post flexural and buckling capacity in a castellated beam is given by
(Soltani et al. 2012, Erdal et al. 2011)

M

T, [Cixa=Cixat =G )

where Myax is the maximum allowable web post moment and Mg is the web post capacity at
critical section 4-4 shown in Fig. 3. C, C, and C; are constants obtained by following expressions

C, =5.097+0.14643—0.00174 5 (5)
C, =1.441+0.06253 - 0.000683 5> (6)
C, =3.645+0.08533—0.00108 5 )

where a:% for hexagonal openings, and ,- 5 for circular openings, also ﬁ:z for
D,

0 w

. D, . . . .
hexagonal openings, and == for circular openings, S is the spacing between the centers of
t

holes, d is the cutting depth of hexagonal opening, D, is the holes diameter and ¢, is the web
thickness.
2.4 Vierendeel bending of upper and lower tees

Vierendeel mechanism is always critical in steel beams with web openings, where global shear



538 A. Kaveh and F. Shokohi

force is transferred across the opening length, and the Vierendeel moment is resisted by the local
moment resistances of the tee-sections above and below the web openings. This mode of failure
often occurs in web-expanded beams with long horizontal opening lengths.

Vierendeel bending results in the formation of four plastic hinges above and below the web
opening. The overall Vierendeel bending resistance depends on the local bending resistance of the
web-flange sections. This mode of failure is associated with high shear forces acting on the beam.
The Vierendeel bending stresses in the circular opening obtained by using the Olander’s approach.
The interaction between Vierendeel bending moment and axial force for the critical section in the
tee should be checked as follows (Erdal et al. 2011)

&+£S1.0 (®)
U P

where Py and M are the force and the bending moment on the section, respectively. Py is equal to
the area of critical sectionxPy, Mp is calculated as the plastic modulus of critical sectionxPy in
plastic section or elastic section modulus of critical sectionx Py for other sections.

The plastic moment capacity of the tee-sections in castellated beams with hexagonal opening
are calculated independently. The total of the plastic moment is equal to the sum of the Vierendeel
resistances of the above and below tee-sections (Soltani et al. 2012). The interaction between
Vierendeel moment and shear forces should be checked by the following expression

Vowmax xe —4M;, <0 )

where Vomax and Mpp are the maximum shear force and the moment capacity of tee-section,
respectively.

2.5 Deflection of castellated beam

Serviceability checks are of high importance in the design, especially in beams with web
opening where the deflection due to shear forces is significant. The deflection of a castellated
beam under applied load combinations should not exceed span/360. Methods for calculating the
deflection of castellated beam with hexagonal and circular openings are shown in Ref.
(Raftoyiannis and loannidis 2006), and Ref. (Erdal et al. 2011), respectively.

3. Problem formulation

In optimization problem of castellated beams, the objective is to minimize the manufacturing
cost of the beam while satisfying certain constraints. In a castellated beam, there are many factors
that require special considerations when estimating the cost of beam, such as man-hours of
fabrication, weight, price of web cutting and welding process. In this study, it is assumed that the
costs associated with man-hours of fabrication for hexagonal and circular opening are identical.
Thus, the objective function comprises of three parts: the beam weight, price of the cutting, and
price of the welding. The objective function can be expressed as

Eow = PAiisa (L)X P+ Loy X Py + Ly X Ps (10)

In practice, in order to support high shear forces close to the connection or for reasons of fire
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safety, sometimes it becomes necessary to fill certain openings using steel plates. In this case, the
price of plates is added to the total cost. Therefore, the objective function can be expressed as

Fcost—ﬁlled = p(A initial (LO) + 2A hole th )Xpl + Lcut x p2 + (Lwe/d ) Xp3 (1 1)

where p;, p, and ps are the price of the weight of the beam per unit weight, length of cutting and
welding per unit length, L, is the initial length of the beam before castellation process, p is the
density of steel, A0 1S the area of the selected universal beam section, 4, is the area of a hole,
Loy and L, are the cutting length and welding length, respectively. The length of cutting is
different for hexagonal and circular web-openings. The dimension of the cutting length is
described by following equations:

For circular opening

L, = 2Dy x NH +2e(NH +1)+ 720 4 (12)
D,
L inin = 7Dy x NH +2e(NH +1) + +e+2xP,, (13)
For hexagonal opening
L., =2NH (e +.L)+Ze +.L (14)
sin(&) sin(&)
d d
Lcm_mﬁ[, =2NH(e+—)+2e+——+2xP,, (15)

sin(d) sin(@)

where NH is the total number of holes, e is the length of horizontal cutting of web, Dy is the
diameter of holes, d is the cutting depth, 6 is the cutting angle, and P, is the perimeter of hole
related to filled opening.

Also, the welding length for both of circular and hexagonal openings is determined by Egs.
(16) and (17).

Lweld = e(NH + 1) (16)

Lot —inin =€ (NH +1)+4xP,,, (17)

3.1 Design of castellated beam with circular opening

Design process of a cellular beam consists of three phases: the selection of a rolled beam, the
selection of a diameter, and the spacing between the center of holes or total number of holes in the
beam as shown in Fig. 1, (Erdal et al. 2011, Saka 2009), Hence, the sequence number of the rolled
beam section in the standard steel sections tables, the circular holes diameter and the total number
of holes are taken as design variables in the optimum design problem. This problem is formulated
by considering the constraints explained in the previous sections and can be expressed as the
following:

Find an integer design vector {X}={x,x,,x3}", where x, is the sequence number of the rolled
steel profile in the standard sections list, x; is the sequence number for the hole diameter which
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contains various diameter values, and x; is the total number of holes for the cellular beam (Erdal et
al. 2011). Hence the design problem can be expressed as:
Minimize Egs. (10), (11)

Subjected to
g, =(1.08xD,)-S <0 (18)
g,=8-(1.60xD;)<0 (19)
g,=(1.25xD,)-H; <0 (20)
g,=H;—-(1.75xD;)<0 (21)
gs=M,-M,<0 (22)
86 = Viaxsr = <0 (23)
g7 = Vouax =By <0 24)
&5 =Viax = Fp <0 (25)
&9 =M s ypax =Mypux <0 (26)
g0 =V —(0.50xB,, )<0 (27)
gllz%+M£P—1.OSO (28)
8i =Yy =0 <0 (29)

where ) is the web thickness, Hg and L are the overall depth and the span of the cellular beam, and
S is the distance between centers of holes. My is the maximum moment under the applied loads,
Mp is the plastic moment capacity of the cellular beam, Vyaxsqsp is the maximum shear at support,
Vomax 1s the maximum shear at the opening, Vivax is the maximum horizontal shear, M, _4vax 1S
the maximum moment at 4-4 section shown in Fig. 3. Myuax is the maximum allowable web
post moment, Vrgg represent the vertical shear on top of the hole, Py and M are the internal forces
on the web section, and Yyax denotes the maximum deflection of the cellular beam (Erdal et al.
2011, LRFD-AISC 1986).

3.2 Design of castellated beam with hexagonal opening

In design of castellated beams with hexagonal openings, the design vector includes four design
variables: the selection of a rolled beam, the selection of a cutting depth, the spacing between the
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center of holes or total number of holes in the beam and the cutting angle as shown in Fig. 1.

Hence the optimum design problem is formulated by the following expression:

Find an integer design vector {X}I{xl,xz,x3}T where x; is the sequence number of the rolled
steel profile in the standard sections list, x, is the sequence number for the cutting depth which
contains various values, x; is the total number of holes for the castellated beam and x4 is the cutting
angle. Thus, the design problem turns out to be as follows:

Minimize Eq. (10), Eq. (11)

Subjected to

3
& =d _g(Hs —Zl‘f)SO

g, =(Hg—2t,)-10x(d, —1,)<0

g, =§d cotfd—e <0

g,=e—2dcotfd<0
gs=2d cotf+e—-2d <0
g, =45 -0<0
g, =0-64"<0
gy =M,-M,<0
8o =Vyuxsup—H <0
810 =Vouax =By =0
& =Vinux =By <0

8 =M pyux ~Mypux <0

813 :VTEE _(O.SOXPVY ) <0

814 =V osux Xe —4M, <0

&5 = Viux _%60S0

(30)
€2))
(32)
(33)
(34)
(35)
(36)
(37
(38)
(39)
(40)
(41)
(42)
(43)

(44)

where # is the flange thickness, dr is the depth of the tee-section, Mp is the plastic moment
capacity of the castellated beam, M,_sax is the maximum moment at A-A4 section shown in Fig. 3,
Mynax 1s the maximum allowable web post moment, Vg is the vertical shear on the tee, Mzp is
the moment capacity of tee-section and Yyax denotes the maximum deflection of the castellated
beam with hexagonal opening (Soltani et al. 2012).
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4. Optimization algorithm

In this section, the new meta-heuristic algorithm developed by Kaveh and Zolghadr (2016) is
briefly introduced. The TWO is a population-based search method, where each agent is
considered as a team engaged in a series of tug of war competitions. The weight of the teams is
determined based on the quality of the corresponding solutions and the amount of pulling force
that a team can exert on the rope is assumed to be proportional to its weight. Naturally, the
opposing team will have to maintain at least the same amount of force in order to sustain its grip
of the rope. The lighter team accelerates toward the heavier team and this forms the convergence
operator of the TWO. The algorithm improves the quality of the solutions iteratively by
maintaining a proper exploration/exploitation balance using the described convergence operator.
A summary of this method is provided in the following steps.

Step 1: Initialization
The initial positions of teams are determined randomly in the search space

0 j=12,...n (45)

Xjj =X pin TraANAd (X} 0 — X

J.max j,min)
where x] is the initial value of the jth variable of the ith candidate solution; x;m.x and x;mi, are the
maximum and minimum permissible values for the jth variable, respectively; rand is a random
number from a uniform distribution in the interval [0, 1]; » is the number of optimization
variables.

Step 2: Evaluation of candidate designs and weight assignment

The objective function values for the candidate solutions are evaluated and sorted. The best
solution so far and its objective function value are saved. Each solution is considered as a team
with the following weight

t(i)— fit
W, = O.Q(M)Jro_] i=12,.,N (46)
ﬁt best _ﬁt worst

where fit(i) is the fitness value for the ith particle; The fitness value can be considered as the
penalized objective function value for constrained problems; fithest and fitworst are the fitness

values for the best and worst candidate solutions of the current iteration; According to Eq. (46)
the weights of the teams range between 0.1 and 1.

Step 3: Competition and displacement
In TWO each team competes against all the others one at a time to move to its new position.

The pulling force exerted by a team is assumed to be equal to its static friction force (W,US)
Hence the pulling force between the teams i and j (F,,;) can be determined as max{ W, u_, WJ M}

Such a definition keeps the position of the heavier team unaltered.
The resultant force affecting team 7 due to its interaction with heavier team j in the kth iteration
can then be calculated as follows
Fk

i

= Fpk,i/' - VVik Hy 47)

where F’ ; ; 18 the pulling force between teams i and j in the kth iteration, and 4, is coefficient of
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kinematic friction.

k

F.
aj =(—)g; (48)
y VVikﬂk y

in which al.'/‘. is the acceleration of team i towards team j in the kth iteration; g,-lj- is the
gravitational acceleration constant defined as
k k k
8 = X i X, (49)
where X f and X l.k are the position vectors for candidate solutions j and i in the kth iteration.
Finally, the displacement of team i after competing with team j can be derived as

X,im)o(—=0.5+rand(1,n)) (50)

1

AX; = Ea{;m? +a" (X, —

The second term of Eq. (50) induces randomness into the algorithm. This term can be
interpreted as the random portion of the search space traveled by team i before it stops after the
applied force is removed. Here, a is a constant chosen from the interval [0,1]; Xin.x and Xy, are
the vectors containing the upper and lower bounds of the permissible ranges of the design
variables, respectively; ° denotes element by element multiplication; rand(1,n) is a vector of
uniformly distributed random numbers.

It should be noted that when team j is lighter than team i, the corresponding displacement of

team i will be equal to zero (i.e., AX l'/‘ ). Finally, the total displacement of team i in iteration £ is
equal to

N
k_ k
Axt =3 Ax; (51)
j=1
The new position of team i at the end of kth iteration, is then calculated as:

Step 4: Handling of side constraints

It is possible for the candidate solutions to leave the search space and it is important to deal
with such solutions properly. This is especially the case for the solutions corresponding to lighter
teams for which the values of AX is usually bigger. Different strategies might be used in order to
solve this problem. In this study, it is assumed that such candidate solution can be simply brought
back to their previous permissible position (Flyback strategy) or they can be regenerated
randomly.

Step 5: Termination
Steps 2 through 5 are repeated until a termination criterion is satisfied.
The flowchart of the TWO algorithm is shown in Fig. 4.

5. Test problems and optimization results

In this section, numerical results are presented to demonstrate the efficiency of the new meta-
heuristic method (TWO) for design of castellated beams. For this purpose, three beams are
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Step 1: Initialize N agents (teams) with
random positions.

Step 2: Evaluate the objective function of teams, assign a
weight for each them according to their fitness, and sort in the
increasing order.

Step 3: Determine the displacement of each team due to
competition with other teams, and then calculate the new
positions of teams.

Step 4: If a team swerves a side limits, correct its position.

Step 5: Determine the new objective function for each team
according to the new positions, compare the new objective
function values, save the best result.

The termination

Fig. 4 Flowchart of the TWO algorithm (Kaveh and Zolghadr (2016))

Conditions

selected from literature that have previously been optimized by other algorithms. Among the steel
sections list of British Standards, 64 Universal Beam (UB) sections starting from 254x102x28
UB to 914x419x388 UB are chosen to constitute the discrete set of steel sections from which the
design algorithm selects the sectional designations for the castellated beams. In the design pool of
holes diameters 421 values are arranged which varies between 180 and 600 mm with an
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50 kN

Fig. 5 Simply supported beam with a span of 4 m

300 - ‘ | .
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Iteration

Fig. 6 Convergence curves recorded in the 4m span beam problem for the TWO best optimization runs

increment of 1 mm. Also, for cutting depth of hexagonal opening, 351 values are considered
which varies between 50 and 400 mm with increment of 1 mm and cutting angle changes from 45
to 64. Another discrete set is arranged for the number of holes. Likewise, in all the design
problems, the modulus of elasticity is equal to 205 GPa and Grade 50 is selected for the steel of
the beam which has the design strength of 355 MPa. The coefficients Py, P, and P; in the
objective function are considered as 0.85, 0.30 and 1.00, respectively (Kaveh and Shokohi 2014,
Kaveh and Shokohi 2015a, Kaveh and Shokohi 2015b, Kaveh and Shokohi 2015¢) A maximum
number of iterations of 200 are used as the termination criterion in all the examples, and a is
taken as 0.1 for all design problems. Also, all design problems have been solved in two cases,
with and without filled holes.

5.1 Castellated beam with 4m span

A simply supported beam with a span of 4m is considered as the first test problem, shown in
Fig. 5. The beam is subjected to 5 kN/m dead load including its own weight. A concentrated live
load of 50 kN also acts at mid-span of the beam and the allowable displacement of the beam is
limited to 12 mm. For this problem the number of agents (teams) is taken as 20.
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Table 1 Optimum designs of the castellated beams with 4m span

Aloorithm Optimum Hole diameter -  Total number Cutting Minimum Type of
& UB section  cutting depth(mm) of holes angle cost($) the hole
ECSS (Kaveh and UB o
Shokohi 2014)  305x102x25 125 14 T 8978
CBO (Kaveh and UB o
Shokohi 2015a) 305%102x25 125 14 70 8978
CBO-PSO (Kaveh UB Hexagonal
and Shokohi 305%102x25 125 14 57° 89.78
2015¢)
Present work UB o
. 1 (TWO) 305%102x25 126 13 61 89.73
a
> ECSS(Kavehand  UB 248 14 06,32
Shokohi 2014)  305x102x25 - ‘
CBO (Kaveh and UB
Shokohi 2015a) 305x102x25 244 14 - o114
CBO-PSO (Kaveh UB Circular
and Shokohi 243 14 _ 91.08
2015¢) 305%102x25
Present work UB
(TWO)  305x102x25 249 14 - OB
ECSS UB
(Kaveh and 125 14 60° 96.45
Shokohi 2015b) 20> *102%23
CBO UB
(Kavc?h and 305% 10225 125 14 64 96.61
Shokohi 2015b) Hexagonal
CBO-PSO UB
(Kaveh and 125 14 56° 96.04
Shokohi 2015b) -0>*102x25
Present work UB o
Cace s (TWO) 305%102x25 125 14 56 96.33
ase ECSS UB
(Kaveh and 244 14 _ 98.62
Shokohi 2015b) -0>*102x25
CBO UB
(Kaveh and 243 14 _ 98.70
Shokohi 2015b) 20> *102x23 Circular
CBO-PSO UB
(Kaveh and 243 14 _ 98.58
Shokohi 2015b) 20> *102%23
Present work UB
(TWO) 305%102%25 244 14 - 98.62

Castellated beams with hexagonal and circular openings are separately designed with TWO.
These beams are designed for two cases. In case 1, it is assumed that the end of the beams is not
filled. Thus the objective function for this case is obtained from Eq. (10). In the second case, it is
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assumed that the holes in the end of the beam are filled with steel plate, and Eq. (11) is utilized for
the objective function. The optimum results obtained by TWO are given in Table 1. It is apparent
from the same table that the optimum cost for castellated beam with hexagonal hole is equal to
89.73% which is obtained by TWO. Also, according to the results, the tug of war optimization
algorithm has good performance in design of cellular beam. These results indicate that the
castellated beam with hexagonal opening have less cost in comparison to the cellular beam. The
same conclusion can be drawn for the filled opening configuration from the results listed in Table 1.

Fig. 6 shows the convergence curves of the TWO algorithm for design of castellated beams
with different shapes for the openings.

5.2 Castellated beam with 8m span
In the second problem, the tug of war optimization algorithm is used to design a simply

supported castellated beam with a span of 8m. Similar to the first example, this beam is also
designed for two different cases. The beam carries a uniform dead load 0.40 kN/m, which includes

70 kN Live Load 70 kN Live Load

70 kN Dead Load 70 kN Dead Load

junns '{,TT‘QI auns|

im 2.50m

8m

Fig. 7 Simply supported beam with a span of 8§ m
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4000 — CBO-PSO-H(case 1)
«‘
3 3000 B
@
2000 { B
1000 m B
0 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200

Iteration

Fig. 8 Comparison of best run convergence curves recorded in the 8m span beam problem (unfilled
hexagonal holes) for different metaheuristic algorithms
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Table 2 Optimum designs of the castellated beams with 8m span

Optimum UB  Hole diameter - Total number Cutting Minimum Type of

Algorithm section cutting depth(mm)  of holes angle cost($)  the hole
ECSS
UB
(Kaveh and 246 14 59° 719.47
Shokohi 2014) 610%229%101
CBO
UB
(Kaveh and 243 14 59° 718.93
Shokohi 2015a) 6107229%101 Hexagonal
CBO-PSO
UB
(Kaveh and 244 14 55° 718.33
Shokohi 2015¢) 10%229%101
Present work UB o
(TWO)  610x229x101 243 14 56 718.20
Case 1 ECSS
UB
(Kaveh and 487 14 _ 721.55
Shokohi 2015a) 10%229%101
CBO
UB
(Kaveh and 487 14 _ 721.55
Shokohi 2015a) 810%229%101 Circular
CBO-PSO
UB
(Kaveh and 487 14 _ 721.55
Shokohi 2015¢) 810%2297101
Present work UB
(TWO)  610x229x101 487 14 - 721.55
ECSS
UB
(Kaveh and 246 14 56° 744.65
Shokohi 2015b) ©10%229%101
CBO
UB
(Kaveh and 246 14 58° 745.48
Shokohi 2015b) 610x229x101 Hexagonal
CBO-PSO
UB
(Kaveh and 246 14 55° 744.42
Shokohi 2015b) ©10%229%101
Present work UB o
Case 2 (TWO) 610x229x101 246 14 55 744.42
ECSS
UB
(Kaveh and 478 14 _ 753.74
Shokohi 2015b) ©10%229%101
CBO
UB
(Kave'h and 610%229%101 479 14 _ 754.02 .
Shokohi 2015b) Circular
CBO-PSO
UB
(Kaveh and 478 14 _ 753.74
Shokohi 2015b) ©10%229%101
Present work UB 478 14 753 74

(TWO)  610x229x101 -
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Fig. 9 Simply supported beam with 9 m span

its own weight. In addition, it is subjected to two concentrated loads as shown in Fig. 7. The
allowable displacement of the beam is limited to 23 mm, and the number of agents is taken as 20.

This beam is designed by TWO and the results are compared to those of the other optimization
algorithms as shown in Table 2. In design of the beam with hexagonal hole, the corresponding cost
obtained by the TWO is equal to 718.2$ which is the lowest value among all the methods.
Therefore, the performance of the tug of war optimization is better than other approaches (Kaveh
and Shokohi 2014, Kaveh and Shokohi 2015a, Kaveh and Shokohi 2015b, Kaveh and Shokohi
2015c¢) for this design example. According to the obtained results, the designed beam with
hexagonal opening has less cost in comparison with the cellular beam, and it is a better option in
this case. In design of end-filled case, it is obvious that the presented method has the same
performance. Furthermore, the maximum value of the strength ratio is equal to 0.99 for both
hexagonal and circular beams, and it is shown that these constraints are dominant in the design
process.

Fig. 8 shows the convergence history for optimum design of hexagonal beam which is obtained
by different meta-heuristic algorithms.

5.3 Castellated beam with 9m span

The beam with 9m span is considered as the last example of this study in order to compare the
minimum cost of the castellated beams. The beam carries a uniform load of 40 kN/m including its
own weight and two concentrated loads of 50 kN as shown in Fig. 9. The allowable displacement
of the beam is limited to 25 mm, and the number of agent is taken as 20.

Table 3 compares the results obtained by the TWO with those of the other algorithms. In the
optimum design of castellated beam with hexagonal hole, TWO algorithm selects 684x254x125 UB
profile, 16 holes, and 231 mm for the cutting depth and 57° for the cutting angle. The minimum cost
of the design beam is equal to 991.048. Also, in the optimum design of cellular beam, the TWO
algorithm selects 610x229x125 UB profile, 14 holes of diameter 490 mm. It can be observed from
Table 3 that the optimal design has the minimum cost of 990.33$ for beam with hexagonal holes
which is obtained by the CBO-PSO algorithm, however, the TWO results in better design for cellular
beam. In the design of beam with filled holes, the obtained results using the tug of war optimization
algorithm is slightly different from each other. This shows that in the case of holes filled with steel
plates, where the beam span is large, using cellular beams can be a good design strategy. Similar to
the previous example, the strength criteria is dominant in the design of this beam and it is related
to the Vierendeel mechanism. The maximum ratio of these criteria is equal to 0.99 for both
hexagonal and cellular cases.
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Table 3 Optimum designs of the castellated beams with 9 m span

A. Kaveh and F. Shokohi

Algorithm

Optimum UB  Hole diameter -

Total number Cutting Minimum Type of

section cutting depth(mm)  of holes angle  cost ($) the hole
ECSS UB
(Kaveh and 277 13 56° 995.97
Shokohi 2014) 084234123
CBO UB
(Kaveh and 233 15 64° 993.79
Shokohi 2015a) 684x234x125 Hexagonal
CBO-PSO UB
(Kaveh and 230 16 56° 990.33
Shokohi 2015¢) 0842347125
Present work UB o
oot (TWO) 684x254%125 231 16 57 991.04
ECSS UB
(Kaveh and 539 14 B 998.94
Shokohi 2014) 084234125
CBO UB
(Kaveh and 538 14 _ 997.57
Shokohi 2015a) 0847234125 Circular
CBO-PSO UB
(Kaveh and 538 14 B 998.58
Shokohi 2015¢) 9842347125
Present work UB
(TWO)  610x229x125 490 14 S
ECSS UB
(Kaveh and 277 14 61° 1033.32
Shokohi 2015b) 0842347125
CBO UB
(Kaveh and 277 14 60° 1034.07
Shokohi 2015b) 084234125 Hexagonal
CBO-PSO UB
(Kaveh and 276 14 58° 1031.92
Shokohi 2015b) 84*234125
Present work UB o
(TWO)  684x254x125 277 14 57°  1031.98
Case 2
ECSS UB
(Kaveh and 539 14 _ 1041.71
Shokohi 2015b) 84234125
CBO UB
(Kaveh and 539 14 _ 1041.79
Shokohi 2015b) 084*234<125 Circular
CBO-PSO UB
(Kaveh and 539 14 B 1041.68
Shokohi 2015b) 842347125
Present work UB
(TWO)  610x220x125 489 15 B 1033.34
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Fig. 10 Optimum profiles of the castellated beams with unfilled cellular and hexagonal openings for beam
with 9 m span
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Fig. 11 Comparison of best run convergence curves recorded in the 9 m span beam problem (filled circular
holes) for different metaheuristic algorithms

The optimum shapes of the hexagonal and circular openings with unfilled holes are separately
shown in Fig. 10. Also, the convergence histories of metaheuristics are shown in Fig. 11 for design
of cellular beam with filled openings. It is apparent from the figure that TWO has good
convergence rate in design of this problem and finds better solution for cellular beam.
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6. Conclusions

In this paper, a newly developed meta-heuristic algorithm called tug of war optimization is
utilized for optimum design of castellated beams. Three benchmark problems are solved in order
to assess the robustness and efficiency of the TWO. These beams are designed in two cases with
filled openings and unfilled openings, where the hexagonal and circular holes are considered as the
types of the web openings. Comparing the results obtained by TWO with those of other
optimization methods demonstrates that TWO has a good performance compared to the other
methods in the ability of finding the optimum solution. Also, the convergence rate of this
algorithm to the optimal solution is quite good for most of problems and it requires a less number
of analyses to find better solution making TWO computationally more efficient. From the results
obtained in this paper, it can be concluded that the use of the beam with hexagonal openings can
lead to the use of less steel material and it is better choice than cellular beam in unfilled cases. For
design of castellated beam with large spans, especially in filled cases, it is observed that the
cellular beam has a good performance and it can be used as an alternative to castellated beam with
hexagonal opening.
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