
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 58, No. 3 (2016) 533-553 

DOI: http://dx.doi.org/10.12989/sem.2016.58.3.533                                                                                       533 

Copyright ©  2016 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=sem&subpage=8               ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Optimum design of laterally-supported castellated beams 
using tug of war optimization algorithm 

 

A. Kaveh

 and F. Shokohi 

 
Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of Science and 

Technology, Narmak, Tehran, P.O. Box 16846-13114, Iran 

 
(Received December 24, 2015, Revised February 26, 2016, Accepted February 29, 2016) 

 
Abstract.  In this paper, the recently developed meta-heuristic algorithm called tug of war optimization is 

applied to optimal design of castellated beams. Two common types of laterally supported castellated beams 

are considered as design problems: beams with hexagonal openings and beams with circular openings. Here, 

castellated beams have been studied for two cases: beams without filled holes and beams with end-filled 

holes. Also, tug of war optimization algorithm is utilized for obtaining the solution of these design problems. 

For this purpose, the minimum cost is taken as the objective function, and some benchmark problems are 

solved from literature. 
 

Keywords:  meta-heuristic algorithm; tug of war optimization; optimal design; hexagonal opening; cellular 

opening 

 
 
1. Introduction 
 

Since the 1940’s, the manufacturing of structural beams with higher strength and lower cost has 

been an asset to engineers in their efforts to design more efficient steel structures. Due to the 

limitations on maximum allowable deflections, using of section with heavy weight and high 

capacity in the design problem cannot always be utilized to the best advantage. As a result, several 

new methods have been created for increasing the stiffness of steel beams without increase in the 

weight of steel required. Castellated beam is one of them that become basic structural elements 

within the design of building, like a wide-flange beam (Konstantinos and D’Mello 2012). 

A castellated beam is constructed by expanding a standard rolled steel section in such a way 

that a predetermined pattern (mostly circular or hexagonal) is cut on section webs and the rolled 

section is cut into two halves. The two halves are shifted and connected together by welding to 

form a castellated beam. In terms of structural performance, the operation of splitting and 

expanding the height of the rolled steel sections helps to increase the section modulus of the 

beams. 

The main initiative for manufacturing and use of such sections is to suppress the cost of 

material by applying more efficient cross sectional shapes made from standard rolled beam. Web-

openings have been used for many years in structural steel beams in a great variety of applications  
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In practice, in order to support high shear forces close to the connections, sometimes it 
becomes necessary to fill certain openings. In cellular beams, this is achieved by inserting discs 
made of steel plates and welding from both sides, Fig. 2. The openings are usually filled for one of 
two reasons:  

i) At positions of higher shear, especially at the ends of a beam or under concentrated loads.  
ii) At incoming connections of secondary beams.  
It should be noted that for maximum economy infills should be avoided whenever possible, 

even to the extent of increasing the section mass. 
In the last two decades, many metaheuristic algorithms have been developed to help solving 

optimization problems that were previously difficult or impossible to solve using mathematical 
programming algorithms. Metaheuristic algorithms provide mechanisms to escape from local 
optima by balancing exploration and exploitation phases, being based either on solution 
populations or iterated solution paths, for instance, by using neighborhoods. In general, these 
algorithms are simple to implement, present (near) optimal solutions in acceptable computational 
times even in complex search spaces. There are different meta-heuristic optimization methods; 
Genetic Algorithms (GA) (Goldberg and Holland 1988), Ant Colony Optimization (ACO) (Dorigo 
et al. 1996),  Harmony Search algorithm (HS) (Geem et al. 2001), Particle Swarm Optimizer 
(PSO) (Eberhart and Kennedy 1996), Charged System Search method (CSS) (Kaveh and 
Talatahari 2010), Bat algorithm (Yang 2011), Ray optimization algorithm (RO) (Kaveh and 
Khayatazad 2012), Krill-herd algorithm (Gandomi and Alavi 2012), Dolphin Echolocation 
Optimization (DEO) (Kaveh and Farhoudi 2013), Colliding Bodies Optimization (CBO) (Kaveh 
and Mahdavi 2014), are some of such meta-heuristic algorithms. In this study, one of the newly 
developed algorithms called tug of war optimization (Kaveh and Zolghadr 2016) is used for 
optimal design of castellated beams. TWO is a multi-agent meta-heuristic algorithm, which 
considers each candidate solution Xi={xi,j} as a team engaged in a series of tug of war 
competitions.  

The main aim of this study is to optimize the cost of castellated beams with and without end-
filled openings. For this purpose, the tug of war optimization approach is utilized for design of 
such beams with circular and hexagonal holes. 

The present paper is organized as follows: In the next section, the design of castellated beam is 
introduced. In Section 3, the problem formulation including the mathematical model is presented, 
based on the Steel Construction Institute Publication Number 100 and Eurocode3. In Section 4, the 
algorithm is briefly introduced. In Section 5, numerical examples are studied, and finally the 
concluding remarks are provided in Section 6. 
 
 
2. Design of castellated beams 
 

The theory behind the castellated beam is to reduce the weight of the beam and to improve the 
stiffness by increasing the moment of inertia resulting from increased depth without usage of 
additional material. Due to the presence of holes in the web, the structural behavior of castellated 
steel beam is different from that of the standard beams. At present, there is no prescribed design 
method due to the complexity of the behavior of castellated beams and their associated modes of 
failure (Soltani et al. 2012). The strength of a beam with different shapes of web opening is 
determined by considering the interaction of the flexure and shear at the openings. There are many 
failure modes to be considered in the design of a beam with web opening, consisting of lateral-
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torsional buckling, Vierendeel mechanism, flexural mechanism, rupture of welded joints, and web 
post buckling. Lateral-torsional buckling may occur in an unrestrained beam. A beam is 
considered to be unrestrained when its compression flange is free to displace laterally and rotate. 
In this paper it is assumed that the compression flange of the castellated beam is restrained by the 
floor system. Therefore, the overall buckling strength of the castellated beam is omitted from the 
design consideration. These modes are closely associated with beam geometry, shape parameters, 
type of loading, and provision of lateral supports. In the design of castellated beams, these criteria 
should be considered (EN 1993-1-1 2005, Ward 1990, Erdal et al. 2011, Saka 2009, Raftoyiannis 
and Ioannidis 2006, British Standards 2000, LRFD-AISC 1986). 
 

2.1 Overall beam flexural capacity 
 
This mode of failure can occur when a section is subjected to pure bending. In the span 

subjected to pure bending moment, the tee-sections above and below the openings yields in a 
manner similar to that of a standard webbed beam. Therefore, the maximum moment under 
factored dead and imposed loading, should not exceed the plastic moment capacity of the 
castellated beam (Soltani et al. 2012, Erdal et al. 2011). 

      UYLTPU HPAMM    (1)

where ALT  is the area of lower tee, PY is the design strength of steel, and HU is distance between 
center of gravities of upper and lower tees. 

 
2.2 Beam shear capacity 
 
In the design of castellated beams, two modes of shear failure should be checked. The first one 

is the vertical shear capacity and the upper and lower tees should undergo that. The vertical shear 
capacity of the beam is the sum of the shear capacities of the upper and lower tees. The factored 
shear force in the beam should not exceed the following limits 

     
 0.6 0.9VY Y WULP P A                  circular opening 

(2)

     
 WULYVY APP

3

3
                hexagonal opening 

The second one is the horizontal shear capacity. It is developed in the web post due to the 
change in axial forces in the tee-section as shown in Fig. 3. Web post with too short mid-depth 
welded joints may fail prematurely when horizontal shear exceed the yield strength. The horizontal 
shear capacity is checked using the following equations (Soltani et al. 2012, Erdal et al. 2011) 

     
 0.6 0.9VH Y WPP P A                    circular opening 

(3)

     
 WPYVH APP

3

3
                     hexagonal opening 

where AWULis the total area of the webs of the tees and AWP is the minimum area of web post. 
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force is transferred across the opening length, and the Vierendeel moment is resisted by the local 
moment resistances of the tee-sections above and below the web openings. This mode of failure 
often occurs in web-expanded beams with long horizontal opening lengths. 

Vierendeel bending results in the formation of four plastic hinges above and below the web 
opening. The overall Vierendeel bending resistance depends on the local bending resistance of the 
web-flange sections. This mode of failure is associated with high shear forces acting on the beam. 
The Vierendeel bending stresses in the circular opening obtained by using the Olander’s approach. 
The interaction between Vierendeel bending moment and axial force for the critical section in the 
tee should be checked as follows (Erdal et al. 2011) 

       

0.10 
PU M

M

P

P
  (8)

where P0 and M are the force and the bending moment on the section, respectively. PU is equal to 
the area of critical section×PY, MP   is calculated as the plastic modulus of critical section×PY in 
plastic section or elastic section modulus of critical section×PY for other sections. 

The plastic moment capacity of the tee-sections in castellated beams with hexagonal opening 
are calculated independently. The total of the plastic moment is equal to the sum of the Vierendeel 
resistances of the above and below tee-sections (Soltani et al. 2012). The interaction between 
Vierendeel moment and shear forces should be checked by the following expression 

         
4 0OMAX TPV e M     (9)

where VOMAX  and MTP  are the maximum shear force and the moment capacity of tee-section, 
respectively.  

 
2.5 Deflection of castellated beam 
 
Serviceability checks are of high importance in the design, especially in beams with web 

opening where the deflection due to shear forces is significant. The deflection of a castellated 
beam under applied load combinations should not exceed span/360. Methods for calculating the 
deflection of castellated beam with hexagonal and circular openings are shown in Ref. 
(Raftoyiannis and Ioannidis 2006), and Ref. (Erdal et al. 2011), respectively.  
 
 
3. Problem formulation 
 

In optimization problem of castellated beams, the objective is to minimize the manufacturing 
cost of the beam while satisfying certain constraints. In a castellated beam, there are many factors 
that require special considerations when estimating the cost of beam, such as man-hours of 
fabrication, weight, price of web cutting and welding process. In this study, it is assumed that the 
costs associated with man-hours of fabrication for hexagonal and circular opening are identical. 
Thus, the objective function comprises of three parts: the beam weight, price of the cutting, and 
price of the welding. The objective function can be expressed as 

         cost initial 0 1 2 3 F  ( ) cut weldA L p L p L p       (10)

In practice, in order to support high shear forces close to the connection or for reasons of fire 
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safety, sometimes it becomes necessary to fill certain openings using steel plates. In this case, the 
price of plates is added to the total cost. Therefore, the objective function can be expressed as 

         cost-filled initial 0 1 2 3 F  ( ( ) 2 ) ( )hole w cut weldA L A t p L p L p          (11)

where p1, p2 and p3 are the price of the weight of the beam per unit weight, length of cutting and 
welding per unit length, L0 is the initial length of the beam before castellation process, ρ is the 
density of steel, Ainitial is the area of the selected universal beam section, Ahole is the area of a hole, 
Lcut and Lweld are the cutting length and welding length, respectively. The length of cutting is 
different for hexagonal and circular web-openings. The dimension of the cutting length is 
described by following equations: 

For circular opening 

        

0
cut 0 2 ( 1)

2

D
L D NH e NH e

       (12)

        

0
cut-infill 0 2 ( 1) 2

2 hole

D
L D NH e NH e P

       
 

(13)

For hexagonal opening 

        
2 ( ) 2

sin( ) sin( )cut

d d
L NH e e

 
     (14)

       
2 ( ) 2 2

sin( ) sin( )cut infill hole

d d
L NH e e P

       
 

(15)

where NH is the total number of holes, e is the length of horizontal cutting of web, D0 is the 
diameter of holes, d is the cutting depth, θ is the cutting angle, and Phole is the perimeter of hole 
related to filled opening. 

Also, the welding length for both of circular and hexagonal openings is determined by Eqs. 
(16) and (17). 

        
)1(  NHeLweld  (16)

        
( 1) 4weld infill holeL e NH P    

  (17)

 
3.1 Design of castellated beam with circular opening  
 
Design process of a cellular beam consists of three phases: the selection of a rolled beam, the 

selection of a diameter, and the spacing between the center of holes or total number of holes in the 
beam as shown in Fig. 1, (Erdal et al. 2011, Saka 2009), Hence, the sequence number of the rolled 
beam section in the standard steel sections tables, the circular holes diameter and the total number 
of holes are taken as design variables in the optimum design problem. This problem is formulated 
by considering the constraints explained in the previous sections and can be expressed as the 
following: 

Find an integer design vector {X}={x1,x2,x3}
T, where x1 is the sequence number of the rolled 

steel profile in the standard sections list, x2 is the sequence number for the hole diameter which 
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contains various diameter values, and x3 is the total number of holes for the cellular beam (Erdal et 
al. 2011). Hence the design problem can be expressed as:  

Minimize Eqs. (10), (11) 
Subjected to 

1 0(1.08 ) 0g D S     (18)

2 0(1.60 ) 0g S D     (19)

3 0(1.25 ) 0Sg D H     (20)

4 0(1.75 ) 0Sg H D     (21)

05  PU MMg  (22)

06  VMAXSUP PVg  (23)

07  VYOMAX PVg  (24)

08  VHHMAX PVg  (25)

09   WMAXAMAXA MMg  (26)

10 (0.50 ) 0TEE VYg V P     (27)

00.10
11 

PU M

M

P

P
g  (28)

036012  LYg MAX  (29)

where tW is the web thickness, HS and L are the overall depth and the span of the cellular beam, and 
S is the distance between centers of holes. MU is the maximum moment under the applied loads, 
MP is the plastic moment capacity of the cellular beam, VMAXSAP is the maximum shear at  support, 
VOMAX is the maximum shear at the opening, VHMAX is the maximum horizontal shear, MA-AMAX is 
the maximum moment at A-A section shown in Fig. 3. MWMAX is the maximum allowable web 
post moment, VTEE represent the vertical shear on top of the hole, P0 and M are the internal forces 
on the web section, and YMAX denotes the maximum deflection of the cellular beam (Erdal et al. 
2011, LRFD-AISC 1986). 
 

3.2 Design of castellated beam with hexagonal opening  
 
In design of castellated beams with hexagonal openings, the design vector includes four design 

variables: the selection of a rolled beam, the selection of a cutting depth, the spacing between the 
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center of holes or total number of holes in the beam and the cutting angle as shown in Fig. 1. 
Hence the optimum design problem is formulated by the following expression: 

Find an integer design vector {X}={x1,x2,x3}
T where x1 is the sequence number of the rolled 

steel profile in the standard sections list, x2  is the sequence number for the cutting depth which 
contains various values, x3 is the total number of holes for the castellated beam and x4  is the cutting 
angle. Thus, the design problem turns out to be as follows: 

Minimize Eq. (10), Eq. (11) 
Subjected to 

1

3
( 2 ) 0

8 S fg d H t     (30)

0)(10)2(2  fTfS tdtHg (31)

3

2
cot 0

3
g d e  

 
(32)

4 2 cot 0g e d    (33)

5 2 cot 2 0g d e d    (34)

6 45 0g    (35)

7 64 0g     (36)

08  PU MMg (37)

09  VMAXSUP PVg (38)

010  VYOMAX PVg (39)

011  VHHMAX PVg (40)

012   WMAXAMAXA MMg  (41)

13 (0.50 ) 0TEE VYg V P     (42)

14 4 0OMAX TPg V e M     (43)

036015  LYg MAX  (44)

where tf 
is the flange thickness, dT is the depth of the tee-section, MP is the plastic moment 

capacity of the castellated beam, MA-AMAX is the maximum moment at A-A section shown in Fig. 3, 
MWMAX is the maximum allowable web post moment, VTEE is the vertical shear on the tee, MTP is 
the moment capacity of tee-section and YMAX denotes the maximum deflection of the castellated 
beam with hexagonal opening (Soltani et al. 2012). 
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4. Optimization algorithm 
 

In this section, the new meta-heuristic algorithm developed by Kaveh and Zolghadr (2016) is 
briefly introduced. The TWO is a population-based search method, where each agent is 
considered as a team engaged in a series of tug of war competitions. The weight of the teams is 
determined based on the quality of the corresponding solutions and the amount of pulling force 
that a team can exert on the rope is assumed to be proportional to its weight. Naturally, the 
opposing team will have to maintain at least the same amount of force in order to sustain its grip 
of the rope. The lighter team accelerates toward the heavier team and this forms the convergence 
operator of the TWO. The algorithm improves the quality of the solutions iteratively by 
maintaining a proper exploration/exploitation balance using the described convergence operator. 
A summary of this method is provided in the following steps. 

 
Step 1: Initialization 
The initial positions of teams are determined randomly in the search space 

n,...,,j)xx(randxx min,jmax,jmin,jij 210                                    (45) 

where 0
ijx  is the initial value of the jth variable of the ith candidate solution; xj,max  and xj,min are the  

maximum and minimum permissible values for the jth variable, respectively; rand is a random 
number from a uniform distribution in the interval [0, 1]; n is the number of optimization 
variables. 
 

Step 2: Evaluation of candidate designs and weight assignment 
The objective function values for the candidate solutions are evaluated and sorted. The best 

solution so far and its objective function value are saved. Each solution is considered as a team 
with the following weight 

N,...,2,1i1.0)
fitfit

fit)i(fit
(9.0W

worstbest

worst
i 




                                (46) 

where fit(i) is the fitness value for the ith particle; The fitness value can be considered as the 
penalized objective function value for constrained problems; fitbest and fitworst are the fitness 
values for the best and worst candidate solutions of the current iteration; According to Eq. (46) 
the weights of the teams range between 0.1 and 1.  
 

Step 3: Competition and displacement 
In TWO each team competes against all the others one at a time to move to its new position. 

The pulling force exerted by a team is assumed to be equal to its static friction force  sW . 

Hence the pulling force between the teams i and j (Fp,ij) can be determined as max{ sjsi W,W  }. 

Such a definition keeps the position of the heavier team unaltered.  
The resultant force affecting team i due to its interaction with heavier team j in the kth iteration 

can then be calculated as follows 

k
k

i
k

ij,p
k
ij,r WFF                                                           (47) 

where k
ij,pF is the pulling force between teams i and j in the kth iteration, and k is coefficient of  
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kinematic friction. 

k
ij

k
k

i

k
ij,rk

ij g)
W

F
(a


                                                           (48) 

in which k
ija  is the acceleration of team i towards team j in the kth iteration; k

ijg  is the  
gravitational acceleration constant defined as 

k
i

k
j

k
ij XXg                                                             (49) 

where k
jX  and k

iX  are the position vectors for candidate solutions j and i in the kth iteration.  
Finally, the displacement of team i after competing with team j can be derived as 

))n,1(rand5.0()XX(ta
2

1
X minmax

k2k
ij

k
ij                        (50) 

The second term of Eq. (50) induces randomness into the algorithm. This term can be 
interpreted as the random portion of the search space traveled by team i before it stops after the 
applied force is removed. Here, α is a constant chosen from the interval [0,1]; Xmax 

and Xmin are 
the vectors containing the upper and lower bounds of the permissible ranges of the design 
variables, respectively; ◦ denotes element by element multiplication; rand(1,n) is a vector of 
uniformly distributed random numbers.  

It should be noted that when team j is lighter than team i, the corresponding displacement of  
team i will be equal to zero (i.e., k

ijX ). Finally, the total displacement of team i in iteration k is  
equal to 





N

1j

k
ij

k
i XX                                                           (51) 

The new position of team i at the end of kth iteration, is then calculated as: 
 

Step 4: Handling of side constraints 
It is possible for the candidate solutions to leave the search space and it is important to deal 

with such solutions properly. This is especially the case for the solutions corresponding to lighter 
teams for which the values of ΔX is usually bigger. Different strategies might be used in order to 
solve this problem. In this study, it is assumed that such candidate solution can be simply brought 
back to their previous permissible position (Flyback strategy) or they can be regenerated 
randomly.  

 
Step 5: Termination 
Steps 2 through 5 are repeated until a termination criterion is satisfied. 
The flowchart of the TWO algorithm is shown in Fig. 4. 

 
 
5. Test problems and optimization results 

 
In this section, numerical results are presented to demonstrate the efficiency of the new meta-

heuristic method (TWO) for design of castellated beams. For this purpose, three beams are  
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Fig. 4 Flowchart of the TWO algorithm (Kaveh and Zolghadr (2016)) 
 
 

selected from literature that have previously been optimized by other algorithms. Among the steel 
sections list of British Standards, 64 Universal Beam (UB) sections starting  from 254×102×28 
UB to 914×419×388 UB are chosen to constitute the discrete set of steel sections from which the 
design algorithm selects the sectional designations for the castellated beams. In the design pool of 
holes diameters 421 values are arranged which varies between 180 and 600 mm with an  

Step 1: Initialize N agents (teams) with 
random positions.

Step 2: Evaluate the objective function of teams, assign a 
weight for each them according to their fitness, and sort in the 

increasing order.    

Step 3: Determine the displacement of each team due to 
competition with other teams, and then calculate the new 

positions of teams. 

Step 5: Determine the new objective function for each team 
according to the new positions, compare the new objective 

function values, save the best result. 

Stop 

Step 4: If a team swerves a side limits, correct its position. 

The termination 

 Conditions 
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Table 1 Optimum designs of the castellated beams with 4m span  

  Algorithm 
Optimum 

UB section 
Hole diameter - 

cutting depth(mm)
Total number

of holes 
Cutting 
angle

Minimum 
cost ($) 

Type of
the hole

Case 1 

ECSS (Kaveh and 
Shokohi 2014) 

UB 
305×102×25 

125 14 57° 89.78 

Hexagonal

CBO (Kaveh and 
Shokohi 2015a) 

UB 
305×102×25 

125 14 57° 89.78 

CBO-PSO (Kaveh 
and Shokohi 

2015c) 

UB 
305×102×25 

125 14 57° 89.78 

Present work 
(TWO) 

UB 
305×102×25 

126 13 61° 89.73 

ECSS (Kaveh and 
Shokohi 2014) 

UB 
305×102×25 

248 14 _ 96.32 

Circular

CBO (Kaveh and 
Shokohi 2015a) 

UB 
305×102×25 

244 14 _ 91.14 

CBO-PSO (Kaveh 
and Shokohi 

2015c) 

UB 
305×102×25 

243 14 _ 91.08 

Present work 
(TWO) 

UB 
305×102×25 

249 14 _ 91.15 

Case 2 

ECSS 
(Kaveh and 

Shokohi 2015b) 

UB 
305×102×25 

125 14 60° 96.45 

Hexagonal

CBO 
(Kaveh and 

Shokohi 2015b) 

UB 
305×102×25 

125 14 64° 96.61 

CBO-PSO 
(Kaveh and 

Shokohi 2015b) 

UB 
305×102×25 

125 14 56° 96.04 

Present work 
(TWO) 

UB 
305×102×25 

125 14 56° 96.33 

ECSS 
(Kaveh and 

Shokohi 2015b) 

UB 
305×102×25 

244 14 _ 98.62 

Circular

CBO 
(Kaveh and 

Shokohi 2015b) 

UB 
305×102×25 

243 14 _ 98.70 

CBO-PSO 
(Kaveh and 

Shokohi 2015b) 

UB 
305×102×25 

243 14 _ 98.58 

Present work 
(TWO) 

UB 
305×102×25 

244 14 _ 98.62 

 
 
Castellated beams with hexagonal and circular openings are separately designed with TWO. 

These beams are designed for two cases. In case 1, it is assumed that the end of the beams is not 
filled. Thus the objective function for this case is obtained from Eq. (10). In the second case, it is 
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Table 2 Optimum designs of the castellated beams with 8m span  

  Algorithm 
Optimum UB 

section 
Hole diameter -

cutting depth(mm)
Total number

of holes 
Cutting
angle 

Minimum 
cost ($) 

Type of
the hole

Case 1 

ECSS 
(Kaveh and 

Shokohi 2014)

UB 
610×229×101 

246 14 59° 719.47 

Hexagonal

CBO 
(Kaveh and 

Shokohi 2015a)

UB 
610×229×101 

243 14 59° 718.93 

CBO-PSO 
(Kaveh and 

Shokohi 2015c)

UB 
610×229×101 

244 14 55° 718.33 

Present work 
(TWO) 

UB 
610×229×101 

243 14 56° 718.20 

ECSS 
(Kaveh and 

Shokohi 2015a)

UB 
610×229×101 

487 14 _ 721.55 

Circular

CBO 
(Kaveh and 

Shokohi 2015a)

UB 
610×229×101 

487 14 _ 721.55 

CBO-PSO 
(Kaveh and 

Shokohi 2015c)

UB 
610×229×101 

487 14 _ 721.55 

Present work 
(TWO) 

UB 
610×229×101 

487 14 _ 721.55 

Case 2 

ECSS 
(Kaveh and 

Shokohi 2015b)

UB 
610×229×101 

246 14 56° 744.65 

Hexagonal

CBO 
(Kaveh and 

Shokohi 2015b)

UB 
610×229×101 

246 14 58° 745.48 

CBO-PSO 
(Kaveh and 

Shokohi 2015b)

UB 
610×229×101 

246 14 55° 744.42 

Present work 
(TWO) 

UB 
610×229×101 

246 14 55° 744.42 

ECSS 
(Kaveh and 

Shokohi 2015b)

UB 
610×229×101 

478 14 _ 753.74 

Circular

CBO 
(Kaveh and 

Shokohi 2015b)

UB 
610×229×101 

479 14 _ 754.02 

CBO-PSO 
(Kaveh and 

Shokohi 2015b)

UB 
610×229×101 

478 14 _ 753.74 

Present work 
(TWO) 

UB 
610×229×101 

478 14 _ 753.74 
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Table 3 Optimum designs of the castellated beams with 9 m span 

  Algorithm 
Optimum UB 

section 
Hole diameter - 

cutting depth(mm)
Total number

of holes 
Cutting
angle 

Minimum 
cost ($) 

Type of
the hole

Case 1 

ECSS 
(Kaveh and 

Shokohi 2014)

UB 
684×254×125 

277 13 56° 995.97 

Hexagonal

CBO 
(Kaveh and 

Shokohi 2015a)

UB 
684×254×125 

233 15 64° 993.79 

CBO-PSO 
(Kaveh and 

Shokohi 2015c)

UB 
684×254×125 

230 16 56° 990.33 

Present work 
(TWO) 

UB 
684×254×125 

231 16 57° 991.04 

ECSS 
(Kaveh and 

Shokohi 2014)

UB 
684×254×125 

539 14 _ 998.94 

Circular

CBO 
(Kaveh and 

Shokohi 2015a)

UB 
684×254×125 

538 14 _ 997.57 

CBO-PSO 
(Kaveh and 

Shokohi 2015c)

UB 
684×254×125 

538 14 _ 998.58 

Present work 
(TWO) 

UB 
610×229×125 

490 14 _ 995.89 

Case 2 

ECSS 
(Kaveh and 

Shokohi 2015b)

UB 
684×254×125 

277 14 61° 1033.32 

Hexagonal

CBO 
(Kaveh and 

Shokohi 2015b)

UB 
684×254×125 

277 14 60° 1034.07 

CBO-PSO 
(Kaveh and 

Shokohi 2015b)

UB 
684×254×125 

276 14 58° 1031.92 

Present work 
(TWO) 

UB 
684×254×125 

277 14 57° 1031.98 

ECSS 
(Kaveh and 

Shokohi 2015b)

UB 
684×254×125 

539 14 _ 1041.71 

Circular

CBO 
(Kaveh and 

Shokohi 2015b)

UB 
684×254×125 

539 14 _ 1041.79 

CBO-PSO 
(Kaveh and 

Shokohi 2015b)

UB 
684×254×125 

539 14 _ 1041.68 

Present work 
(TWO) 

UB 
610×229×125 

489 15 _ 1033.34 
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6. Conclusions 
 

In this paper, a newly developed meta-heuristic algorithm called tug of war optimization is 
utilized for optimum design of castellated beams. Three benchmark problems are solved in order 
to assess the robustness and efficiency of the TWO. These beams are designed in two cases with 
filled openings and unfilled openings, where the hexagonal and circular holes are considered as the 
types of the web openings. Comparing the results obtained by TWO with those of other 
optimization methods demonstrates that TWO has a good performance compared to the other 
methods in the ability of finding the optimum solution. Also, the convergence rate of this 
algorithm to the optimal solution is quite good for most of problems and it requires a less number 
of analyses to find better solution making TWO computationally more efficient. From the results 
obtained in this paper, it can be concluded that the use of the beam with hexagonal openings can 
lead to the use of less steel material and it is better choice than cellular beam in unfilled cases. For 
design of castellated beam with large spans, especially in filled cases, it is observed that the 
cellular beam has a good performance and it can be used as an alternative to castellated beam with 
hexagonal opening.  
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