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Abstract.  This study considers a functionally graded (FG) elastic layer resting on homogeneous elastic 

substrate under axisymmetric static loading. The shear modulus of the FG layer is assumed to vary in an 

exponential form through the thickness. In solution, the FG layer is approximated into a multilayered 

medium consisting of thin homogeneous sublayers. Stiffness matrices for a typical homogeneous isotropic 

elastic layer and a half-space are first obtained by solving the axisymmetric elasticity equations with the aid 

of Hankel’s transform. Global stiffness matrix is, then, assembled by considering the continuity conditions at 

the interfaces. Numerical results for the displacements and the stresses are obtained and compared with 

those of the classical elasticity and the finite element solutions. According to the results of the study, the 

approach employed here is accurate and efficient for elasto-static problems of FGMs. 
 

Keywords:  stiffness matrix method; functionally graded material; layered media; elasticity; Hankel’s 

transform 

 
 
1. Introduction 
 

Functionally graded material (FGM) is the special type of composite whose composition varies 

continuously as a function of position along thickness or length of a structure. In design of FGM, 

the microstructure is gradually varied from one material to another with a specific gradient. This 

enables the material to have good specifications of both materials in its composition. The concept 

of FGM has been first introduced in Japan in 1980s. Aircrafts, space vehicles, defense industries, 

electronics and biomedical sensors are some application areas of FGMs in engineering.  

Many engineering structures or materials can be considered as multilayered bodies. For 

example, a soil could be idealized as a set of linear elastic or viscoelastic layers of infinite and 

horizontal extent. Composite materials can also be considered as layered anisotropic structures in 

some cases. In the analysis of multilayered media, the elasticity problem for all layers must be 

solved. These solutions must also satisfy the boundary and continuity conditions. Consequently, 

the classical method for multilayered media is required to solve a system of simultaneous 
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equations with a large number of unknown constants. The complexity of such a solution can be 

found in the studies of Iyengar and Alwar (1964), Chen (1971), in which the semi-infinite medium 

consisting of isotropic layers was considered, as well as that of Pagano (1970) for the problem of 

anisotropic laminates in cylindrical bending.  

An axi-symmetric frictionless contact for a transversely isotropic functionally graded elastic 

half-space resting on a rigid base with a small axisymmetric surface recess was investigated by 

Barik et al. (2009). The problem was reduced to Fredholm integral equations, and solved 

numerically. Rhimi et al. (2011) considered the axisymmetric problem of a frictionless double 

receding contact between a rigid stamp of axisymmetric profile, a functionally graded layer and a 

homogeneous half space. The problem is solved by the theory of elasticity and an appropriate 

integral transform. The axisymmetric torsional problem of functionally graded layer located 

between a homogenous layer and homogenous half plane was solved by Liu et al. (2015) using the 

Hankel integral transform. It is assumed that the shear modulus of the graded layer changed 

exponentially along the thickness direction and the homogenous layer was loaded by a rigid 

cylindrical punch. Oner et al. (2015) presented a comparative study for a continuous contact 

problem by analytical and finite element method (FEM).  

Alternatively, various solution procedures have been developed for the analysis of layered 

media based on matrix analysis. Among them, the transfer matrix method was developed by Bufler 

(1971), and independently by Bahar (1972). Small and Booker (1984, 1986) introduced an exact 

finite layer flexibility matrix for the analysis of horizontally layered elastic material. They solved 

the static problem of layered media under strip, circular, and rectangular loading cases. Choi and 

Thangjitham (1991) performed the stress analysis of multilayered anisotropic elastic media 

subjected to applied surface tractions by the stiffness matrix method. They also studied the steady-

state thermoelasticity problem of a layered anisotropic medium under the state of generalized 

plane deformation (1991). Pindera and Lane (1993) studied the frictionless contact problem of 

layered half-planes consisting of arbitrary number of isotropic, orthotropic, or monoclinic layers 

arranged in any sequence by the stiffness matrix method. Wang and Ishikawa (2001) proposed a 

method for the linear elasto-static analysis of multilayered bodies by the matrix analysis. By using 

the transfer matrix approach, Sun and Luo (2008), Sun et al. (2009) studied transient and steady-

state wave propagation in multilayered viscoelastic media. Sun et al. (2013) proposed a high-order 

thin layer method to improve accuracy and robustness of the thin layer method for analyzing 

viscoelastic wave propagation in stratified media. An exact stiffness method for quasi-static 

analysis of multilayered poroelastic media was proposed by Senhjuntichai and Rajapakse (1995). 

Ai and co-workers (2011, 2012) developed an analytical layer-element method for solutions to 

axisymmetric and non-axisymmetric consolidation problems of multilayered soils. Ai and Wang 

(2015) presented an analytical layer-element solution to axisymmetric thermal consolidation of 

multilayered porous thermoelastic media containing a deep buried heat source. Recently, based on 

the analytical layer-element solution of the axisymmetric problem of multilayered isotropic soils, 

Ai and Cai (2015) presented a theory for static analysis of a Timoshenko beam on elastic 

multilayered isotropic soils by combination of finite element and analytical layer element. 

As an alternative to the classical elasticity solution, this study attempts to solve elasto-static 

problem of a functionally graded (FG) elastic layer resting on homogeneous elastic substrate 

subjected to axisymmetric static loading by the stiffness matrix method. The shear modulus of the 

FG layer is assumed to vary in an exponential form through the thickness. In solution, the FG layer 

is approximated into a multilayered medium consisting of thin homogeneous sublayers. For each 

sublayer, the shear modulus is calculated at its midplane, and is assumed to be constant through the  
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Axisymmetric analysis of a functionally graded layer resting on elastic substrate 

 

Fig. 1 Geometry and loading of the problem 

 

 

thickness. Stiffness matrices for the homogeneous isotropic elastic layer and the half-space are 

first obtained by solving axisymmetric elasticity equations with the aid of Hankel’s transform. 

Global stiffness matrix is, then, assembled by considering the continuity conditions at the 

interfaces. Numerical results for displacements and stresses are obtained and compared with those 

of the classical elasticity and the finite element solutions. Results show that the present approach 

for elasto-static problem of FG bodies is accurate, and can be used as an alternative method for 

problems including FGMs. 

 

 

2. Governing equations and general solutions 
 

Fig. 1 shows geometry and the loading of the problem considered. Since the loading applied on 

the medium is axisymmetric, it is convenient to use the cylindrical coordinate system (r,θ,z) for the 

formulation. In the absence of body forces, the equilibrium equations for a homogeneous isotropic 

elastic material can be given as 

0,

0

rr rz

rz z rz

r z r

r z r

  

  

 
  

 

 
  

                             

(1) 

where σr, σθ and τrz are the stress components shown in Fig. 2.  

The displacement-strain relationships are given by 

r 

z 
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q0 
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h 
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Fig. 2 Stress components in the cylindrical coordinate system 
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(2) 

where ur=ur(r,z) and uz=uz(r,z) are the displacement components in radial and vertical directions, 

respectively.  

The stress-strain relationship can be given by 

ζ = Cε
                                  

(3) 

or explicitly 

2 0 0 0
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    
                            

(4) 

where λ=Ev/[(1+v)(1−2v)] and μ=E/[2(1+v)] are Lamé elastic constants in which E and  are 

Young’s modulus and Poisson’s ratio, respectively. 

Substituting Eq. (2) into Eq. (4) yields the stress-displacement relations as 

2 , 2 , 2 ,

, 0

r r z
r z

r z
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    
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(5a-f) 
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Axisymmetric analysis of a functionally graded layer resting on elastic substrate 

where Δ=(∂ur/∂r)+(ur/r)+( ∂uz/∂z). 

Substituting Eq. (5) into Eq. (1) gives the equations of equilibrium in terms of displacements, i.e., 

Navier equations, as 

2
( 2 ) 0,

1
( 2 ) 0

r r z

z r

u u u

r r z z r

u u

z r r r z

  

  

     
       

      

     
      

                        

(6a, b) 

Solution to Eq. (6) can be obtained by the integral transform method. Let’s define nth order 

Hankel’s transform of a function f (r) and its inversion as 

0

0

( ) ( ) ( ) ,

( ) ( ) ( )

n

n

f s f r J sr rdr

f r f s J sr sds











                          

(7a, b) 

where s is the transform variable corresponding to the radial coordinate r, and Jn is the Bessel 

function of the first kind of order n. 

Applying Hankel’s transform of order 1 to Eq. (6a), and applying Hankel’s transform of order 0 to 

Eq. (6b), one may obtain 

2
2

2

2
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2
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    
        
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(9) 

or in matrix form 

2

2

0 0 ( ) 0( 2 ) 0
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z
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                  
             

                    

(10) 

where primes denote the derivatives with respect to z. Assuming 
0( , ) ksz

r ru s z u e  and 

0( , ) ksz

z zu s z u e , and substituting them into Eq. (10) gives 

2
0

2
0

0(2 ) ( )

0( ) ( 2 )

r

z

uk k

uk k

   

    

       
    

                           

(11) 

The linear algebraic equation system in Eq. (11) has non-trivial solutions when determinant of its 

coefficient matrix equals zero. This gives the following 

4 22 1 0k k                                    (12) 

which has roots k1=k2=1, and k3=k4=−1. Thus, the solutions of ( , )ru s z  and ( , )zu s z  become 

1 2 1 2( , ) ( ) ( )sz sz

ru s z A A z e B B z e                            (13) 
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1 2 1 2( , ) ( ) ( )sz sz

zu s z C C z e D D z e     (14) 

where Ai, Bi, Ci and Di (i=1,2) are unknown coefficients to be determined from boundary conditions 

of the problem. Inserting Eqs. (13) and (14) into any of Eqs. (9), the unknown coefficients Ci and Di 

can be expressed in terms of Ai and Bi, respectively. Thus, we have  

1 2 1 2( , ) ( )cosh ( )sinhru s z A A z sz B B z sz                       (15) 

1 2 2 1 2 2( , ) ( )cosh ( )sinhz

R R
u s z B A B z sz A B A z sz

s s
       

             
(16) 

where R=(λ+3μ)/(λ+μ). 

Apply Hankel’s transform of order 0 to Eqs. (5a-c), and apply Hankel’s transform of order 1 to 

Eqs. (5d-f) to obtain the stresses for a typical kth layer. For the stress components of the layer, this 

transformation gives 

( , ) ( 2 ) , ( , )z r
z r rz z

u u
s z su s z su

z z
     

  
     

                  

(17) 

Substituting Eqs. (15) and (16) into Eqs. (17) yields 

   1 2 2 1 2 2( , ) 2 ( ) cosh 2 ( ) sinhz s z s A A z B sz s B B z A sz           
         

(18) 

   1 2 2 1 2 2( , ) 2 ( ) ( 1) cosh 2 ( ) ( 1) sinhrz s z s B B z R A sz s A A z R B sz         
      

(19) 

where χ=(λ+2μ)(R−1). 

For a semi-infinite layered medium with the Nth layer modeled as a half-space, the regularity  

conditions are imposed such that the transformed displacements satisfy ( , ) 0ru s    and 

( , ) 0zu s   . To ensure these conditions, the coefficients of the exponential term e
-sz

 in Eqs. (13)  

and (14) must be zero. Thus, we have 

1 2( , ) ( )
s z
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(20) 

1 2( , ) ( )
s z

zu s z C C z e                             
(21) 

Substituting Eqs. (20) and (21) into any of Eqs. (9) to express unknown coefficients Ci and Di in 

terms of Ai and Bi, respectively, yields  
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(23) 

Substituting Eqs. (22) and (23) into Eqs. (17) gives  
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(25) 
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Fig. 3 Displacements and stresses at the upper and lower surfaces of the kth layer 

 
 
3. Stiffness matrix method 
 

As can be seen in the foregoing section, there are four unknown constants Ai and Bi (i=1,2) for 

each layer. Consequently, for an N-layer medium, a total of 4N unknown constants must be 

determined from a set of 4N appropriate boundary and interface conditions. This means that the 

classical method is required to solve a system of algebraic equations with a large number of 

unknowns. To overcome this difficulty, the stiffness matrix method is employed for the analysis. Fig. 

3 shows the displacement and stress components at the upper and lower surfaces of the layer. Note 

that the local coordinate system for the kth layer is located at its middle. The signs (+) and (–) refer 

the values at upper and lower surfaces of the layer, respectively. Let’s define the following vectors 

for a typical homogeneous isotropic kth layer within a multilayered medium. 

   
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(26) 

where ( , )k s zd  and ( , )k s zζ  are the vectors for the transformed displacements and stresses, 

respectively, and ( )k sa  and ( )k sb  are the vectors for the unknown constants.  

In terms of ka  and kb , the vectors containing values of the transformed displacements  
k


d  

and stresses 
k


ζ  for the kth layer are expressed as 
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k k
kk

k k
kk





        
     

        

ad F F

bd F F
                           

(27) 
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bζ G G
                          

(28) 

where ( )k

ij sF  and ( )k

ij sG  (i=j=1, 2) are the 2×2 real submatrices. Eliminating the unknown vectors 

ak and bk from Eqs. (27) and (28), the surface stresses and displacements for the kth layer are 
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obtained as 

11 12

21 22

k k

k k

k k

k k

 

 

        
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          

ζ K K d

ζ K K d
                         

(29) 

where ( )k

ij sK  (i=j=1, 2) are the 22 real submatrices defined as 

1

11 12 11 12 11 12

21 22 21 22 21 22

k k k k k k

k k k k k k



     
     

          

K K G G F F

K K G G F F
                    

(30) 

where the left-hand side of the above equation is the 44 real and symmetric local stiffness matrix 

for the kth layer. The elements of the local stiffness matrix for a homogeneous isotropic layer are 

given in Appendix A in explicit form.  

For an N-layer infinite solid subjected to tractions applied on the bounding surfaces, the boundary 

and interface continuity conditions between two adjacent layers are imposed such that 

1

1 1

,

, ( 1,2, , 1),k k k k

N

k N

 

   

 

 



   



ζ p

ζ ζ d d

ζ p
                     

(31) 

where ( )s
p  denote the Hankel’s transform of the applied tractions on the upper (+) and lower (–) 

bounding surfaces of the medium.  

Defining 
1 1

δ d  and 
1N N



 δ d , the displacements vectors for the upper and lower bounding 

surface of the medium, respectively, and 
1 1k k k

 

  δ d d  (k=1,2,3,...,N−1), the vectors containing  

values of the interfacial displacements common to the kth and (k+1)th layers, the following system of 

equations can be obtained through the successive applications of the conditions given in Eq. (31). 

1 1

11 1 12 2

1 1

21 22 11 1 12 2

21 22 1

,
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N N
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(32) 

The above system of algebraic equations can be represented in the following matrix form 

1 1
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1 1 2 2

221 22 11 12

2 2 3

21 22 11

3

21

122

0

0

0

00 0
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N N
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           
          

δ pK K

δK K K K

K K K

K

δ pK
               

(33) 

or shortly 

Kδ f                                   
(34) 

It is observed that the assembly of the global stiffness matrix for the entire medium is carried out 
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by superposing the local stiffness matrices of the individual layers along the main diagonal of the 

global matrix in an overlapping fashion. Dimension of the global stiffness matrix K(s) is 2(N+1)  

2(N+1), the global displacement vector ( )sδ  is 2(N+1)1, and the global force vector ( )sf  is 2(N  

+1)1, respectively. 

For a semi-infinite layered medium in which the last layer is modeled as a homogeneous half-

space, the local stiffness matrix equation of the half-space becomes  

11
ˆ N

N N

 ζ K d                                  (35) 

since 0N

 ζ  and 0N

 d  when z . In Eq. (35), 
11

ˆ N
K  represents the local stiffness matrix  

for the half-space, of which dimension is 22. The elements of the local stiffness matrix for each 

homogeneous isotropic half-space are given in Appendix B in explicit form. Here, the local 

coordinate system is considered to be located on the top surface of the half-space, i.e., zN=0. Thus,  

for a semi-infinite layered medium, the last submatrix of Eq. (33) is replaced by 1

22 11
ˆN N K K . In this 

case, the last subvector of the global interfacial displacement vector becomes 
Nδ , and 

N


p  is zero.  

Thus, the dimension of the global stiffness matrix becomes 2N2N.  

The general solution procedure of the stiffness matrix method can be summarized as:  

(1) Solve the global interfacial displacement vector δ  by Eq. (34);  

(2) Calculate the transformed stresses 
k


ζ  at the top and bottom surfaces of each layer by Eq. 

(29); and  

(3) Calculate the real displacements δk(r,z) and stresses σk(r,z) within the medium by taking the 

inverse Hankel’s transform given by Eq. (7b). 

 

 

4. Classical axisymmetric elasticity solution 
 

In Section 2, general expressions for field variables of the homogeneous isotropic bodies were 

given. Following is the classical solution of the governing equations when considering gradual 

variation of elastic moduli within solid, i.e., FGM. For the FG layer, the material is assumed as non-

homogeneous isotropic with a gradient along z-direction. The Poisson’s ratio is assumed to be 

constant. The shear modulus of the layer varies along the z-direction, and is given by an exponential 

function as 

0( ) , 0zz e h z                               
(36) 

where μ0 is the shear modulus of the homogeneous substrate, and β is the non-homogeneity 

parameter that controls the variation of the shear modulus within the FG layer.  

For a FG medium, the governing differential equations given by Eq. (6) can be re-arranged when 

considering the variation of elastic moduli with z-direction as follows: 

2
( 1) ( 1) ( 1) 0,

1
( 1) ( 1) (3 ) ( 1) 0

r r z r z

r z r r z

u u u u u

r r z z r z r

u u u u u

z r r z r r r z

   

     

         
             

          

         
              

               

(37) 

where κ=3−4v.  
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Eq. (37) must be solved under the following boundary conditions 

(1) (1) (1)

0

(1) (2) (1) (2)

(1) (2) (1) (2)

( ,0) , ( ,0) 0 , ( ,0) 0,

( , ) ( , ), ( , ) ( , ),

[ ( , )] [ ( , )], [ ( , )] [ ( , )]

z z rz

z z rz rz

z z r r

r q r a r r a r

r h r h r h r h

u r h u r h u r h u r h
r r r r

  

   

     

     

   
     

   

            (38) 

where q0 is the uniform distributed load over the top surface of the layer, superscripts (1) and (2) 

denote the layer and the half-space, respectively.  

Applying Hankel’s transform to Eq. (37), and following the similar way described in Sec. 2, one 

may write the transformed displacements for the layer and the half-space as 

4 4
( ) ( )(1) (1)

1 1

( , ) ( ) , ( , ) ( ) ( )j jn s z n s z

r j z j j

j j

u s z A s e u s z A s m s e
 

  
           

(39a,b) 

 (2) (2) 2
1 2 1 2( , ) ( ) ( ) , ( , ) ( ) ( )sz sz

r zu s z B s B s z e u s z B s z B s e
s

  
       

         

(40a,b) 

where 

      

  

2

1 1 1

2 2

1 1

3 2 1 3

4 3 1

j j j

j

n n n s
m

s s

    

  

      
 


    

                (41) 

The unknown functions Aj(s) (j=1,...,4), B1(s) and B2(s) in Eq. (40) are determined by the 

boundary conditions given in Eq. (38). nj(s) (j=1,...,4) are the complex roots of  

4 3 2 2 2 2 2 2 2 1

1

3
2 ( 2 ) 2 ( ) 0

1
j j j jn n s n s n s s


   




      

               

(42) 

from which 

2 2 2 21 1
1,2 3,4

1 1

3 31 1
4 4 , 4 4

2 1 2 1
n s s i n s s i

 
     

 

    
            
    
        

(43) 

Substituting Eqs. (39) and (40) into Eq. (17), and applying the inverse transform, the 

displacements and stresses can be obtained as follows:  

(a) For the FG layer 

 

4
( )(1)

0

11 0

4
( )(1)

1

10

4
( )(1)

1

10

4
( )(1)

0

10

( )
( ) ( ) ( ) ,

1

( ) ( ) ( ) ( ) ,

( ) ,

( ) ( )

j

j

j

j

n s z

z j j

j

n s z

rz j j

j

n s z

r j

j

n s z

z j j

j

z
s A s C s e J sr ds

z s A s D s e J sr ds

u s A e J rs ds

u s A m s e J rs ds






 

















 
  

  

 
  

 

 
  

 

 
  

 








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 

4
( )(1)

0

11 0

4
( )(1)

1

10

4
( )(1)

1

10

4
( )(1)

0

10

( )
( ) ( ) ( ) ,

1

( ) ( ) ( ) ( ) ,

( ) ,

( ) ( )

j

j

j

j

n s z

z j j

j

n s z

rz j j

j

n s z

r j

j

n s z

z j j

j

z
s A s C s e J sr ds

z s A s D s e J sr ds

u s A e J rs ds

u s A m s e J rs ds






 

















 
  

  

 
  

 

 
  

 

 
  

 








 

(44) 

where 

   1 13 1 ( ) ( ), ( ) ( )j j j j j jC s m s n s D n s sm s      
               

(45) 

(b) For the half-space,  

 
 

 

 

(2) 0

2 1 2 2 2 0

2 0

(2)

0 1 2 2 2 1

0

(2)

1 2 1

0

(2) 2
1 2 0

0

( 1) 2 ( 1) 2 ( ) ,
1

2 (1 ) 2 ( ) ,

( ) ,

( )

sz

z

sz

rz

sz

r

sz

z

s sB B szB e J sr ds

s sB B szB e J sr ds

u s B B z e J rs ds

u s B z B e J rs ds
s


  



  











       

     

 

  
     

  








          

(46) 

 
 

5. Results and discussion 
 

Some numerical results are given in the following to show the accuracy and efficiency of the 

present approach in elasto-static problems of FGMs. In solution of the problem by the stiffness 

matrix method, the FG layer is replaced by a layered medium consisting of N-homogeneous layer. 

Each layer in the system has its own elastic moduli, which is obtained by Eq. (36) at its midplane. 

Thus, we have an N-layer medium in which each sublayer has different elastic moduli which is 

constant through the thickness. 

The load applied over the medium can be either concentrated, i.e., a/h=0.01, or uniformly 

distributed, i.e., a/h=0.1, 0.5, 1.0, and 2.0. For all cases, the resultant force P=q0πa
2
 is always kept 

the same. Shear modulus of the FG layer at z=0 and z=-h are defined as μU and μL=μ0, respectively. 

Poison's ratio for the FG layer and the homogenous substrate are taken as v=0.3. Note that all 

quantities are normalized as follows: 

0 0/ , / , / , / , / , / , / , /U L r z z rza h r h z h u h u h q q     

Convergence study is first performed. In Table 1, non-dimensional vertical displacements (uz/h) 

obtained from the present method for different discretization scenarios of the FG layer are compared 

to those of elasticity solution. a/h=0.10 and μU/μL=4.00, 2.00, 1.00, 0.50 and 0.25 are used. Note that 

μU/μL=1.00 means the layer is homogeneous. For this case, the relative error is less than 1%, and the 

increase in the number of sublayers has no effect on the results. For μU/μL>1.00, the shear modulus of 

the layer decreases from top to bottom. On the contrary, i.e., for μU/μL<1.00, the shear modulus 

increases from top to bottom. It can be clearly seen that when the number of sublayers increases, the 

results obtained for the FG layer converge to the exact ones with an error of acceptable order. For  
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Table 1 Convergence study for the non-dimensional displacements (uz/h)×10
-3

 (a/h=0.10) 

μU/μL z/h Elasticity 
Present 

N=1 N=5 N=10 N=20 N=40 N=80 

4.00 
0 -0.796 -1.039 -0.802 -0.796 -0.798 -0.799 -0.800 

-1 -0.159 -0.087 -0.142 -0.150 -0.154 -0.156 -0.157 

2.00 
0 -1.308 -1.558 -1.325 -1.317 -1.316 -1.316 -1.316 

-1 -0.175 -0.131 -0.165 -0.169 -0.172 -0.173 -0.174 

1.00 
0 -2.228 -2.248 -2.248 -2.248 -2.248 -2.248 -2.248 

-1 -0.190 -0.189 -0.189 -0.190 -0.189 -0.189 -0.189 

0.50 
0 -3.902 -3.116 -3.890 -3.934 -3.941 -3.942 -3.942 

-1 -0.204 -0.263 -0.215 -0.209 -0.206 -0.205 -0.204 

0.25 
0 -6.979 -4.155 -6.837 -7.021 -7.047 -7.055 -7.055 

-1 -0.215 -0.350 -0.241 -0.228 -0.221 -0.218 -0.216 

 

 
(a) 

 
(b) 

Fig. 5 Finite element model of the problem: Deformed shape for μU/μL=4.00 and a/h=1.00 (a) 2D view; 

(b) 3D view 
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N=20, the relative error is less than order of 3% for all μU/μL values. Therefore, for all analyses here, 

N=20 sublayers are selected for the discretization of the FG layer into N-layer medium. 

For the aim of further comparison, the problem considered here is also solved by the finite 

element method (FEM) using the commercial FE software ANSYS. In FE modelling, only half of the 

problem is considered due to symmetry according to z-axis. PLANE183 axisymmetric solid element 

is used for FE meshing. Radial distance from the symmetry axis z is selected as 10 times the layer 

thickness, i.e., r/h=10. Mesh generation of the FG layer is made by manually while it is made 

automatically for the half-space. The material properties of the FG layer are assigned with the same 

way in discretizing the model by the stiffness matrix method. Note that for different a/h values, re-

meshing of the FG layer is required. Fig. 5 shows an example of axisymmetric and 3D views of the 

FE model used in the analyses. 

 

 
Table 2 Comparison of the non-dimensional normal stresses σz/q0 for three methods considered (a/h=1.00) 

z/h 
μU/μL=0.25 μU/μL=1.00 μU/μL=4.00 

Present Elasticity FEM Present Elasticity FEM Present Elasticity FEM 

0.0 1.006459 1.000056 1.000282 1.000016 1.000016 1.000000 1.000016 1.000016 1.000439 

-0.2 1.005707 0.999601 0.999717 0.991263 0.991265 0.992868 0.967659 0.966703 0.968709 

-0.4 0.985236 0.979897 0.980357 0.947638 0.947678 0.949453 0.879157 0.876539 0.878389 

-0.6 0.924693 0.920611 0.921240 0.862775 0.862838 0.864507 0.761803 0.757677 0.759228 

-0.8 0.829478 0.826833 0.827449 0.755310 0.755382 0.756817 0.645773 0.640776 0.642078 

-1.0 0.718468 0.716794 0.717374 0.645671 0.645740 0.647021 0.544476 0.539590 0.540793 

 
Table 3 Comparison of the non-dimensional displacements (uz/h)×10

-3
 for three methods considered (a/h=1.00) 

z/h 
μU/μL=0.25 μU/μL=1.00 μU/μL=4.00 

Present Elasticity FEM Present Elasticity FEM Present Elasticity FEM 

0.0 -0.3453 -0.3429 -0.3389 -0.2223 -0.2255 -0.2254 -0.1615 -0.1635 -0.1595 

-0.2 -0.2855 -0.2814 -0.2837 -0.2077 -0.2082 -0.2008 -0.1588 -0.1627 -0.1558 

-0.4 -0.2375 -0.2333 -0.2256 -0.1903 -0.1908 -0.1933 -0.1524 -0.1563 -0.1533 

-0.6 -0.2003 -0.1960 -0.1983 -0.1720 -0.1724 -0.1749 -0.1431 -0.1470 -0.1440 

-0.8 -0.1731 -0.1687 -0.1609 -0.1543 -0.1548 -0.1572 -0.1318 -0.1358 -0.1321 

-1.0 -0.1537 -0.1494 -0.1515 -0.1384 -0.1388 -0.1312 -0.1192 -0.1232 -0.1201 

 
Table 4 Comparison of the non-dimensional normal stresses σz/q0 for three methods considered (μU/μL=1.00) 

z/h 
a/h=0.01 a/h=1.00 a/h=2.00 

Present Elasticity FEM Present Elasticity FEM Present Elasticity FEM 

0.0 1.000000 1.000000 1.000269 1.000016 1.000016 1.000000 1.000037 1.0009049 1.000000 

-0.2 0.003738 0.003738 0.004006 0.991263 0.991265 0.992868 1.002526 1.002535 0.999082 

-0.4 0.000936 0.000936 0.000945 0.947638 0.947678 0.949453 0.995943 0.9959643 0.992586 

-0.6 0.000416 0.000416 0.000419 0.862775 0.862838 0.864507 0.979703 0.979730 0.976476 

-0.8 0.000234 0.000234 0.000235 0.755310 0.755382 0.756817 0.952106 0.952141 0.949032 

-1.0 0.000150 0.000150 0.000145 0.645671 0.645740 0.647021 0.913754 0.913798 0.910919 
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Table 5 Comparison of the non-dimensional displacements (uz/h)×10
-3

 for three methods considered 

(μU/μL=1.00) 

z/h 
a/h=0.01 a/h=1.00 a/h=2.00 

Present Elasticity FEM Present Elasticity FEM Present Elasticity FEM 

0.0 -21.1933 -21.2833 -21.4000 -0.2223 -0.2255 -0.2254 -0.1109 -0.1088 -0.1041 

-0.2 -0.9533 -0.9543 -0.9818 -0.2077 -0.2082 -0.2068 -0.1074 -0.1079 -0.0996 

-0.4 -0.4768 -0.4774 -0.4710 -0.1903 -0.1908 -0.1906 -0.1036 -0.1040 -0.0967 

-0.6 -0.3177 -0.3182 -0.3107 -0.1720 -0.1724 -0.1749 -0.0994 -0.0998 -0.0924 

-0.8 -0.2382 -0.2386 -0.2310 -0.1543 -0.1548 -0.1572 -0.0949 -0.0953 -0.0914 

-1.0 -0.1904 -0.1909 -0.1933 -0.1384 -0.1388 -0.1312 -0.0903 -0.0907 -0.0893 

 

 

Fig. 6 Non-dimensional normal stress (σz/q0) distribution in the FG layer through the thickness: (1) 

μU/μL=0.25; (2) μU/μL=1.00; (3) μU/μL=4.00 (a/h=0.5) 

 

 

Tables 2 and 3 compare the non-dimensional normal stresses σz/q0 and the non-dimensional 

vertical displacements uz/h according to three methods considered for various μU/μL values, 

respectively. Here a/h=1.00 is selected. As seen in the tables, results show excellent agreement. Table 

4 and 5 give the non-dimensional stresses σz/q0 and the non-dimensional displacements uz/h 

according to three methods considered for homogeneous layer by depending on the load length, 

respectively. Results are still in good agreement. 

In Figs. 6 and 7, the non-dimensional stresses σz/q0 and the non-dimensional vertical 

displacement uz/h in the FG layer through the thickness for different μU/μL values and a/h=0.50 are 

given. As seen in the figures, the present method, the classical method and FEM are in excellent 

agreement. Normal stresses and vertical displacements decrease with increasing μU/μL ratio. This is 

expected because the upper part of the layer becomes stiffer when μU/μL increases. 
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Fig. 7 Non-dimensional displacement (uz/h) distribution in the FG layer through the thickness: (1) 

μU/μL=0.25; (2) μU/μL=1.00; (3) μU/μL=4.00 (a/h=0.5) 

 

 

Fig. 8 Non-dimensional normal stress (σz/q0) distribution in the FG layer through the thickness for 

different load lengths (μU/μL=0.25) 

 

 

Figs. 8 and 9 give the non-dimensional stresses σz/q0 for the FG layer depending on the load 

length. It can be still observed the results from three methods are in good agreement. For loads 

distributed over a smaller area, e.g., a/h=0.10, the normal stresses are decreased rapidly when z→−h. 
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Fig. 9 Non-dimensional normal stress (σz/q0) distribution in the FG layer through the thickness for 

different load lengths (μU/μL=4.00) 

 

 

Fig. 10 Non-dimensional normal and shear stress distributions at the layer – half-space interface 

along the radial direction: (1) μU/μL=0.25; (2) μU/μL=4.00 (a/h=0.01) 

 

 

Figs 10 and 11 show the non-dimensional normal and shear stresses at the layer – half-space 

interface along the radial direction with different μU/μL values. As expected, the normal and shear 

stresses both approaches to zero when r/h→±∞. Here, we can still observe that the results for three 

methods considered show excellent agreement. In addition, it can be seen from these figures when  
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Fig. 11 Non-dimensional normal and shear stress at the layer – half-space interface along the radial 

direction: (1) μU/μL=0.25; (2) μU/μL=4.00 (a/h=1.00) 

 

 

μU/μL increases, both shear and normal stresses decrease since upper part of the layer becomes stiffer 

compared to the lower part. 

 

 

5. Conclusions 
 

Elasto-static problem of a FG layer resting on elastic homogenous substrate under axisymmetric 

loading is studied by the stiffness matrix method. The FG layer is approximated into N-layer medium 

in which each layer is assumed to be homogeneous and isotropic with a different shear modulus. 

Results obtained are compared to those of the exact elasticity and the FE solutions. Numerical results 

for displacements and stresses are in excellent agreement. Although we used N homogeneous 

sublayer with different elastic moduli to represent the FG layer, it can be concluded that the stiffness 

matrix method gave satisfactory results, thus, the method can be safely applied to the problems of 

elastic media including FGMs. 
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Appendix A 
 

The stiffness matrix of an elastic layer is given by 

11 12 13 14

11 12 21 22 23 24

21 22 31 32 33 34

41 42 43 44
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Appendix B 
 

The stiffness matrix for a half space is given by 
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