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Abstract.  Within the scope of the plane-strain state, by utilizing the three-dimensional linearized theory of 

elastic waves in initially stressed piezoelectric and elastic materials, Lamb wave propagation and the 

influence of the initial stresses on this propagation in a sandwich plate with pre-stressed piezoelectric face 

and pre-stressed metal elastic core layers are investigated. Dispersion equations are derived for the 

extensional and flexural Lamb waves and, as a result of numerical solution to these equations, the 

corresponding dispersion curves for the first (fundamental) and second modes are constructed. Concrete 

numerical results are obtained for the cases where the face layers’ materials are PZT-2 or PZT-6B, but the 

material of the middle layer is Steel (St) or Aluminum (Al). Sandwich plates PZT-2/St/PZT-2, PZT-

2/Al/PZT-2, PZT-6B/St/PZT-6B and PZT-6B/Al/PZT-6B are examined and the influence of the problem 

parameters such as piezoelectric and dielectric constants, layer thickness ratios and third order elastic 

constants of the St and Al on the effects of the initial stresses on the wave propagation velocity is studied. 
 

Keywords:  extensional and flexural Lamb waves; initial stresses; wave dispersion; piezoelectric material; 

sandwich plate; third order elastic constants 

 
 
1. Introduction 
 

The study of coupling electro-mechanical problems related to the dynamics of structures 

containing piezoelectric and elastic layers has great significance not only in the theoretical sense, 

but also in the application sense. The reasons for this are the many applications of these types of 

structures in almost all branches of modern industry such as aerospace, marine, mechanical 

engineering, acoustoelectric devices etc. Among these dynamic problems, a special place is 

occupied by problems regarding the wave propagation, especially near-surface and Lamb wave 

propagation, of which, out of the aforementioned structures are sandwich plates which are widely 

used in many technical applications. This is because Lamb waves in the sandwich or other type of 
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layered structural elements made of piezoelectric and elastic materials can be used to obtain 

reliable information on the carrying work capacity of the elements of constructions (see Ng 2015, 

Wang et al. 2015 and others). For instance, Lamb waves can propagate long distances between 

two top and bottom surfaces in thin-wall structures, and with the ability of carrying information 

about the material, it has great importance for non-destructive testing and structural health 

monitoring in plate-like structures.  

It is evident that under the foregoing applications, it is necessary to have sufficient information 

and knowledge about the influence of the piezoelectric layers mounted on the surface of the tested 

structural elements on the wave propagation (or dispersion) in this element. It is also evident that 

this type of information can be obtained by theoretical investigations carried out on the wave 

propagation in the system consisting of a piezoelectric covering layer + elastic half-plane (for the 

near surface waves) and in the sandwich plate consisting of the piezoelectric face and elastic core 

layers (for the Lamb waves). Moreover, the study of acoustoelastic waves in the layered systems 

with piezoelectric layers is required by the current importance, from the point of view of both 

fundamental research and applications, in various acoustoelastic devices. 

Thus, according of the foregoing discussions, we can conclude that the subject of the present 

paper which relates to the study of Lamb waves in a sandwich plate consisting of piezoelectric 

face and elastic metal core layers with static initial stresses is very important not only in the 

theoretical sense, but also in the application sense. It should be noted that the initial stresses are 

characteristic reference properties of the layered structures. These stresses can be caused by the 

compounding procedure of these structures. They can also appear as a result of environmental 

conditions (for instance, temperature). Moreover, static stresses caused by exploitational forces 

can also be taken as the initial stresses with respect to those caused with additional small dynamic 

perturbations. Consequently, there exist a lot of reasons for the appearance of the initial stresses, 

and study as to how these stresses act on the wave propagation velocities also has importance. For 

estimation of the significance of the investigation carried out in the present paper, we consider a 

brief review of related works. We begin with a paper by Loja et al. (2013) in which the static and 

free vibration behavior of functionally graded sandwich plates with piezoelectric outer layers was 

examined. Under this examination, the corresponding third order refined plate theory is developed 

and it is established that the model developed is quite adequate to describe the static behavior of 

the piezoelectric layered structures.  

Bassiouny (2012) studied the one-dimensional dynamic problem related to the coupled termo 

piezoelectricity for the sandwich structure with piezoelectric layers. The generalized termo-

piezoelectric-elasticity relations are used and it is assumed that all sought values depend only on 

the coordinate directed along the thickness of the plate. For solution to the corresponding 

mathematical problems, the Laplace transformation with respect to time is employed. It is 

established that using the generalized termo-piezoelectric-elasticity relations, the heat waves, as in 

generalized termo-elasticity, propagate with finite speed. 

Azrar et al. (2008) studied nonlinear vibration of the sandwich beam with piezoelectric face 

layers and with initial imperfection. The beam is subjected to axial displacement and active 

voltage which is generated by the top and the bottom piezoelectric layers. Obtained results take 

into consideration the piezoelectricity, the beam initial imperfection and the axial load effects and 

can be easily used in order to predict the nonlinear static and dynamic behaviours of sandwich 

beams with layer actuators. The study is made within the scope of the Bernoulli-Euler beam theory 

and von-Karmen type non-linearity for beams with initial imperfection. 

In a paper by Jin et al. (2002), this type of near-surface wave dispersion is examined for the 
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system of the piezoelectric covering layer made of PZT-4 and the half-plane made of Aluminum. 

The results obtained in the paper by Jin et al. (2002) is developed in a work by Akbarov et al. 

(2014) for other types of piezoelectric and half-plane materials. Moreover, in the work by Akbarov 

et al. (2014) the influence of the initial stresses in the constituents on the near-surface dispersion is 

studied. 

Pang et al. (2008) studied Rayleigh type surface waves for the system consisting of the 

covering layer made of PZT-4 and piezomagnetic half-space. It should be noted that the results 

obtained in the works by Pang et al. (2008) and Akbarov et al. (2014), which relate to the case 

where the covering layer material is PZT-4, agree with each other in the qualitative sense.  

Note that in all the investigations reviewed above (except the work by Akbarov et al. 2014), it 

is assumed that there are no initial stresses in the constituents of the layered systems with 

piezoelectric constituents. However, up to now, a certain number of investigations have been made 

related to the influence of the initial stresses on the wave propagation in the layered systems, 

containing elastic constituents only. For instance, a paper by Gupta et al. (2012) deals with the 

study of torsional surface waves in the system consisting of homogeneous covering layer with 

finite thickness and an initially stressed heterogeneous half-space. Equations of motion of the layer 

are written within the scope of the classical linear theory of elastic waves, however, equations of 

motion of the pre-stressed inhomogeneous half plane are written within the scope of Biot’s (1965) 

incremental deformation theory. Numerical results on the influence of the initial stresses in the 

half-space on the dispersion curves are presented and discussed. Moreover, in the papers by 

Akbarov et al. (2008, 2011), Lamb wave dispersion in the sandwich plate made of highly-elastic 

compressible materials is investigated and it is assumed that the layers of the plate have initial 

finite strains. The problem is studied by utilizing the first version of the initial deformation theory 

of the three-dimensional linearized theory of elastic waves in initially stressed bodies (Guz 2004). 

The results obtained in the papers by Akbarov et al. (2008, 2011, 2014) were also detailed in a 

monograph by Akbarov (2015). 

Thus, it follows from the foregoing review that up to now there have been no investigations 

related to the study of Lamb wave propagation in the sandwich plate with piezoelectric face and 

elastic core layers. Therefore in the present paper the first attempt is made in this field and Lamb 

wave propagation (dispersion) in the sandwich plate with initial stresses is investigated utilizing 

the three-dimensional linearized theory of elastic waves in electro-elastic bodies with initial 

stresses. Concrete numerical results, i.e., dispersion curves are presented for the case where the 

face layers’ materials are PZT-2 and PZT-6B, and the material of the core layer is Steel (St) or 

Aluminum (Al). Mechanical relations for the materials Al and St are given through the Murnaghan 

potential to take into consideration the effect of the third order elastic constants of these materials 

on the behavior of the Lamb wave propagation. Consequently, numerical investigations are 

examined for the PZT-2/St/PZT-2, PZT-2/Al/PZT-2, PZT-6B/St/PZT-6B and PZT-6B/Al/PZT-6B 

sandwich plates and the influence of the problem parameters such as piezoelectric and dielectric 

constants, layer thickness ratios and third order elastic constants of the St and Al on the effects of 

the initial stresses on the wave propagation velocity is studied. 

 
 
2. Formulation of the problem 
 

Consider the Lamb wave propagation in a sandwich plate consisting of an initially stressed 

core-middle metal elastic layer with thickness 2Hcore and of two initially stressed piezoelectric face  
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Fig. 1 The geometry of the sandwich plate consisting of the pre-stressed piezoelectric face layers and 

pre-stressed middle layer 

 

 

layers each of which has a thickness HPZT and each of which is made from the same material. With 

the mid-plane of the core layer of the plate, we associate the Cartesian coordinate system Ox1x2x3 

(Fig. 1) and the position of the points of the constituents we determine by the Lagrange 

coordinates in this system. Assume that the layers of the plate have infinite length in the directions 

of the Ox1 and Ox3 axes (the coordinate axis Ox3 is perpendicular to the figure plane and therefore 

is not shown in Fig. 1). Below, the values relating to the upper and lower face layers will be 

denoted by the indices (1) and (3), respectively, while the values relating to the core layer will be 

denoted with the upper index (2). Moreover, the values relating to the initial (residual) stresses will 

be denoted by the upper indices ( ),0m where m=1,2 and 3. 

We employ the second version of the small initial deformation version of the three-dimensional 

linearized theory of elastic waves in initially stressed elastic and piezoelectric bodies 

(TDLTEPWISB) (see the references Guz (1999, 2004), Yang (2005) in which this version is called 

the linearized wave propagation theory in initially stressed piezoelectric materials) for 

investigation of the dispersion of Lamb waves in the foregoing initially stressed sandwich plate. 

According to this version of the TDLTEWISB, the initial stresses in the bodies under 

consideration are determined within the scope of the classical linear theory of electro-elasticity. 

Taking the foregoing assumption into account, we consider the case where the initial stresses in 

the layers of the plate are homogeneous and determined as follows.  

( ),0 ( ),0 ( ),0
11 12 220 , 0

m m m
mconst      , 1,2,3m .                               (1) 

According to the electro-elasticity relations for the piezoelectric materials, which will be given 

below, in the initial state in the case where the piezoelectric material is polled along the direction  

of the Ox2 axis (Ox1 axis), the component ( )0
2
m

E  ( ( )0
1

m
E ) of the electric field vector and the 

component ( )0
2
m

D  ( ( )0
1

m
D ) of the electric displacement vector differ from zero and are determined  

through the initial stresses in (1) and the elastic, piezoelectric and dielectric constants of the 

corresponding material. However, the components of the electric field vectors and electric 

displacement vectors do not enter into the considered version of the linearized equations of motion 

of electro-elasticity for the piezoelectric materials. Therefore we do not give here the expression 

for calculation of the values of these quantities. Note that these expressions can be established by 

the reader with the use of the electro-elasticity relations which will be given below. 

We note that the initial stresses determined by the expressions in (1) can be caused by the 

uniformly distributed static normal forces acting simultaneously at the ends of the sandwich plate, 
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i.e., at x1→∞ and x1→+∞. This is because, according to the Saint-Venant principle, the 

inhomogeneity of the stresses at the near vicinity of the ends |x1|→∞ disappears and the stresses 

become homogeneous as formulated in (1). Consequently, the appearance of the homogeneous 

initial stresses in (1) is sufficiently real and can be applied at a distance, with the order of the plate 

thickness, from the ends at which the aforementioned normal forces act. However, in this case the 

stresses related to the face and core layers are connected with each other through a certain 

expression which can be easily determined (see, for instance, Akbarov 2015). Moreover, the initial 

stresses in (1) can appear in the following manner: first each layer is statically loaded at their ends 

with normal forces with intensity (1),0
11  for the face layers, and with intensity (2),0

11  for the core 

layer and then these layers are connected with each other. Consequently, each of the foregoing 

cases related to the appearance of the initial stresses in (1) is real and both the formulation of the 

problem and method of solution of this problem are acceptable for each of the foregoing cases.  

Thus, within the scope of the foregoing assumption and notation we write the governing field 

equation and relations. According to Yang (2005), Guz (1999, 2004), Akbarov (2015) and other 

related references, the equations of the TDLTEWISEPB in the plane strain state in the Ox1x2 plane 

are 

( ) ( ) ( ) ( )2
( ),

2
( )11 12 1 1

2
1

11
2

0

2
1

m m m m
m mu u

x xx t

 


  
 





 



, 

( ) ( ) ( ) ( )2
( ),

2
( )12 22 2 2

2
1

11
2

0

2
1

m m m m
m mu u

x xx t

 


  
 





 



, 1,2,3m  

( ) ( )
1 2

1 2

0

n n
D D

x x

 
 

 
, 1,3n                                                    (2) 

where ( )m
ij , ( )m

iu  and ( )m  are the components of the stress tensor, components of the 

displacement vector and mass density of the m-th material, respectively. ( )n
iD  in the last equation  

in (2) denotes the electrical displacement of the n-th material. As noted above, we will assume 

below that the material of the face layers is piezoelectric, but the material of the middle layer is 

non-linear purely elastic. Consequently, only the first two equations in (2) describe the motion of 

the core layer of the plate. 

Thus, assuming that the piezoelectric material of both the top and bottom face layers is polled 

along the direction of the Ox2 axis (with thickness poling), we can write the following constitutive 

equations for the n-th piezoelectric material in the plane strain state. 

( ) ( ) ( ) ( )
11 11 13 3

( ) ( ) ( )
1 2

1 2
1

2

n
n

n
n

n n
n

u u

x x
c c e

x


  





 
 , 

( ) ( ) ( ) ( )
22 13 33 3

( ) ( ) ( )
1 2

1 2
3

2

n
n

n
n

n n
n

u u

x x
c c e

x


  





 
  , 

( ) ( )
( ) ( )

( )
( )1 2

12 44
1

15
2 1

n n
n

n
n n

x

u u
c e

x x




  
   



 





, 

( ) ( )
( ) ( ) ( )1 2
1 15 11

2 1

( )

1

nn n
n n nu u

D e
x x x


  

   
  




 

 , 

( ) ( )
( ) ( ) ( ) ( )1 2
2 31 33 33

1 2

( )

2

n n
n n n

n
nu u

D e e
x xx


 

  





, 1,3n                                   (3) 
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where 
( )n
ijc  are the elasticity constants, 

( )n
ije  are the piezoelectric constants, 

( )n
ij  are the dielectric 

constants and 
( )n
iD  and ( )n  are the components of the electric displacement vector and the  

electric potential, respectively. 

The following linearized elasticity relations are obtained for the middle layer material. 

(2) (2)
11 1

(2) (2) (2)
11 1 12 22A A    , 

(2) (2)
12 1

(2) (2) (2)
22 1 22 22A A    , 

(2)
12

(2) (2
12

)
12 2  

                
(4) 

where 

(2)(2)
(2) 1

2

ji
ij

j i

uu

x x


 
  
  
 

.                                                       (5)  

Linearized relations (4) are obtained and discussed in Appendix A. Moreover, in Appendix A 

the expressions for the calculation of the coefficients )
11
(2

A , )
12
(2

A , )
22
(2

A , and )
12
(2 of the relation (4) 

are given through the relation (A5). 

Consider the formulation of the contact and boundary conditions. Assume that on the 

interphase planes x2=h1 and x2=−h1, between the piezoelectric face layers and core layer, complete 

contact conditions for the mechanical displacements and forces are satisfied 

2 1 2 1

(1) (2)
1 1

x h x h
u u

 
  , 

2 1 2 1

(1) (2)
2 2

x h x h
u u

 
 , 

2 1 2 1

(2) (3)
1 1

x h x h
u u

 
  , 

2 1 2 1

(2) (3)
2 2

x h x h
u u

 
 , 

2 1 2 1

(1) (2)
12 12

x h x h
 

 
  , 

2 1 2 1

(1) (2)
22 22

x h x h
 

 
 , 

2 1 2 1

(2) (3)
12 12

x h x h
 

 
  , 

2 1 2 1

(2) (3)
22 22

x h x h
 

 
 ,                           (6) 

where h1=Hcore. 

Moreover, on the interface plane the boundary condition 

2 1

(1) 0
x h




 , 
2 1

(3) 0
x h




 ,                                                (7) 

for the electric potential or the boundary condition 

2 1

(1)
2 0

x h
D


 , 

2 1

(3)
2 0

x h
D


 ,                                               (8) 

for the electric displacement can be given. On the free face planes of the face layers we write the 

following conditions 

 
2 2

(1)
12 0

x h



  , 

2 2

(1)
22 0

x h



 , 

2 2

(3)
12 0

x h



  , 

2 2

(3)
22 0

x h



 ,                    (9) 

for the mechanical stresses and the boundary condition 

2 2

(1) 0
x h




 , 
2 2

(3) 0
x h




 ,                                           (10) 
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for the electric potential or the boundary condition  

2 2

(1)
2 0

x h
D


 , 

2 2

(3)
2 0

x h
D


 ,                                            (11) 

for the electric displacement, where h2=Hcore+HPZT. Note that the conditions (7) and (10) are called 

“electrically shorted” or “electroded”, but the conditions (8) and (11) are called “electrically open” 

or “unelectroded”. 

This completes the consideration of the governing field equations and relations, and 

formulation of the problem. 

 
 
3. Method of solution 
 

First we consider the solution procedure of the equations related to the motion of the 

piezoelectric face layers. As the upper and lower face layers’ materials are the same, we therefore, 

consider the solution procedure only for the upper face piezoelectric layer. Thus, substituting the 

relations in Eq. (3) into Eq. (2) we obtain the electromechanical-coupled system of equations of 

motion (equations of electro-elasticity) in terms of the mechanical displacements and electric 

potential 

     
(1)2(1) (1) (1)2 2 22 (1)

(1) (1), (1) (1) (1) (1) (1) (1)1 1 1
11 44 13 44 15 312 2 2

1 2 1 2

0

1
11

2

uu u u
c c c c e e

x x x x x x t




  
    

 
 

    
, 

   
(1) (1) (1) (1)2 2 2 22 (1) 2 (1)

(1) (1) (1) (1), (1) (1) (1) (1)1 2 2 2
13 44 44 33 15 332 2 2 2 2

1 2 1

0

2 1 2
11

u u u u
c c c c e e

x x x x x x t

 


    
     

   


  
 

 
(1) (1) (1)2 2 2 2 (1) 2 (1)

(1) (1) (1) (1) (1) (1)1 2 2
15 31 15 33 11 332 2 2 2

1 2 1 2 1 2

0
u u u

e e e e
x x x x x x

 
 

    
     

     
.             (12) 

As the harmonic wave propagation in the direction of the Ox1 1Ox  axis is considered, we can 

therefore represent the particular solutions for the displacements and electric potential for the face 

layer as follows 

 2(1)
11 sin( )

bkx
u Ae kx t  ,  2(1)

12 cos
bkx

u Be kx t  , 2(1)
1cos( )

bkx
Ce kx t   .         (13) 

where A, B and C are unknown constants, k is the wave number, ω  is the angular frequency and b 

is the parameter to be determined.  

Substituting the equations (13) into the equations (12) we obtain from the following equations 

for the unknown constants A, B and C in (13).  

   
2

(1) (1), (1) (1) (1) (1) (1)2 (1)
11 44 13 44 15 3

0
11 21 0c c b A c c bB e e bC

k





 
    

 
 

    , 

   0
11

2
(1) (1) (1) (1), (1) (1) (1)2 (1) 2
13 44 44 33 15 332

0c c bA c c b B e e b C
k


  

 
  

 
 

   , 
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      (1) (1) (1) (1) (1) (1)2 2
15 31 15 33 33 11 0e e bA e e b B b C       . (14) 

In order to get a non-trivial solution for A, B and C, the determinant of the coefficient matrix of 

Eq. (14) must be zero. Consequently, equating to zero the aforementioned determinant we obtain 

the equation for determination of the parameter b. For a given value of c=ω/k, there are six roots 

for b; each root represents one component of the wave modes propagating in the piezoelectric face 

layer and yields a partial solution to the piezoelectric face layer. As a result of numerical analyses 

of the equation with respect to b it is established that in the case where  (1) (1)
2 1c c c   the equation 

has two pure imaginary and four real roots 

1 1b ip , 2 1b ip  , 3 2b p , 4 2b p  , 5 3b p , 6 3b p  ,                      (15) 

in the case where 
(1)
2c c  this equation has six real roots 

1 1b p , 2 1b p  , 3 2b p , 4 2b p  , 5 3b p , 6 3b p  ,                   (16) 

and in the case where 
(1)
1c c  this equation has four pure imaginary and two real roots 

1 1b ip , 2 1b ip  , 3 2b ip , 4 2b ip  , 5 3b p , 6 3b p  ,                 (17) 

where 

(1),0
(1) (1) 11
2 2 (1)

44

c c
c


 , 

(1)
(1) 44
2 (1)

c
c


 , 

(1) (1) (1) (1)
44 44 15 11c c e   , 

(1)
(1) 11
1 (1)

c
c


 , 1i   , 1 0p  , 2 0p  , 3 0p  ,                                (18) 

 where the values of p1, p2 and p3 are determined through the numerical solution to the 

aforementioned equation. 

Thus, applying known standard techniques for solution to the system of the ordinary 

differential equations and doing required mathematical manipulations, we obtain the following 

expressions for the sought values which appear in the contact (6) and boundary (7)-(11) 

conditions.  

6
(1)

1 21
1

( )i i
i

u A x


  , 
6

(1)
2 22

1

( )i i
i

u A x


 , 
6

(1)
3 2

1

( )i i
i

A x 


 , 

6
(1)

12 212
1

( )i i
i

A x 


 , 
6

(1)
22 222

1

( )i i
i

A x 


 , 
6

(1)
4 2

1

( )i i
i

D A x


 .                   (19) 

Note that the expressions of the functions φ1i(x2), φ2i(x2), φ3i(x2), φ4i(x2), φ12i(x2), and φ22i(x2) for  

each of 
(1) (1)
2 1c c c   , 

(1)
2c c , and 

(1)
1c c  cases are given in Appendix B through the Eqs. (B1), 

(B2), and (B3), respectively. 

Thus, we determine completely the expressions of the sought values related to the piezoelectric 

face layer and these expressions contain the unknown constants A1, A2, ..., A6 which must be 
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determined from the foregoing contact and boundary conditions. 

As we assume that the geometrical and electro-mechanical properties of the face layers are the 

same, then by replacing the upper index (1) only in the stresses, displacements, electric 

displacements and electric potential with the upper index (3) and replacing the unknown constants 

A1, A2, ..., A6 with unknown constants B1, B2, ..., B6, respectively we obtain the corresponding 

expressions for the sought values of the lower face piezoelectric layer. 

Now we consider the determination of the sought values related to the middle layer.  

Substituting 
(2)
ij  in (5) into the expressions in (4) and substituting the expressions (4) into the  

equation of motion of the metallic middle layer (i.e., into the first and second equations in (2)) we 

obtain the following equations of motion in terms of the displacements for the middle layer. 

   
(2) (2) (1) (2)2 2 2 2

(2) (2), (2) (2) (2) (2)1 1 2 1
11 12 12 122 2 2

1

0
1

22
1

1

u u u u
A A

x xx x t
  

   
   

 


  
, 

   
(2) (2) (2) (2)2 2 2 2

(2) (2) (2) (2) (2) (2)1 2 2 2
12 12 12 222 2

0
11 2

1 2 1 2

u u u u
A A

x x x x t
  

   
   

    
.             (20) 

According to the expressions in (13), we represent the displacements 
(2)
1u  and 

(2)
2u  as follows 

(2) (2)
2 11 1 ( )sin( )u x kx t   , 

(2) (2)
2 12 2

( )cos( )u x kx t   .                     (21) 

Substituting (21) into the Eq. (20) and doing some mathematical manipulations by employing 

the known solution procedure for a system of ordinary differential equations, we obtain the 

following expressions for 
(2)

21 ( )x  and 
(2)

22 ( )x  

(2)
1 1 1 2 2 2 1 2 3 3 2 2 4 4 2 21 sinh cosh sinh coshZ G R kx Z G R kx Z G R kx Z G R kx      , 

(2)
1 1 2 2 1 2 3 2 2 4 2 22 cosh sinh cosh sinhZ R kx Z R kx Z R kx Z R kx     ,                (22) 

where 

2
(2) 2 2

21 2 2

B B
R C

 
    

 
, 

2
(2) 2 2

22 2 2

B B
R C

 
    

 
, 

 
2

22 22
2

21 1

b c
B

b





, 22 21

2
21 1

b b
C

b



, 1 22

1 2
22 22 1

R b
G G

c c R
    , 2 22

3 4
22 22 2

R b
G G

c c R
    .        (23) 

In (23) the notation 

(2) (2)0
21 11 11(2)

12

1
( )b A 


   , 

(2) (2)
21 12 12(2)

12

1
( )c A 


  , 

(2) (2)0
22 12 11(2)

22

1
( )b

A
    ,

(2) (2)
22 12 12(2)

22

1
( )c A

A
 

                                

(24) 
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is used.  

Finally, we obtain the following expressions for the displacements and stresses which relate to 

the middle layer and enter the contact and boundary conditions. 

(2)
1 1 1 2 2 2 1 21 ( sinh coshu Z G R kx Z G R kx    

3 3 2 2 4 4 2 2 1sinh cosh )sin( )Z G R kx Z G R kx kx t   

(2)
1 1 2 2 1 2 3 2 2 4 2 2 12 ( cosh sinh cosh sinh )cos( )u Z R kx Z R kx Z R kx Z R kx kx t     , 

(2) (2) (2)
1 1 1 1 2 2 2 1 1 212 12 12( ( 1)cosh ( 1)sinhZ G R R kx Z G R R kx       

(2) (2)
3 3 2 2 2 4 4 2 2 2 112 12( 1)cosh ( 1)sinh )sin( ),+Z G R R kx Z G R R kx kx t       

(2) (2) (2) (2) (2)
1 1 1 1 2 2 2 1 1 222 12 22 12 22( ( )sinh ( )coshZ G A A R R kx Z G A A R R kx      

 
(2) (2) (2) (2)

3 3 2 2 2 4 4 2 2 2 112 22 12 22( )sinh ( )cosh )cos( ).Z G A A R R kx Z G A A R R kx kx t    
       

(25) 

It should be noted that the expressions (22) and (25) are obtained for the case where (2)
1ImR 

(2)
2Im 0R  . For other related cases, the corresponding equations can be obtained by employing the  

well-known solution technique.  

This completes consideration of the solution procedures of the equations of motion for the case 

under consideration.  

It is known that, as usual, using the symmetry and asymmetry of the displacements of the 

sandwich plate, the Lamb waves within are divided into symmetric (extensional) and asymmetric 

(flexural) ones. In other words, for this division, the condition 

(2) (2)
1 2 1 21 1( , ) ( , )u ux x x x   , 

(2) (2)
1 2 1 22 2( , ) ( , )x x xu u x   , 

(1) (3)
1 2 1 21 1( , ) ( , )u ux x x x   , 

(1) (3)
1 2 1 22 2( , ) ( , )x x xu u x   , 

(1) (3)
1 2 1 2( , ) ( , )x x x x    .                                                  (26) 

is used for determination of the extensional (symmetric) Lamb waves and the condition  

(2) (2)
1 2 1 21 1( , ) ( , )x x xu u x    , 

(2) (2)
1 2 1 22 2( , ) ( , )u ux x x x  , 

(1) (3)
1 2 1 21 1( , ) ( , )x x xu u x    , 

(1) (3)
1 2 1 22 2( , ) ( , )u ux x x x  , 

 (1) (3)
1 2 1 2( , ) ( , )x x x x  

                                                    
(27) 

is used for determination of the flexural (anti-symmetric) Lamb waves. For acceptability of the 

conditions (26) and (27), for the subject under consideration, the contact and boundary conditions 

must be symmetric with respect to the plane x2=0. According to the relations (6) and (9), the 

contact and boundary conditions with respect to mechanical forces and displacements are already 

symmetric with respect to the plane x2=0. Consequently, for satisfaction of the relations in (26) or 

(27), it is necessary to assume the symmetry or anti-symmetry of the boundary conditions with 

respect to the electric potential and electric displacements. In other words, for satisfaction of the 
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relations (26) and (27) it is also necessary to assume that the same boundary conditions are 

satisfied on the upper and lower interface planes and the same boundary conditions are satisfied on 

the free face planes of the lower and upper piezoelectric layers with respect to the electric potential 

or with respect to the electric displacements. 

Thus, taking the condition (26) into account and substituting the expressions (19) and (25) into 

the contact (6) and boundary conditions (7)-(11), we obtain the system of algebraic equations for  

the unknown constants (1)
1A , 

(1)
2A , …, 

(1)
6A , Z2 and Z4. The explicit expressions of these equations  

are given in Appendix C through the expressions (C1). 

For existence of the non-trivial solution of the system of algebraic equations in (C1) the 

determinant of the coefficients’ matrix of this equation must be equal to zero, i.e. 

det ( , ) 0nm c kh  , , 1,2,...,8n m .                                           (28) 

This equation is the dispersion equation of the extensional waves propagated in the sandwich 

plate under consideration. The expressions for the coefficients αnm (c,kh) in (28) can be easily 

determined from the Eq. (C1) in Appendix C and therefore are not given here. 

Moreover, taking the conditions in (27) into consideration and doing similar mathematical 

calculations we obtain the following equations for the flexural Lamb waves, i.e., the equations for 

the unknowns A1, A2, …, A6, Z1 and Z3. The explicit expression of these equations are given in 

Appendix C through the expressions (C2) and last six equations in (C1). 

Thus, according to the aforementioned procedure, we obtain the dispersion equation  

det ( , ) 0nm c kh  , , 1,2,...,8n m .                                            (29) 

The expressions for the components βnm can be easily determined from the equations in (C2) 

and from the last six equations in (C1). 

This completes consideration of the solution method and obtaining the dispersion equations.  

 
 

4. Numerical results and discussions 
 

We will consider the results related to the dependence between (2)
2c c  and kH (where 

(2) (2) (2)
2c   , 2 2core PZTH H H  ). These results are obtained by numerical solution of the 

dispersion Eq. (28) (for the extensional Lamb waves) and (29) (for the flexural Lamb waves).  

Note that the numerical solution to the dispersion Eqs. (28) and (29) is carried out by 

employing the well-known “bi-section” algorithm and corresponding PC programs in MATLAB. 

Analyses are made for the materials, the mechanical, piezoelectrical and dielectrical properties of 

which are given in Table 1 and the material of the middle layer is selected as Aluminum (Al) or 

Steel (St), but the material of the face layer is selected as PZT-2 or PZT-6B. The values of the 

mechanical constants for the Al and St are taken from the Jin et al. (2002), Guz and Makhort 

(2000) references, respectively, but the values of the mechanical, pizoelectrical and dielectrical 

constants related to PZT-2 and PZT-6B are taken from the Pang et al. (2008) and Yang (2005) 

references, respectively. 

Before beginning the analysis of the dispersion curves we note the following statement. 

Numerical results show that in the cases where the face planes of the piezoelectric layers are 

unelectroded (i.e., satisfying the conditions (8) and (11)) the influence of the piezoelectricity of the  
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Table 1 The values of the mechanical, piezoelectrical and dielectrical properties of the selected materials 

Designation 
Materials 

Aluminum Steel PZT-2 PZT-6B 

3 3( 10 / )kg m  2.70 7.795 7.60 7.55 

10 2
11( 10 / )c N m  10.20 24.76 13.50 16.80 

10 2
33( 10 / )c N m  10.20 24.76 11.30 16.30 

10 2
44( 10 / )c N m  2.60 7.75 2.22 3.55 

10 2
13( 10 / )c N m  5.0 9.26 6.81 8.42 

2
15( / )e C m  _ _ 9.8 4.60 

2
33( / )e C m  _ _ 9 7.10 

2
31( / )e C m  _ _ -1.9 -0.90 

9
11( 10 / )F m  _ _ 8.7615 3.60 

9
33( 10 / )F m  _ _ 3.9825 3.42 

5( 10 )a MPa  3.08 -2.35 _ _ 

5( 10 )b MPa  -0.49 -2.75 _ _ 

5( 10 )c MPa  -2.92 -4.90 _ _ 

4( 10 )MPa  5.0 9.26 _ _ 

4( 10 )MPa  2.60 7.75 _ _ 

 

 

Fig. 2 Dispersion curves of the extensional and flexural Lamb waves in the first two modes for the 

PZT-2/St/PZT-2 system in the case where HPZT/Hcore=4. Dashed lines relate to the case where the 

piezoelectric and dielectric constants of the face layer material are equated to zero 
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face layer materials on the dispersion curves is insignificant. Therefore, we will consider only the 

results related to the cases where the face planes of the piezoelectric layers are electroded (i.e., the 

cases where the conditions (7) and (10) are satisfied) under which the aforementioned influence 

becomes more considerable. 

In all the figures below, the graphs shown by solid lines relate to the cases where the values of 

the piezoelectric and dielectric constants of the face layers’ materials are taken as given in Table 1. 

However, the graphs shown by dashed lines relate to the cases where the values of the 

piezoelectric and dielectric constants of the piezoelectric face layers’ materials are equated to zero. 

Consequently, according to the difference between the dashed and solid lines in the figures, which 

will be given below, certain conclusions can be made as to the effect of the piezoelectricity of the 

piezoelectric face layers’ materials on the influence of the initial stresses on the extensional and 

flexural Lamb wave propagation velocities. 

Thus, we begin consideration and analysis of the numerical results. First, we consider the 

dispersion curves related to the case where the initial stresses in the constituents of the system are  

absent, i.e., the case where (1),0 (2),0 (3),0
11 11 11 0     . These dispersion curves of the extensional  

and flexural Lamb waves in the first and second modes are given in Figs. 2, 3, 4 and 5 for the 

PZT-2/St/PZT-2, PZT-2/Al/PZT-2, PZT-6B/St/PZT-6B and PZT-6B/Al/PZT-6B sandwich plates, 

respectively in the case where HPZT/Hcore=4. In these figures, the numbers 1 and 2 indicate the 

dispersion curves of the extensional Lamb waves in the first and second modes, and the numbers 3 

and 4 indicate the dispersion curves of the flexural Lamb waves also in the first and second modes, 

respectively. 

 

 

 

Fig. 3 Dispersion curves of the extensional and flexural Lamb waves in the first two modes for the 

PZT-2/Al/PZT-2 system in the case where HPZT/Hcore=4. Dashed lines relate to the case where the 

piezoelectric and dielectric constants of the face layer material are equated to zero 
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Fig. 4 Dispersion curves of the extensional and flexural Lamb waves in the first two modes for the 

PZT-6B/St/PZT-6B system in the case where HPZT/Hcore=4. Dashed lines relate to the case where the 

piezoelectric and dielectric constants of the face layer material are equated to zero 

 

 

Fig. 5 Dispersion curves of the extensional and flexural Lamb waves in the first two modes for the 

PZT-6B/Al/PZT-6B system in the case where HPZT/Hcore=4. Dashed lines relate to the case where the 

piezoelectric and dielectric constants of the face layer material are equated to zero 
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It follows from Figs. 2-5 that the piezoelectricity of the face layers’ material causes the 

extensional and flexural Lamb wave propagation velocity in each mode and for all considered 

sandwich plate materials, to increase. The magnitude of the increase in the wave propagation 

velocity caused by the effect of the piezoelectricity of the face layers’ materials grows with kH for 

both modes and this increase is explained by the “stiffening” effects of the piezoelectric materials. 

Moreover, the results given in Figs. 2-5 show that the dispersion curves given in these figures are 

similar (in the qualitative sense) with the corresponding ones obtained in the papers by Akbarov et 

al. (2008, 2011) and detailed in the monograph by Akbarov (2015) for the sandwich plates with 

layers made of purely elastic materials. Consequently, this similarity guarantees the reliability of 

the calculation algorithm and PC programs used. 

As noted above, the main objective of the numerical investigations in the present paper is the 

study and analysis of the influence of the initial stresses on the wave propagation velocity. Thus, 

we begin this analysis and in order to estimate the magnitude of the influence, we introduce the 

parameters 

(1),0
(1) 11

(1)
44c


   , 

(2),0
(2) 11

(2)





 , 

(3),0
(3) 11

(1)
44c


  , 

(2)3
210 ( ) /c c c    ,                   (30) 

where c is the wave propagation velocity in the case where the initial stresses are absent in the 

constituents of the system under consideration and c  is the wave propagation velocity in the case 

where the initial stresses exist in both the face layers or in the core layer of the sandwich plate.  

Below we will consider the graphs of the dependence between the parameter η and kH 

constructed for various values of the parameters ψ
(1)

=ψ
(3)

 and ψ
(2)

, and for various sets of materials 

for the extensional and flexural Lamb waves in the first and second modes, and given in Figs. 6-

27. Moreover, in Figs. 6-27, the graphs grouped by letters a, b, c and d relate to the cases where 

HPZT/Hcore=0.5, HPZT/Hcore=1, HPZT/Hcore=2 and HPZT/Hcore=4, respectively. In the considered cases, 

it is assumed that the layers of the plate are stressed initially and are then connected with each 

other.  

Also, in the graphs grouped by the letters a, b and c, the range of change of the dimensionless 

wavenumber kH is (0,10]. However, in the graphs grouped by the letter d, in order to illustrate the 

high wavenumber asymptotic values of the parameter η, besides the range of change of kH, parts 

of the graphs in the near vicinity of kH=60 are also added. 

 

 

 

Fig. 6 The influence of the parameter ψ
(1)

=ψ
(3) 

(>0) on the extensional Lamb wave propagation velocity in 

the first mode for the PZT-2/St/PZT-2 system in the case where ψ
(2)

=0 and HPZT/Hcore=0.5 (a); 

HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 
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Fig. 7 The influence of the parameter ψ
(2) 

(>0) on the extensional Lamb wave propagation velocity in the 

first mode for the PZT-2/St/PZT-2 system in the case where ψ
(1)

=0, a
(2)

=b
(2)

=c
(2)

=0 and 

HPZT/Hcore=0.5 (a); HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

Fig. 8 The influence of the parameter ψ
(2) 

(>0) on the extensional Lamb wave propagation velocity in the 

first mode for the PZT-2/St/PZT-2 system in the case where ψ
(1)

=0, a
(2)

≠0, b
(2)

≠0, c
(2)

≠0 and 

HPZT/Hcore=0.5 (a); HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

Fig. 9 The influence of the parameter ψ
(2) 

(<0) on the extensional Lamb wave propagation velocity in the 

first mode for the PZT-2/St/PZT-2 system in the case where ψ
(1)

=0, a
(2)

=b
(2)

=c
(2)

=0 and HPZT/Hcore=0.5 (a); 

HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

First we consider the results related to the dependencies between η and kH, and obtained for the 

sandwich plate PZT-2/St/PZT-2. These results for the first mode of the extensional (flexural) 

waves are given in Figs. 6-10 (in Figs. 11-15). Under construction of the graphs given in Figs. 6 

and 11 it is assumed that ψ
(1) 

(=ψ
(3)

)>0 and ψ
(2)

=0. Moreover, under construction of the graphs 
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Fig. 10 The influence of the parameter ψ
(2) 

(<0) on the extensional Lamb wave propagation velocity in the 

first mode for the PZT-2/St/PZT-2 system in the case where ψ
(1)

=0, a
(2)

≠0, b
(2)

≠0, c
(2)

≠0 and 

HPZT/Hcore=0.5 (a); HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

Fig. 11 The influence of the parameter ψ
(1)

=ψ
(3)

(>0) on the flexural Lamb wave propagation velocity in 

the first mode for the PZT-2/St/PZT-2 system in the case where ψ
(2)

=0 and HPZT/Hcore=0.5 (a); 

HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

Fig. 12 The influence of the parameter ψ
(2) 

(>0) on the flexural Lamb wave propagation velocity in the 

first mode for the PZT-2/St/PZT-2 system in the case where ψ
(1)

=0, a
(2)

=b
(2)

=c
(2)

=0 and 

HPZT/Hcore=0.5 (a); HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

given in Figs. 7 and 12 (in Figs. 9 and 14) it is assumed that ψ
(1) 

(=ψ
(3)

)=0, ψ
(2)

>0 (ψ
(2)

<0) and 

a
(2)

=b
(2)

=c
(2)

=0, i.e., the influence of the third order elastic constants which enter into the relations 

in (9) of the core layer material on the considered dependencies is not taken into consideration. 

Note that the graphs illustrated in Figs. 8 and 13 (Figs. 10 and 15) are also obtained in the cases  
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Fig. 13 The influence of the parameter ψ
(2) 

(>0) on the flexural Lamb wave propagation velocity in the 

first mode for the PZT-2/St/PZT-2 system in the case where ψ
(1)

=0, a
(2)

≠0, b
(2)

≠0, c
(2)

≠0 and 

HPZT/Hcore=0.5 (a); HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

Fig. 14 The influence of the parameter ψ
(2) 

(<0) on the flexural Lamb wave propagation velocity in the 

first mode for the PZT-2/St/PZT-2 system in the case where ψ
(1)

=0, a
(2)

=b
(2)

=c
(2)

=0 and HPZT/Hcore=0.5 (a); 

HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 
Fig. 15 The influence of the parameter ψ

(2) 
(<0) on the flexural Lamb wave propagation velocity in the first 

mode for the PZT-2/St/PZT-2 system in the case where ψ
(1)

=0, a
(2)

≠0, b
(2)

≠0, c
(2)

≠0 and HPZT/Hcore=0.5 (a); 

HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

considered in Figs. 7 and 12 (Figs. 9 and 14), respectively, however, under construction of these 

graphs, the influence of the third order elastic constants on the investigated dependencies is taken 

into consideration, i.e., it is assumed that a
(2)

≠0, b
(2)

≠0, and c
(2)

≠0. 

Thus, it follows from Figs. 6 and 11 that pre-stretching of the piezoelectric face layers causes 
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an increase in the values of the extensional and flexural Lamb waves’ propagation velocity. The 

magnitude of this increase grows with HPZT/Hcore and with ψ
(1)

, i.e., with the piezoelectric face 

layers’ thickness and with the initial stretching of this layer. Moreover, it follows from these 

figures that as a result of the piezoelectricity of the face layers’ material the influence of the initial 

stresses, i.e., the influence of the parameter ψ
(1)

 on the wave propagation velocity decreases and 

the magnitude of this decrease grows with kH and approaches the high wavenumber limit value of 

η as kH→∞ (see Figs. 6(d) and 11(d)). The results also show that the wave propagation velocity 

(or the values of the parameter η) for the extensional Lamb waves increases monotonically with 

kH. However, dependence between the parameter η and kH obtained for the flexural Lamb waves 

is non-monotonic. At the same time, as observed from the graphs, the influence of the initial 

stretching of the face piezoelectric layers on the wave propagation velocity also depends 

significantly on the values of the dimensionless wavenumber kH. 

Now, we attempt to explain the foregoing results using the corresponding physico-mechanical 

considerations. This explanation is based on the fact that an increase (a decrease) in the stiffness of 

the elastic or PZT+elastic systems for the constant material density causes an increase (a decrease) 

in the values of the wave propagation velocity. In the foregoing results, it is considered that the 

face PZT layers of the sandwich plate under consideration are initially stretched. As a result of this 

initial stretching, the stiffness of the sandwich plate increases, which causes an increase in the 

Lamb wave propagation velocity. 

It is evident that the piezoelectricity of the face layers absorbs a certain part of the mechanical 

work done by the initial stresses, consequently, the piezoelectricity of the face layers causes a 

decrease in the stiffness grow of the sandwich plate, which appears as a result of the mentioned 

initial stretching. Namely with this, it can be explained that the influence of the initial stretching 

on the Lamb wave propagation velocity obtained in the case where the piezoelectricity of the face 

layers is ignored, is more considerable than that obtained in the case where the piezoelectricity of 

these layers is taken into consideration. 

Finally, we note that the explanation of the difference of the character of the dependencies 

between the parameter η and kH obtained for the extensional and flexural Lamb waves can be 

made with the difference of the modes of these waves. 

It should be noted that in the case where the constitutive relations of the constituents are linear, 

the explanation mechanism given above can be used to explain all the corresponding numerical 

results obtained in the present paper. However, in the case where the initial stretching (the initial 

compression) is applied to the constituents of the sandwich plate with the linearized constitutive 

relations obtained from the linearization of the corresponding non-linear constitutive relation, for 

instance from the linearization of the non-linear constitutive relations based on the Murnaghan 

potential, this initial stretching (initial compression) may cause a decrease (an increase) in the 

stiffness of the plate, which may cause a decrease (an increase) in the wave propagation velocity. 

This fact must be taken into consideration to understand the difference between the results, for 

instance, given in Figs. 7 and 8, i.e., to understand the influence of the third order elastic constants 

of the core layer material on the Lamb wave propagation velocity in the sandwich plate under 

consideration.  

We recall that the graphs illustrated in Figs. 7 and 12 (in Figs. 9 and 14) are constructed in the 

case where ψ
(2)

>0 (ψ
(2)

<0) under a
(2)

=b
(2)

=c
(2)

=0 and also recall that the graphs illustrated in Figs. 7 

and 9 (in Figs. 12 and 14) relate to the extensional (flexural) waves. Thus, it follows from the 

results that the initial stretching (compression) of the core metal layer of the plate in the case 

where a
(2)

=b
(2)

=c
(2)

=0 causes an increase (a decrease) in the values of the wave propagation 
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velocity. However, the magnitude of this decrease in the case where ψ
(2)

<0 is more significant than 

the magnitude of the increase in the case where ψ
(2)

>0. Moreover, the results show that the 

magnitude of the influence of the initial stresses on the wave propagation velocity decreases with 

HPZT/Hcore and increases with the absolute values of ψ
(2)

. The influence of the piezoelectricity of 

the face layers’ materials on the wave propagation velocity is insignificant and causes an increase 

in the values of this velocity. According to Figs. 7 and 12, as well as Figs. 9 and 14, in the case 

where ψ
(2)

>0 (ψ
(2)

<0) the influence of the initial stretching (compression) on the wave propagation 

velocity decreases with the dimensionless wavenumber kH. 

Analyze the results given in Figs. 8 and 13 (in Figs. 10 and 15) which show the results obtained 

in the cases where ψ
(2)

>0 (ψ
(2)

<0) under a
(2)

≠0, b
(2)

≠0 and c
(2)

≠0. Comparison of these results with 

the corresponding ones given in Figs. 7 and 12 (in Figs. 9 and 14) allows us to conclude that in 

taking the third order elastic constants of the metal elastic core layer into consideration 

significantly affects the influence of the initial stresses in this layer on the wave propagation 

velocity. It should be noted that this effect has not only a quantitative, but also a qualitative 

character. It follows from Fig. 8 that in contrast to the case considered in Fig. 7, the initial 

stretching of the core layer causes a decrease in the values of the extensional Lamb wave 

propagation velocity. The magnitude of this decrease grows with ψ
(2)

 and decreases with 

HPZT/Hcore. Moreover, it follows from Fig. 13 that in contrast to the case considered in Fig. 12, the 

character of the influence of the initial stretching of the middle layer on the flexural wave 

propagation velocity depends on the dimensionless wavenumber kH. So, there exists such a value 

of kH (denote it by (kH)′) before which (after which), i.e., in the cases where kH<(kH)′ (kH>(kH)′) 

as a result of the initial stretching of the core layer, the wave propagation velocity increases 

(decreases). Consequently, in the case where kH=(kH)′ the initial stretching of the core layer does 

not act on the wave propagation velocity.  

Comparison of the results given in Fig. 15 shows that as a result of taking the third order elastic 

constants into consideration the character of the influence of the initial compression on the flexural 

wave propagation velocity also depends on the dimensionless wavenumber kH. So, there exists 

such a value of kH (denote it by (kH)′′) before which (after which), i.e., in the cases where 

kH<(kH)′′ (kH>(kH)′′), as a result of the initial compression of the core layer, the wave 

propagation velocity decreases (increases). Consequently, in the case where kH=(kH)′′ the initial 

compression of the core layer does not act on the wave propagation velocity. The results also show 

that (kH)′≈(kH)′′. 

 

 

 

Fig. 16 The influence of the parameter ψ
(1)

=ψ
(3)

 (>0) on the extensional Lamb wave propagation velocity 

in the first mode for the PZT-2/Al/PZT-2 system in the case where ψ
(2)

=0 and HPZT/Hcore=0.5 (a); 

HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 
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Fig. 17 The influence of the parameter ψ
(1)

=ψ
(3)

 (>0) on the flexural Lamb wave propagation velocity in 

the first mode for the PZT-2/Al/PZT-2 system in the case where ψ
(2)

=0 and HPZT/Hcore=0.5 (a); 

HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

Fig. 18 The influence of the parameter ψ
(1)

=ψ
(3)

 (>0) on the extensional Lamb wave propagation velocity 

in the first mode for the PZT-6B/St/PZT-6B system in the case where ψ
(2)

=0 and HPZT/Hcore=0.5 (a); 

HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

Fig. 19 The influence of the parameter ψ
(1)

=ψ
(3)

 (>0) on the flexural Lamb wave propagation velocity in 

the first mode for the PZT-6B/Al/PZT-6B system in the case where ψ
(2)

=0 and HPZT/Hcore=0.5 (a); 

HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

Note that similar results are also obtained for the sandwich plate PZT-2 /Al/ PZT-2. The graphs 

given in Figs. 16 (for the extensional waves) and 17 (for the flexural waves) are examples of these 

results which relate to the first mode. Moreover, the results obtained for the plates PZT-6B /St/ 

PZT-6B and PZT-6B /Al/ PZT-6B are, in the qualitative sense, also similar to the foregoing ones.  
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Fig. 20 The influence of the parameter ψ
(1)

=ψ
(3)

 (>0) on the extensional Lamb wave propagation velocity 

in the first mode for the PZT-6B/Al/PZT-6B system in the case where ψ
(2)

=0 and HPZT/Hcore=0.5 (a); 

HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

Fig. 21 The influence of the parameter ψ
(1)

=ψ
(3)

 (>0) on the flexural Lamb wave propagation velocity in 

the first mode for the PZT-6B/Al/PZT-6B system in the case where ψ
(2)

=0 and HPZT/Hcore=0.5 (a); 

HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

Fig. 22 The influence of the parameter ψ
(1)

=ψ
(3)

 (>0) on the extensional Lamb wave propagation velocity 

in the second mode for the PZT-2/St/PZT-2 system in the case where ψ
(2)

=0 and HPZT/Hcore=0.5 (a); 

HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

The graphs given in Figs. 18 (extensional waves) and 19 (flexural waves) are examples obtained in 

the first mode for the plate PZT-6B /St/ PZT-6B, and the graphs given in Figs. 20 (extensional 

waves) and 21 (flexural waves) are examples also obtained in the first mode for the PZT-6B /Al/ 

PZT-6B plate. Comparison of the results illustrated in Figs. 18, 19, 20 and 21 with the corresponding  
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Fig. 23 The influence of the parameter ψ
(2) 

(>0) on the extensional Lamb wave propagation velocity in the 

second mode for the PZT-2/St/PZT-2 system in the case where ψ
(1)

=0, a
(2)

=b
(2)

=c
(2)

=0 and 

HPZT/Hcore=0.5 (a); HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

Fig. 24 The influence of the parameter ψ
(2) 

(>0) on the extensional Lamb wave propagation velocity in the 

second mode for the PZT-2/St/PZT-2 system in the case where ψ
(1)

=0, a
(2)

=b
(2)

=c
(2)

=0 and 

HPZT/Hcore=0.5 (a); HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 
ones given in Figs. 6, 11, 16 and 17 shows that the effect of the piezoelectricity of PZT-2 on the 

influence of the initial stresses on the wave propagation velocity is more significant than that of 

PZT-6B.  

Taking the last conclusion into consideration we analyze here the graphs of the dependencies 

between the parameters η and kH in the second mode obtained for the sandwich plate PZT-2 /Al/ 

PZT-2. Graphs of these dependencies obtained in the case where ψ
(1) 

(=ψ
(3)

)>0 and ψ
(2)

=0 are given 

in Figs. 22 and 25 for the extensional and flexural waves, respectively. Moreover, the graphs of the 

studied dependencies obtained in the case where ψ
(2)

>0 and ψ
(1) 

(=ψ
(3)

)=0 under a
(2)

=b
(2)

=c
(2)

=0 are 

given in Figs. 23 and 26, but the graphs obtained under a
(2)

≠0, b
(2)

≠0 and c
(2)

≠0 are given in Figs. 

24 and 27, also for the extensional and flexural waves, respectively.  

Thus, it follows from the Figs. 22 and 25 that the initial stretching of the piezoelectric face 

layers of the plate causes the wave propagation velocity in the second mode to increase. The 

character of the influence of the piezoelectricity of the face layers’ materials depends on the values 

of kH, so there exists such a value of kH (denote it by (kH)*) before which (after which) the 

piezoelectricity causes a decrease (an increase) in the values of the parameter η and the magnitude 

of this increase grows with kH under kH>(kH)*. 
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Fig. 25 The influence of the parameter ψ
(1)

=ψ
(3) 

(>0) on the flexural Lamb wave propagation velocity in 

the second mode for the PZT-2/St/PZT-2 system in the case where ψ
(2)

=0 and HPZT/Hcore=0.5 (a); 

HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

Fig. 26 The influence of the parameter ψ
(2) 

(>0) on the flexural Lamb wave propagation velocity in the 

second mode for the PZT-2/St/PZT-2 system in the case where ψ
(1)

=0, a
(2)

=b
(2)

=c
(2)

=0 and 

HPZT/Hcore=0.5 (a); HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

Fig. 27 The influence of the parameter ψ
(2) 

(>0) on the flexural Lamb wave propagation velocity in the 

second mode for the PZT-2/St/PZT-2 system in the case where ψ
(1)

=0, a
(2)

≠0, b
(2)

≠0, c
(2)

≠0 and 

HPZT/Hcore=0.5 (a); HPZT/Hcore=1 (b); HPZT/Hcore=2 (c); HPZT/Hcore=4 (d) 

 

 

Figs. 23 and 26 show that the initial stretching of the core layer under a
(2)

=b
(2)

=c
(2)

=0 also 

causes an increase in the values of the parameter η. However, Figs. 24 and 27 show that in the case 

where ψ
(2)

>0 and ψ
(1) 

(=ψ
(3)

)=0 under a
(2)

≠0, b
(2)

≠0 and c
(2)

≠0 the character of the influence of the 

initial stress on the wave propagation velocity in the second mode depends on the values of kH. 
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So, there is a range of change of kH for which the initial stretching of the core layer causes a 

decrease and there is also a range of change of kH for which the initial stretching causes an 

increase in the wave propagation velocity in the second mode. 

This completes the consideration and analyses of the numerical results. 

 
 
5. Conclusions 
 

In the present paper the extensional and flexural Lamb waves in the sandwich plate consisting 

of the pre-stressed piezoelectric face and pre-stressed metal elastic core layers is studied by 

utilizing the three-dimensional linearized theory of elastic waves in the pre-stressed piezoelectric 

materials. The solution of the governing field equations for a certain type of piezoelectric material 

is found. The mechanical relations of the metal elastic core layer material are described through 

the Murnaghan potential. Dispersion equations for the extensional and flexural Lamb waves are 

derived for the sufficiently general case. Numerical results on the dispersion of these waves and on 

the influence of the initial stresses in the constituents of the plate on the wave propagation velocity 

are presented and discussed.  

In these discussions the focus is on the influence of the initial stresses on the extensional and 

flexural Lamb wave propagation velocities. Numerical results are obtained for the cases where the 

core layer material is Steel or Aluminum, but the face layers’ material is PZT-2 or PZT-6B. 

Consequently, the sandwich plates PZT-2/St/PZT-2, PZT-2/Al/PZT-2, PZT-6B/St/PZT-6B and 

PZT-6B/Al/PZT-6B are selected for numerical investigation and it is assumed that on the interface 

planes between the core and face layers that complete contact conditions are satisfied.  

All the numerical results are obtained for the case where the face planes of the piezoelectric 

layers are electroded and the cases where HPZT/Hcore=0.5, 1, 2 and 4 are considered. According to 

these results, the following main conclusions can be drawn: 

• The piezoelectricity of the face layers’ materials causes the extensional and flexural Lamb 

waves’ propagation velocity to increase. 

• The aforementioned increase in the first mode of the Lamb waves is more considerable than 

in the second mode. 

• The initial stretching of the face layers causes an increase in the wave propagation velocity in 

the first mode and the magnitude of this increase grows with the parameter ψ
(1) 

(30) and with 

the ratio HPZT/Hcore, where HPZT is the thickness of the piezoelectric layer and Hcore is the half 

thickness of the core layer . 

• The piezoelectricity of the face layers’ materials causes a decrease in the magnitude of the 

influence of the initial stretching of the face layers on the wave propagation velocity in the first 

mode, but in the second mode this influence changes with the values of the dimensionless 

wavenumber kH . 

• The initial stretching (compression) of the core metal layer of the plate under ignoring the 

third order elastic constants causes an increase (a decrease) in the values of the wave 

propagation velocity in the first mode. However, the magnitude of this decrease in the case 

where ψ
(2) 

<0 (30) is more significant than the magnitude of the increase in the case where 

ψ
(2)

>0. 

• The magnitude of the influence of the initial stresses in the core layer on the wave 

propagation velocity decreases with HPZT/Hcore and increases with the absolute values of ψ
(2)

. 

• Taking the third order elastic constants of the metal elastic core layer into consideration 
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significantly affects the influence of the initial stresses in this layer on the wave propagation 

velocity in the first mode and this effect has not only a quantitative, but also a qualitative 

character. 

• Taking the third order elastic constants of the metal elastic core layer into consideration there 

exists such a value of kH (denoted by (kH)′) before which (after which), as a result of the initial 

stretching of the core layer, the wave propagation velocity in the first mode increases 

(decreases) and in the case where kH=(kH)′ the initial stretching of the core layer does not act 

on the wave propagation velocity. 

• Taking the third order elastic constants of the metal elastic core layer into consideration there 

exists such a value of kH (denoted by (kH)′′) before which (after which), as a result of the 

initial compression of the core layer, the wave propagation velocity in the first mode decreases 

(increases) and in the case where kH=(kH)′′ the initial compression of the core layer does not 

act on the wave propagation velocity. It is also established that (kH)′′≈(kH)′. 

• The influence of the piezoelectricity of PZT-2 on the wave propagation velocities is more 

significant than that of PZT-6B. 

• The initial stretching of the piezoelectric face layers of the plate causes an increase in the 

wave propagation velocity in the second mode and the character of the influence of the 

piezoelectricity of the face layers’ materials on this increase depends on the values of kH. So, 

there exists such a value of kH (denote it by (kH*)) before which (after which) the 

piezoelectricity causes a decrease (an increase) in the values of the parameter η (30) and the 

magnitude of this increase grows with kH under kH>(kH)*. 

• The initial stretching of the core layer when ignoring the influence of the third order elastic 

constants causes an increase in the values of the parameter η. 

• Taking the influence of the third order elastic constants into account as a result of the initial 

stretching of the metal elastic core layer, the character of the influence of the initial stress on 

the wave propagation velocity in the second mode depends on the values of kH. So, there is a 

range of change of kH for which the initial stretching of the core layer causes a decrease and 

there is also a range of change of kH for which the initial stretching causes an increase in the 

values of the wave propagation velocity. 
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Appendix A 
 

In this appendix, we consider the linearized elastic relations for the core layer material. 

According to the monograph by Guz (2004) and other works listed in the paper by Guz and 

Mahkort (2000), to obtain results that are consistent with experimental studies of wave 

propagation patterns of small amplitudes (small perturbations) in compressible metal elastic 

materials with initial stresses, it is necessary to use the Murnaghan type of elastic potential to 

describe the linearized elasticity relations of this material. This potential is given as follows (Guz 

and Makhort 2000) 

   
(2) (2)2 3

(2) (2) (2) (2) (2) (2)(2) (2) (2) (2)
1 2 1 1 2 3

1

2 3 3

a c
A A A b A A A      

              
(A1) 

where λ
(2)

 and μ
(2)

 are Lamé constants, a
(2)

, b
(2)

, and c
(2)

 are the third order elasticity constants and 
(2)
1A , 

(2)
2A , and 

(2)
3A  are the first, second, and third algebraic invariants of Green’s strain tensor, 

respectively. For the considered case, the expressions of these invariants are 

(2) (2) (2)
1 11 22A    ,      

2 2 2
(2) (2) (2) (2)
2 11 12 222A      , 

        
3 2 3

(2) (2) (2) (2) (2) (2)
3 11 12 11 22 223A                                           (A2) 

where 

 

(2)(2) (2) (2)
(2) 1

2

ji n n
ij

j i j i

uu u u

x x x x


   
   
    
 

.                                         (A3) 

The components of the stress tensor are determined through the Murnaghan potential (A1) as 

follows 

(2) (2)

(2) (2)

1

2
ij

ij ji


 

 
    

  
 

.                                             (A4) 

Representing 
(2)
ij , 

(2)
ij , and 

(2)
iu  as a summation: 

(2) (2),0 (2)
'ij ij ij    , 

(2) (2),0 (2)
'ij ij ij    , 

and 
(2) (2),0 (2)

'i i iu u u  , and linearizing the non-linear relations (A3) and (A4) with respect to the 

perturbations 
(2)

'ij , 
(2)

'ij , and 
(2)

'iu , and omitting the prime over these perturbations, we obtain 

the linearized elasticity relations (4) for the middle layer material, the coefficient of which are 

determined through the following expressions 

   
(2),0 (2)

(2) (2),0(2) (2) (2) (2) (2) (2) (2) (2)11
11 11(2) (2) (2)

0

21
2 (2 ) 2

22
A b c a b b c

K

 
  

 

 
        

  
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   
(2),0 (2)

(2) (2) (2) (2) (2) (2) (2)11
22 (2) (2)

0

2
2 2

23
A a b b c

K

 
 



 
      

  

, 

 
(2),0(2) (2)

(2) (2),0(2) (2) (2)11
12 11(2) (2) (2)

0

2

3

b
A a b

K

 
 

 

 
    

  

, 

(2),0 (2),0(2) (2) (2) (2)
(2) (2) 11 11
12 (2) (2) (2)

0 0

2

43 3

b c

K K

   
 




     , 

(2)
(2) (2)
0

2

3
K


  .          (A5) 

 
 
Appendix B 
 

We here give expressions of the functions which enter into Eq. (19).  

The case where (1) (1)
2 1c c c   

11 2 1 2( ) sin( )x p kx  , 12 2 1 2( ) cos( )x p kx  , 2 2
13 2( )

p kx
x e  , 2 2

14 2( )
p kx

x e 
 , 

3 2
15 2( )

p kx
x e  , 3 2

16 2( )
p kx

x e 
 , 2 2 1 2( ) ( ),i i ix x   3 2 1 2( ) ( )i i ix x   , 1,2,...,6i  , 

(1) (1) (1)
121 2 1 1 1 1 244 44 15( ) ( )cos( )x c p c e p kx     , (1) (1) (1)

122 2 1 2 2 1 244 44 15( ) ( )sin( )x c p c e p kx      , 

2 2(1) (1) (1)
123 2 2 3 344 44 15( ) ( )

p kx
x c p c e e     , 2 2(1) (1) (1)

124 2 2 4 444 44 15( ) ( )
p kx

x c p c e e   
    , 

3 2(1) (1) (1)
125 2 3 5 544 44 15( ) ( )

p kx
x c p c e e     , 3 2(1) (1) (1)

126 2 3 6 644 44 15( ) ( )
p kx

x c p c e e   
    , 

(1) (1) (1)
221 2 1 1 1 1 1 213 33 33( ) ( )sin( )x c c p e p p kx     , 

(1) (1) (1)
222 2 2 1 2 1 1 213 33 33( ) ( )cos( )x c c p e p p kx     , 

2 2(1) (1) (1)
223 2 3 2 3 213 33 33( ) ( )

p kx
x c c p e p e     , 2 2(1) (1) (1)

224 2 4 2 4 213 33 33( ) ( )
p kx

x c c p e p e   
   , 

3 2(1) (1) (1)
225 2 5 2 5 313 33 33( ) ( )

p kx
x c c p e p e     , 3 2(1) (1) (1)

226 2 6 2 6 313 33 33( ) ( )
p kx

x c c p e p e   
   , 

(1) (1) (1)
41 2 1 1 1 1 1 231 33 33( ) ( )sin( )x e e p p p kx      , (1) (1) (1)

42 2 2 1 2 1 1 231 33 33( ) ( )cos( )x e e p p p kx      , 

2 2(1) (1) (1)
43 2 3 2 3 231 33 33( ) ( )

p kx
x e e p p e      , 2 2(1) (1) (1)

44 2 4 2 4 231 33 33( ) ( )
p kx

x e e p p e    
   , 

3 2(1) (1) (1)
45 2 5 3 5 331 33 33( ) ( )

p kx
x e e p p e      , 3 2(1) (1) (1)

46 2 6 3 6 331 33 33( ) ( )
p kx

x e e p p e    
   . (B1) 

The case where 
(1)
2c c   

1 2
11 2( )

p kx
x e  , 1 2

12 2( )
p kx

x e 
 , 2 2

13 2( )
p kx

x e  , 2 2
14 2( )

p kx
x e 

 , 
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3 2 3 2
15 2 16 2( ) ( )

p kx p kx
x e x e  

  , 2 2 1 2( ) ( ),i i ix x   3 2 1 2( ) ( )i i ix x   , 1,2,...,6i  , 

1 2(1) (1) (1)
121 2 1 1 144 44 15( ) ( )

p kx
x c p c e e     , 1 2(1) (1) (1)

122 2 1 2 244 44 15( ) ( )
p kx

x c p c e e   
    , 

2 2(1) (1) (1)
123 2 2 3 344 44 15( ) ( )

p kx
x c p c e e     , 2 2(1) (1) (1)

124 2 2 4 444 44 15( ) ( )
p kx

x c p c e e   
    , 

3 2(1) (1) (1)
125 2 3 5 544 44 15( ) ( )

p kx
x c p c e e     , 3 2(1) (1) (1)

126 2 3 6 644 44 15( ) ( )
p kx

x c p c e e   
    , 

1 2(1) (1) (1)
221 2 1 1 1 113 33 33( ) ( )

p kx
x c c p e p e     , 1 2(1) (1) (1)

222 2 2 1 2 113 33 33( ) ( )
p kx

x c c p e p e   
   , 

2 2(1) (1) (1)
223 2 3 2 3 213 33 33( ) ( )

p kx
x c c p e p e     , 2 2(1) (1) (1)

224 2 4 2 4 213 33 33( ) ( )
p kx

x c c p e p e   
   , 

3 2(1) (1) (1)
225 2 5 2 5 313 33 33( ) ( )

p kx
x c c p e p e     , 3 2(1) (1) (1)

226 2 6 2 6 313 33 33( ) ( )
p kx

x c c p e p e   
   , 

1 2(1) (1) (1)
41 2 1 1 1 131 33 33( ) ( )

p kx
x e e p p e      , 1 2(1) (1) (1)

42 2 2 1 2 131 33 33( ) ( )
p kx

x e e p p e    
   , 

2 2(1) (1) (1)
43 2 3 2 3 231 33 33( ) ( )

p kx
x e e p p e      , 2 2(1) (1) (1)

44 2 4 2 4 231 33 33( ) ( )
p kx

x e e p p e    
   , 

3 2(1) (1) (1)
45 2 5 3 5 331 33 33( ) ( )

p kx
x e e p p e      , 3 2(1) (1) (1)

46 2 6 3 6 331 33 33( ) ( )
p kx

x e e p p e    
   . (B2) 

The case where 
(1)
1c c   

11 2 1 2( ) sin( )x p kx  , 12 2 1 2( ) cos( )x p kx  , 13 2 2 2( ) sin( )x p kx  , 14 2 2 2( ) cos( )x p kx  , 

3 2
15 2( )

p kx
x e  , 3 2

16 2( )
p kx

x e 
 , 21 2 1 1 2( ) cos( )x p kx  , 22 2 2 1 2( ) sin( )x p kx  , 

23 2 3 2 2( ) cos( )x p kx  , 24 2 4 2 2( ) sin( )x p kx  , 3 2
25 2 5( )

p kx
x e  , 3 2

26 2 6( )
p kx

x e  
 , 

31 2 1 1 2( ) cos( )x p kx  , 32 2 2 1 2( ) sin( )x p kx  , 34 2 3 2 2( ) cos( )x p kx  , 3 2
35 2 5( )

p kx
x e  , 

3 2
36 2 6( )

p kx
x e  

 , (1) (1) (1)
121 2 1 1 1 1 244 44 15( ) ( )cos( )x c p c e p kx     , 

(1) (1) (1)
122 2 1 2 2 1 244 44 15( ) ( )sin( )x c p c e p kx      , (1) (1) (1)

123 2 2 3 3 2 244 44 15( ) ( )cos( )x c p c e p kx     , 

(1) (1) (1)
124 2 2 4 4 2 244 44 15( ) ( )sin( )x c p c e p kx      , 

3 2(1) (1) (1)
125 2 3 5 544 44 15( ) ( )

p kx
x c p c e e     , 3 2(1) (1) (1)

126 2 3 6 644 44 15( ) ( )
p kx

x c p c e e   
    , 

(1) (1) (1)
221 2 1 1 1 1 1 213 33 33( ) ( )sin( )x c c p e p p kx     , 

(1) (1) (1)
222 2 2 1 2 1 1 213 33 33( ) ( )cos( )x c c p e p p kx      

(1) (1) (1)
223 2 3 2 3 2 2 213 33 33( ) ( )sin( )x c c p e p p kx     ,

(1) (1) (1)
224 2 4 2 4 2 2 213 33 33( ) ( )cos( )x c c p e p p kx     , 

3 2(1) (1) (1)
225 2 5 2 5 313 33 33( ) ( )

p kx
x c c p e p e     , 3 2(1) (1) (1)

226 2 6 2 6 313 33 33( ) ( )
p kx

x c c p e p e   
   , 
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(1) (1) (1)
41 2 1 1 1 1 1 231 33 33( ) ( )sin( )x e e p p p kx      , (1) (1) (1)

42 2 2 1 2 1 1 231 33 33( ) ( )cos( )x e e p p p kx      , 

(1) (1) (1)
43 2 3 2 3 2 2 231 33 33( ) ( )sin( )x e e p p p kx      , 

(1) (1) (1)
44 2 4 2 4 2 2 231 33 33( ) ( )cos( )x e e p p p kx      , 

3 2(1) (1) (1)
45 2 5 3 5 331 33 33( ) ( )

p kx
x e e p p e      , 3 2(1) (1) (1)

46 2 6 3 6 331 33 33( ) ( )
p kx

x e e p p e    
   .  (B3) 

Substituting the expressions for 
(1)
1u , 

(1)
2u , and (1)  in (B1)-(B3) into the equation of motion 

(12), we can easily determine the values of the constants α1, α2,…, α6 and the values of the 

constants β1, β2, …, β6 which enter the foregoing expressions in (B1)-(B3). 

 
 
Appendix C 
 

The equations obtained from the contact and boundary conditions (6)-(11) for the extensional 

Lamb waves, i.e., for the cases where the condition (26) is satisfied, are 

2 1 2 1

6

1 1
(1) (2
1

1

)
1 ( )i i

x h x h
i

u u A kh
 



  2 12 1cosh( )RG khZ 4 14 2cosh( ) 0R khZ G  , 

2 1 2 1

6

2 1
(1) (2
2

1

)
2 ( )i i

x h x h
i

u u A kh
 



  2 1 1sinh( )Z R kh 4 2 1sinh( ) 0Z R kh  , 

2 1 2 1

(1) (2)
1

6

12 1
1

2 12 ( )i i
x h x h

i

A kh  
 



   

   2 12 2 1 1 1 4 12 4 2 2 11 sinh( ) 1 sinh( ) 0,Z G R R kh Z G R R kh       

2 1 2 1

(1) (2)
2

6

22 1
1

2 22 ( )i i
x h x h

i

A kh  
 



   

   2 12 2 22 1 1 1 4 12 4 22 2 2 1cosh( ) cosh( ) 0,Z A G A R R kh Z A G A R R kh      

2 1

6
(1)

3 1
1

0 ( ) 0i i
x h

i

A kh 




    (for an electroded case), 

2 1

6

4 1
1

2 0 ( )i ix h
i

D A kh




   (for an unelectroded case). 

2 2

6

12 2
1

(1)
12 0 ( ) 0i i

x h
i

A kh 




   , 
2 2

6

22 2
1

(1)
22 0 ( ) 0i i

x h
i

A kh 




   , 
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2 2

6
(1)

3 2
1

0 ( ) 0i i
x h

i

A kh 




   (for a short circuit case), 

2 2

6

4 2
(1)

1
2 0 ( ) 0i i

x h
i

D A kh




    (for an open circuit case).                    (C1) 

The first four equations obtained from the contact and boundary conditions (6)-(11) for the 

flexural Lamb waves, i.e., for the cases where the condition (27) is satisfied, are 

2 1 2 1

6

1 1
(1) (2
1

1

)
1 ( )i i

x h x h
i

u u A kh
 



  2 11 1sinh( )RG khZ 4 13 2sinh( ) 0R khZ G  , 

2 1 2 1

6

2 1
(1) (2
2

1

)
2 ( )i i

x h x h
i

u u A kh
 



  1 1 1cosh( )Z R kh 3 2 1cosh( ) 0Z R kh  , 

2 1 2 1

(1) (2)
1

6

12 1
1

2 12 ( )i i
x h x h

i

A kh  
 



   

   1 12 2 1 1 1 3 12 4 2 2 11 cosh( ) 1 cosh( ) 0,Z G R R kh Z G R R kh       

2 1 2 1

(1) (2)
2

6

22 1
1

2 22 ( )i i
x h x h

i

A kh  
 



   

   1 12 2 22 1 1 1 3 12 4 22 2 2 1sinh( ) sinh( ) 0Z A G A R R kh Z A G A R R kh     .                (C2) 

Note that the remaining six equations obtained for the flexural Lamb waves coincide with the 

last six equations given in (C1). 
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