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Abstract.  Many experimental and analytical studies have been conducted with beam-column sub-

assemblages composed of a two-span beam to investigate the progressive collapse resistance of RC frames. 

Most study results reveal a strength-decreased transition phase in the nonlinear static load-deflection curve, 

which may induce dynamic snap-through response and increase the chord rotation demand for effective 

catenary action (ECA). In this study, the nonlinear static response is idealized as a piecewise linear curve and 

analytical pseudo-static response is derived for each linearized region to investigate the rotation demands for 

the ECA of the two-span RC beams. With analytical parameters determined from several published test 

results, numerical analysis results indicate that the rotation demand of 0.20 rad recommended in the design 

guidelines does not always guarantee the ECA. A higher rotation demand may be induced for the two-span 

beams designed with smaller span-to-depth ratios and it is better to use their peak arch resistance (PAR) as 

the collapse strength. A tensile reinforcement ratio not greater than 1.0% and a span-to-depth ratio not less 

than 7.0 are suggested for the two-span RC beams bridging the removed column if the ECA is expected for 

the collapse resistance. Also, complementary pseudo-static analysis is advised to verify the ECA under 

realistic dynamic column loss even though the static PAR is recovered in the nonlinear static response. A 

practical empirical formula is provided to estimate an approximate rotation demand for the ECA. 
 

Keywords:  progressive collapse; effective catenary action; pseudo-static response; chord rotation 

 
 
1. Introduction 
 

Progressive collapse vulnerability of building structures has been an active research topic since 

the 9/11 terrorist attack on the World Trade Center in 2001. As stated in the ASCE 7-10 Standard 

(ASCE 2010), progressive collapse is defined as “the spread of an initial local failure from element 

to element, resulting eventually in the collapse of an entire structure or a disproportionately large 

part of it” and sometimes indicated as “disproportional collapse”. In fact, the origin of the 

progressive collapse research can be traced back to the partial collapse of the Ronan Point 

apartment building in 1968 (Pearson and Delatte 2005). The incident inspires the subsequent 

emphasis on the structural integrity and makes the prevention of progressive collapse an important 

issue in the development of several structural design codes (Mohamed 2006). Feasible engineering 
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approaches for mitigating the risk of progressive collapse have been proposed and evaluated 

(Ellingwood 2006, Nair 2006). The U.S. General Service Administration (GSA 2003, 2013) and 

Department of Defense (DoD 2005, 2009, 2013) have issued detailed step-by-step design and 

analysis guidelines and conduct periodical review and modification. Extending from earlier 

analytical and numerical researches, many experimental studies for the progressive collapse have 

been carried out in the past decade. Load redistribution mechanisms for the column-loss response 

are investigated from field tests of real building structures (Sasani et al. 2007, Sasani 2008, Song 

and Sezen 2013). It is believed that most realistic dynamic column-loss behavior and valuable 

experimental data could be captured from the field tests of real structures. However, the 

opportunity for conducting such prototype structural tests depends on the willingness of the 

building owner and the cost could be very expensive as compared with reduced-scale model tests 

in laboratory. Besides, field tests of real building structures are non-repeatable and it is hard to get 

whatever structural response under different loading conditions.  

Hence, most experimental studies concerning the progressive collapse resistance of building 

structures are conducted with frame models and beam-column sub-assemblages. Yi et al (2008) 

carried out a static experimental study with a four-bay and three-story one-third scale RC frame 

model to investigate the progressive collapse resistant behavior. Chen et al. (2012) used a full-

scale two-story steel moment frame to evaluate the dynamic response under sudden column loss. 

As compared with the frame model tests, more tests have been done with the so called beam-

column sub-assemblages, as shown in Fig. 1, to catch the progressive collapse behavior of the two-

span beams. Su et al. (2009) performed static vertical loading tests on twelve longitudinally 

restrained two-span RC beams with varied steel and span-to-depth ratios. They indicated that the 

test specimens could reach the peak arch strength at a deflection ranging from 16% to 34% of the 

section depth. For some specimens, the load resistance in the catenary stage could be lower than 

the arch strength. Sasani et al. (2011) adopted a 3/8 scaled sub-assemblage to evaluate the column-

loss response of a two-span RC beam bridging over a removed column. Choi and Kim (2011) 

performed static loading tests on reduced-scale RC sub-assemblages designed with and without 

seismic detailing and concluded that significant catenary action may be activated for seismically 

detailed beams. Yu and Tan (2013) designed eight RC sub-assemblage specimens with varied steel 

and span-to-depth ratios to study the ultimate catenary resistance under column loss. A series of 

scaled sub-assemblages were designed and tested to investigate the effects of slab on the collapse 

resistance under corner column loss (Qian and Li 2012a, 2013, 2015, Qian et al. 2015). Full-scale 

RC beam-column sub-assemblages with and without seismically designed details were tested by 

Lew et al. (2014). Tsai et al. (2014) evaluated the influence of different reinforcement layouts on 

the collapse-resistant behaviour of RC beams. Also, the effects of span-to-depth ratio and stirrup 

spacing on the collapse resistance were assessed in a later experimental study (Tsai and Chang 

2015). Some dynamic tests have been carried out to investigate more realistic column-loss 

response of RC beam-column sub-assemblages and structural frames (Tian and Yu 2011, Qian and 

Li 2012b, Orton and Kirby 2014).  

Most test results support that the catenary action may be used as the final defensive mechanism 

against collapse. It is also realized that development of the catenary action is dependent on the 

beam-end rotational capacity. The design guidelines issued by the GSA (2013) and DoD (2013) 

have proposed an acceptance criterion of 0.20 rad for the chord rotation capacity of the two-span 

beams, as indicated in Fig. 1, to ensure the development of catenary action. This threshold is 

specified independent of the member design parameters. However, from those referred 

experimental studies, the rotation demands for the catenary development may be different.  
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Fig. 1 The definition of a beam-column sub-assemblage 

 

 

Therefore, analytical resolution of the rotation demands for effective catenary action (ECA) in 

progressive collapse analysis is proposed in this study. The ECA is defined as the recovery of peak 

arch resistance in the catenary phase. Piecewise linear curves divided by the yield strength, peak 

arch resistance (PAR), leveled off strength (LOS), and peak catenary resistance (PCR) before bar 

fracture are constructed to idealize the general nonlinear static response of the two-span RC beams 

under gravitationally monotonic loadings. Since the arch and catenary actions are not significant 

for the loss of a corner or a penultimate column, the scenario of interior- or middle-column loss is 

the main concern herein. Then, their corresponding pseudo-static responses are derived for each 

linearized region. The analytical expressions are used to conduct numerical investigations on the 

chord rotation demands of the ECA and associated snap-through response. With the analytical 

parameters determined from several referred experimental studies and numerical analysis results, 

practical considerations are provided for progressive collapse design and analysis of building 

structures. 

 

 

2. Idealization of static response  
 

Most static tests have revealed that the load-deflection responses of the two-span beams (Fig. 

1) are highly nonlinear under gravitationally monotonic loadings. The nonlinear static response is 

initiated at the tensile cracking of concrete and grows significantly as the tensile reinforcement 

yields. Along with the flexural yielding, the load response gradually reaches the PAR, as shown by 

Pa in Fig. 2(a). This load-deflection range is defined as the “compressive arch phase”. In this 

phase, compressive axial force is developed in the two-span beams due to the constraint provided 

by the end columns. After the PAR, there is usually a strength-decreased phase in which the axial 

compression decreases with increased vertical deflection of the beams. It is defined as the 

“transition phase”. The load resistance can decrease down to the LOS, PC, where the catenary  
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Fig. 2(a) Static load-deflection curve under gravitational monotonic loadings 
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Fig. 2(b) Idealized piece-wise linear curve and pseudo-static response 

 

 

action is activated. The LOS represents the resistance at the commencement of the catenary phase. 

(Sadek et al. 2011). This strength-decreased region may induce snap-through response under a real 

dynamic column-loss scenario (Tsai 2012, Orton and Kirby 2014). If the two-span beams have 

sufficient rotation capacity, the load resistance can be regained under the catenary action and even 

larger than the PAR before the rupture of any reinforcement. This region is thus defined as the 

“catenary phase”. Axial tension is developed in the two-span beams during this phase and serves 

as ultimate resistance against collapse.  

Although the general static load-deflection curve is nonlinear, as a rule of thumb, it can be 

approximated as a piece-wise linear curve with four threshold points, as shown in Fig. 2(b). The 

four threshold points are corresponding to the yielding strength, PAR, LOS, and PCR before bar 

fracture. As shown in the figure, the stiffness ratios of the three post-yield regions to the elastic 
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stiffness are designated by α1, α2, and α3. α1 is defined as the arch stiffness ratio ranging from the 

yield point to the PAR and expressed as  

ya
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y
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PP
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
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


1 .                             (1a) 

Similarly, α2 is defined as the softening stiffness ratio ranging from the PAR to the LOS. α3 is 

defined as the catenary stiffness ratio for the catenary phase. They are respectively expressed as  

ac

y
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ca
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PP
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
2                              (1b) 

and 
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P

PP
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
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


3 .                            (1c) 

With these parameters, the analytical pseudo-static response in each phase can be obtained for the 

idealized nonlinear static response. 

 

 

3. Analytical pseudo-static response  
 

Static test results of the two-span RC beams cannot direct reflect the real dynamic column-loss 

response due to the exclusion of dynamic effect. Analytical and numerical studies (Tsai and Lin 

2008, Tsai 2010, Tsai and You 2012) have indicated that the pseudo-static response obtained from 

the nonlinear static load-deflection curve can be used to predict the maximum dynamic response 

under column loss. Hence, they have to be transformed into their pseudo-static counterparts by 

using the equal work and energy method, as shown by the dash line in Fig. 2(b). This can be 

numerically implemented by dividing the accumulated area under the nonlinear static response 

curve by the corresponding displacement of the column-loss point and be expressed as  


du

NS
d

dCC duuP
u

uP
0

)(
1

)(                           (2) 

where PNS (u) and PCC (u) are, respectively, the nonlinear static loading and the pseudo-static 

counterpart at the displacement demand u. Therefore, for the idealized nonlinear static response, 

the pseudo-static resistance in the elastic range may be written as 

2/0, PPd  , yPP 0                             (3) 

where Py is the static yielding force. From the yield point to the PAR, the pseudo-static resistance 

Pd,1 is derived as  


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2

]1)1(2)1([ 2
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
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P
P , a 1                    (4) 

where the ductility, μ, is the chord rotation divided by the yield rotation θy. μa is the ductility 
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demand at the PAR Pa (Fig. 2(b)) and equal to θa/θy. Similarly, the pseudo-static resistances in the 

transition and catenary phases are respectively derived as  

 








2

)]]1(1)[(2)([ 1
2

2,
2,




aaayaad
d

PP
P , ca        (5) 

and 









2

)]]()1(1)[(2)([ 21
2

3,
3,

acaccyccd
d

PP
P


 ,  c   (6) 

where Pd,a=Pd,1 (μ=μa) and Pd,c=Pd,2 (μ=μC). μC is the ductility demand at the end of transition phase 

and equal to θC/θy. In fact, a general form for the pseudo-static resistance in the i-th linear region of 

a piece-wise linear curve with i≧2 may be deduced from the above equations as  
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where μi-1 is the ductility demand of the previous turning point and the sign of stiffness is included 

in the stiffness ratios αi and αj.  

As shown in Fig. 2(b), the pseudo-static PAR, denoted as Pp,a, does not occur at the chord 

rotation θa corresponding to its static counterpart. Instead, it happens during the transition phase, 

namely in the range from θa to θC. In fact, as the supported loading is larger than the pseudo-static 

PAR, the two-span beams could be loaded directly into the catenary phase and snap-through 

response may be induced under column loss and accompanied by significant deformation demand, 

as indicated in Fig. 2(b). Apparently, the pseudo-static PAR is critical to the snap-through 

behavior. From setting the derivative of Eq. (4) equal to zero, it can be obtained that Pp,a occurs at  

2
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yaadaa
i

PP
       (8) 

The value of Pp,a is then calculated as Pd,2 (μ=μi). The chord rotation at μi is denoted as θi in Fig. 

2(b). This rotation is defined as the snap-through prevention limit and can be regarded as an index 

to judge the importance of the catenary action. If θi is larger than the expected beam-end rotation, 

the catenary action will be minor under the column loss. Moreover, from the comparison of the 

nonlinear static and pseudo-static load-deflection curves, it is clear that if the static leveled off 

rotation θC is less than θi, then the pseudo-static response presents a non-degrading curve with 

non-negative tangent stiffness. In such a case, there will be no snap-through response under 

dynamic column loss (Tsai 2012) and the collapse resistance is always larger than the pseudo-

static PAR in the catenary phase. However, as θC is larger than θi, the pseudo-static resistance will 

be lower than Pp,a and the snap-through response be induced consequently. Once this happens, the 

dynamically falling behavior can be arrested only if the resistance of Pp,a may be regained in the 

catenary phase. Otherwise, dynamic collapse will happen. Therefore, an effective catenary action 

is defined as the capability of recovering the strength of Pp,a in the catenary phase. The chord 

rotation demand for the effective catenary action is then determined from Pd,3≥Pp,a, which leads to 
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Fig. 3 Experimental and idealized static and pseudo-static response curves of the R1 specimen 
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Two values of ductility demand, μ, can be resolved from Eq. (9). The one larger than μC, 

denoted as μr, is the ductility demand for the effective catenary action. Its corresponding rotation is 

designated as θr in Fig. 2(b).  

 

 

4. Demonstration 
 

A test specimen adopted from Tsai and Chang (2015) is used as an example to demonstrate the 

approximation of the piece-wise linear curve to the nonlinear response. Design details of the 

specimen may be found in the referred literature. Fig. 3 presents its normalized static load and 

chord rotation response curve and the piece-wise linear approximation. The threshold values of the 

idealized approximation and the three corresponding stiffness ratios are summarized in Table 1. 

An equivalent single degree of freedom (SDOF) model has been constructed with the idealized 

approximation and its static response curve has been obtained from nonlinear pushdown analysis.  
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Table 1 Idealization parameters for the R1 specimen in Tsai and Chang (2015) 

Phase Compressive arch Transition Catenary 

(P/Py, θ) (1.71, 0.0166) (1.13, 0.0960) (4.89, 0.340) 

Stiffness ratio α1=0.16 α2=0.029 α3=0.062 

 

P

L L

Mi = PiL / 4 



i i L

M



M1

M2

M3

M4

1 2 3
4

M



M1

M2

M3

M4

1 2 3
4  

Fig. 4 The equivalent SDOF model and beam-end hinge properties 

 

 

The SDOF model is composed of two prismatic beams with nonlinear hinges at the beam ends, as 

shown in Fig. 4. The idealized piece-wise linear hinge properties are determined from the static 

load-deflection response. It is defined as a SDOF model since it deforms in a single mode shape. 

The pseudo-static responses curves calculated from the test results and the numerical static 

response of the SDOF model are compared in the figure. It is seen that both pseudo-static curves 

were in good agreement. Using the analytical expressions with the parameters in Table 1 and the 

span-to-depth ratio, 8.0, of the test specimen, the chord rotations of snap-through prevention and 

ECA are estimated as θi=0.051 and θr=0.156 rad, respectively. They are approximate to 0.0538 

and 0.164 rad, respectively, which are estimated from the pseudo-static analysis of equivalent 

SDOF model. This confirms that the analytical expressions can be used to estimate the chord 

rotations of snap-through prevention and ECA for the two-span RC beams under gravitational 

loadings. The snap-through induced chord rotation may be calculated as θr-θi with the analytical 

expressions. To demonstrate the existence of the snap-through response, incremental dynamic 

analyses of the SDOF model subjected to step loading functions with gradually increased 

magnitude have been carried out and the normalized response envelope is included in the figure. 

The inherent damping is neglected in the dynamic analysis. As indicated in the figure, an abruptly 

increase of the chord rotation demand is observed due to the snap-through behavior when the 

normalized loading is slightly increased from P/Py=1.47 to P/Py=1.50.  

 

 
5. Parametric study 
 

5.1 Determination of parameters 
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From the previous derivation, it is known that the chord rotation demand for the ECA is 

involved with several parameters, including the three stiffness ratios and chord rotations at the 

static peak arch and leveled off responses. These parameters are dependent on the span-to-depth 

ratio, reinforcement ratio, material strength, and constraints of the two-span beams bridging the 

removed column. The static test results of several published experimental studies (Su et al. 2009, 

Yu and Tan 2013, Lew et al. 2014, Tsai et al. 2014, Tsai and Chang 2015), as shown in Table 2, are 

used to evaluate the variations of these model parameters. For reducing the complexity of the 

evaluation, only those designed with continuous reinforcement and symmetric layouts and 

exhibiting catenary behavior (i.e. Pu>PC in Fig. 2(b)) before any bar fracture are selected. The 

arch, softening, and catenary stiffness ratios are calculated by using the static peak arch, leveled 

off, and maximum catenary responses prior to bar fracture as listed in Table 2. The values for 

calculating the stiffness ratios are either obtained from the test results specified in the referred 

papers or estimated from the load-deflection curves if not specified.  

Figs. 5(a) and 5(b) show the variations of α1, α2, and α3 with respect to the span-to-depth ratios 

and averaged beam-end tensile reinforcement ratios, respectively. The span-to-depth ratio is varied 

between 4.0 and 11.0 and the reinforcement ratio between 0.61% and 1.34%. The reinforcement 

ratios are obtained from averaging the tensile steel ratios at the beam ends of those selected 

specimens. From Fig. 5(a), although the distribution is scattered, more or less, the arch and 

catenary stiffness ratios appear to increase with the span-to-depth ratios. However, no specific 

trend may be observed for the softening stiffness ratio. Similarly, scattered distribution with the 

tensile reinforcement ratio is observed in Fig. 5(b). It is seen that the arch and catenary stiffness 

ratios roughly increase with the steel ratio as the steel ratio is larger than 1.0%. Because of the 

scattered distribution, no curve fitting is conducted to relate the stiffness ratios with the span-to-

depth ratio. Even though, the figures reveal that most of the stiffness ratios are varied from 0.1 to 

0.2 for α1, from 0.05 to 0.15 for α2, and from 0.05 to 0.2 for α3. Therefore, the stiffness ratios 

selected for the parametric study are determined as shown in Table 3. 
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Fig. 5(a) Variation of the estimated stiffness ratios with the span-to-depth ratios 
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Table 2 Selected test results for analytical parameters of idealized piece-wise linear approximation  

Referred 

studies 

Specimen 

ID 

Span/depth 

ratio 

Yield point 
Peak arch 

resistance 

Leveled off 

strength 

Peak catenary 

resistance 

Load 

(kN) 

Deflection 

(cm) 

Load 

(kN) 

Deflection 

(cm) 

Load 

(kN) 

Deflection 

(cm) 

Load 

(kN) 

Deflection 

(cm) 

Yu and 

Tan 

(2013) 

S2 11 29.0 3.47 38.4 7.30 19.3 25.23 39.1 37.87 

S4 11 47.8 4.25 63.2 8.10 47.8 16.71 59.2 28.30 

S5 11 56.6 5.01 70.3 7.45 51.6 20.54 94.9 43.39 

S6 11 62.0 8.01 70.3 11.44 63.0 18.12 93.0 33.71 

S7 8.6 61.1 3.60 82.8 7.44 58.0 19.00 65.4 25.41 

S8 6.2 84.7 3.01 121.3 4.59 75.2 11.18 92.0 22.50 

Su et al. 

(2009) 

A3 4.08 152.0 2.01 246.0 7.64 145.0 11.40 178.0 19.90 

A6 4.08 153.0 1.83 226.0 6.92 109.8 10.20 144.0 20.90 

B1 6.58 105.0 3.83 125.0 10.00 109.8 25.30 150.0 38.90 

B2 9.08 73.2 4.33 82.9 10.20 70.6 17.40 121.0 25.50 

B3 9.08 65.0 4.01 74.7 8.55 54.9 26.50 90.2 43.10 

C1 6.13 48.2 0.80 60.9 3.37 48.0 14.20 65.7 22.70 

C2 6.13 45.2 1.00 64.9 3.35 52.0 14.80 77.6 25.00 

C3 6.13 45.2 1.00 68.6 2.87 52.0 14.80 54.4 20.10 

Lew et 

al. (2014) 

IMF 10.60 267.0 6.00 296.0 12.70 196.0 40.60 547.0 109.20 

SMF 7.93 790.0 5.00 903.0 11.20 632.0 50.70 1232.0 121.90 

Tsai et al. 

(2014) 

S1 6.40 89.2 1.20 109.7 8.60 101.7 21.35 154.4 43.60 

S2 6.40 42.2 0.68 58.2 7.75 48.9 18.15 135.0 51.80 

S4 6.40 63.5 1.52 76.7 8.61 69.7 18.56 196.0 55.01 

Tsai and 

Chang 

(2015) 

R1 8.00 37.1 0.92 47.1 2.65 31.2 15.36 137.6 55.00 

R2 5.33 108.8 1.57 125.5 8.56 105.1 17.96 182.3 47.47 

R3 4.57 155.2 1.58 196.0 9.56 157.7 25.41 186.7 41.31 

R4 6.40 60.2 0.90 73.2 3.66 58.0 19.11 156.1 51.66 

SS1 6.40 60.3 2.48 71.3 6.21 56.9 16.11 166.1 55.01 

SS2 6.40 60.3 1.30 70.4 5.41 50.5 12.56 163.1 54.61 

 

 
In addition to the stiffness ratios, the chord rotations at the static peak arch (θa) and leveled off 

(θC) responses are another two important parameters for constructing the idealized piece-wise 

linear curves. Fig. 6 shows the variation of these two chord rotations obtained from the referred 

experimental studies with respect to the span-to-depth ratios. It is observed that these two 

parameters have a more distinct trend with the span-to-depth ratio than the stiffness ratios. Hence, 

power regression has been conducted for them and the regression formulae are indicated in the 

figure. Although the coefficients of determination (R
2
) in the figure reveal that the curve fitting 

results are not perfectly consistent with the test results, at least, the general trend of decreasing 

with increased span-to-depth ratios is confirmed for these two chord rotations. Therefore, the 

regression formulae 
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Fig. 5(b) Variation of the estimated stiffness ratios with tensile reinforcement ratios 

 
Table 3 Stiffness ratios of the three phases for the parametric study 

α1 α2 α3 

0.1 0.05 ~ 0.15 @ 0.05 0.05 ~ 0.2 @ 0.05 

0.2 0.05 ~ 0.15 @ 0.05 0.05 ~ 0.2 @ 0.05 

 

a = 0.1303(L/h)
-0.6726

R
2
 = 0.2938

c = 0.2456(L/h)
-0.4786

R
2
 = 0.3255

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

2 4 6 8 10 12
Span/depth

R
o

ta
ti

o
n

 (
ra

d
)

Peak arch

Level off

Curve fit (Peak arch)

Curve fit (leveled off)
c + s

c - s

a + s

a - s

(s=0.0205 )

(s=0.0106)

 

Fig. 6 Variation of θa and θC with span-to-depth ratios 

337



 

 

 

 

 

 

Meng-Hao Tsai 

 

6726.0)/(1303.0  hLa                          (11a) 

and 

4786.0)/(2456.0  hLc                          (11b) 

are used to determine the rotation at the static PAR and LOS in the following numerical 

investigation. In the formulae, L is the clear length of a single span and h is the section depth. 

Standard deviations of the predicted θa and θC are equal to 0.0106 and 0.0205 rad, respectively. 

The predicted θa and θC with plus and minus one standard deviation are also presented in the 

figure. Then, with a given yield rotation θy, the ductility demands at the static PAR and LOS may 

be calculated and the aforementioned analytical pseudo-static response be determined as well.  

 

5.2 Numerical investigation 
 
Based on the analytical expressions and determined parameters, the chord rotation demands of 

the two-span RC beams under gravitational loadings are investigated in this section. Although 

there are 20 different combinations for the considered stiffness ratios, only typical results are 

presented herein for better clarification of their influence. Since the analytical derivation is carried 

out with rotational ductility, a yield rotation, denoted as θy in Fig. 2(b), should be provided for a 

quantitative evaluation. The beam-end yield rotation is usually assumed as 0.005 rad (FEMA 

2000) in conventional nonlinear analysis. However, as estimated from the referred experimental 

studies, the average yield rotation is approximate to 0.01 rad. In order to clarify its effect on the 

rotation demand, numerical analyses with θy=0.005 and 0.01 rad have been conducted and 

compared. The comparison results indicate that the chord rotation demands with θy=0.005 rad are 

slightly larger than the other in a similar variation trend. Therefore, only the numerical 

investigations with θy=0.01 rad are presented in the following.  

At first, the variations of the snap-through prevention rotation (θi) under five typical 

combinations of α1 and α2 are shown in Fig. 7. From Eq. (8), it is known that the catenary stiffness 

ratio does not contribute to this rotation. The equation reveals that θi increases with the static peak-

arch rotation (θa). In other words, it would decrease with increased span-to-depth ratio, as shown 

in the figure. Also, a larger arch stiffness ratio and a smaller softening stiffness ratio would lead to 

a larger snap-through prevention rotation. Generally speaking, it is around 0.07±0.02 rad in the 

figure for the considered span-to-depth range. It is noted that the snap-through prevention rotations 

are larger than the collapse prevention level in the conventional performance-based seismic design 

(FEMA 2000). This explains why the acceptance criteria of plastic rotation for RC beams 

suggested in the GSA guidelines (GSA 2013) are around two times larger than that in the FEMA 

356 guidelines. The development of catenary action would be minor if the chord rotation demand 

of the two-span beams is less than this snap-through prevention limit. 

Fig. 8(a) shows the comparison of the minimum rotation demands (θr) for the ECA under five 

different parametric combinations with α1=0.1. The corresponding snap-through response 

calculated as (θr-θi) is shown in Fig. 8(b). These figures reveal that, similar to the referred 

experimental results, the rotation demands of both the ECA and snap-through response decrease 

with increased span-to-depth ratio. With a larger softening stiffness ratio, for example α2=0.1 and 

0.15 in the figure, the rotation demand for the ECA would likely be larger than the prescribed 0.20 

radians in the GSA and DoD guidelines. In other word, the criterion of 0.20 radians does not  
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Fig. 7 Variation of snap-through prevention rotations 
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Fig. 8(a) Minimum rotation demands (θr) for 

effective catenary action with α1=0.1 

Fig. 8(b) Snap-through rotation (θr-θi) with α1=0.1 

 

  

always guarantee the ECA. A larger softening stiffness ratio, α2, means swifter stiffness 

degradation in the transition phase and thus delays the recovery of PAR. It may occur in members 

suffered from shear failure during the gravitational monotonic loading process (Tsai and 

Chang2015). Also, as observed from the figures, it is realized that a significant portion of the 

rotation demand with a larger softening stiffness ratio is induced by the snap-through response.  

It is seen in Fig. 8(a) that either increasing the catenary stiffness or decreasing the softening 

stiffness can help to reduce the rotation demands. Decreasing the softening stiffness ratio α2 may  

339



 

 

 

 

 

 

Meng-Hao Tsai 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

4 5 6 7 8 9 10 11 12

Span / depth

R
o

ta
ti

o
n

 
r
 (

ra
d

)

55 5

 55

55

1 = 0.2

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

4 5 6 7 8 9 10 11 12

Span / depth
S

n
ap

 r
o

ta
ti

o
n 

( 
r
- 

i)
 (

ra
d

)

55 5

 55

55

1 = 0.2

 

Fig. 9(a) Minimum rotation demands (θr) for 

effective catenary action with α1=0.2 

Fig. 9(b) Snap-through rotation (θr-θi) with α1=0.2 

 

 
be more beneficial than increasing the catenary stiffness ratio α3 in the demand reduction. For 

example, similar reduction is achieved for the case of α2=0.1 and α3=0.05 by either reducing α2 to 

0.05 or increasing α3 to 0.2. In Fig. 5(a), it is observed that the catenary stiffness ratio 

approximately increases with the span-to-depth ratio as the latter is larger than 7.0. In this range, 

the catenary stiffness ratio is generally larger than the softening stiffness ratio and thus benefits the 

rotation reduction. Also, α3 is generally larger than α2 when the averaged tensile reinforcement 

ratio is less than 1.0%, as shown in Fig. 5(b). These evidences imply that the chord rotation 

demand for the ECA under gravitational loading may be reduced if high tensile reinforcement ratio 

and deep-section design can be avoided for the two-span RC beams. 

The influence of increasing arch stiffness ratio on the chord rotations of the ECA and snap-

through response is shown in Fig. 9(a) and 9(b), respectively. Compared with Figs. 8(a) and 8(b), it 

is seen that a larger arch stiffness ratio may reduce both the rotation demands for the ECA and 

snap-through response. For a given span-to-depth ratio, an increased arch stiffness can result in 

larger static PAR and snap-through prevention limit, θi, as observed from Fig. 2(b) and Fig. 7. This 

will lead to a reduced strength degradation range, namely (θC-θi), and alleviate the strength 

degradation. It is especially apparent for the cases with smaller softening stiffness ratios, as shown 

by the curves with α2=0.05 in Fig. 9(b), where the snap-through rotation has been significantly 

reduced. Also, an increased span-to-depth ratio may reduce the leveled off rotation θC as indicated 

by Eq. (11b) and increase the arch stiffness ratio as revealed in Fig. 5(a). Hence, earlier triggered 

catenary action may be expected for the two-span RC beams designed with a shallower section. 

Their PAR, denoted as Pp,a in Fig. 2(b), can be recovered at a less chord rotation demand in the 

catenary phase.  

 

5.3 Importance of pseudo-static analysis 
 
Although dynamic tests can reflect the realistic column-loss scenarios, the experimental costs 

for test setup and instrumentation are usually higher than conventional static tests. Hence, there are 

more experimental studies conducted with static tests. Based on the idealized piece-wise linear  
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Fig. 10(a) Static rotation demands for the effective 

catenary action 

Fig. 10(b) Static rotation demands for the snap-

through response 

 

 

curve, a rotation demand for the static ECA can be obtained from setting Pa=Pu in Fig. 2(b). The 

resulting rotation, θr,s, is written as  

3

232
,

)(




 ac

ysr


                         (12) 

Different from the pseudo-static rotation demand obtained from Eq. (9), the static rotation is 

independent of the arch stiffness ratio. Figs. 10(a) and 10(b) show the rotation demands for the 

static ECA and snap-through response based on Eq. (12). The comparison of Fig. 10 and Fig. 8 

indicates that the rotation demands, either for the ECA or the snap-through response, may be 

underestimated by using the nonlinear static response. The larger the rotation demand is, the more 

significant the underestimation could be. Therefore, if the monotonic static test results of the two-

span RC beams present a recovery of the PAR in the catenary phase, complementary pseudo-static 

analysis is necessary to verify the ECA under realistic dynamic column loss.  

 

5.4 Practical consideration 
 
5.4.1 Design parameters  
From the parametric numerical investigation, it is known that a larger span-to-depth ratio, 

larger arch and catenary stiffness ratios, and smaller softening stiffness ratio are beneficial for the 

reduction of rotation demands. Hence, it would be favorable if the two-span beams may be 

designed to achieve this goal. From Fig. 5(b), it appears that the minimum arch and catenary 

stiffness ratios occur around an averaged reinforcement ratio of 1.0%. As the averaged 

reinforcement ratio (ρs,avg) is less than 1.0%, the arch stiffness ratio would be generally larger than 

the other two ratios and the softening stiffness ratio be the smallest one and remain approximately 

constant. This implies that a tensile steel ratio not larger than 1.0% would be better for less rotation 

demand for the ECA. On the contrary, if ρs,avg is larger than 1.0%, the stiffness ratios appear to 

increase with the reinforcement ratio and both the arch and softening stiffness ratios may be 

comparable and larger than the catenary stiffness ratio. As revealed from the parametric study, this 

would induce a larger rotation demand for the ECA. Similar observation from Fig. 5(a) indicates 
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that a span-to-depth ratio larger than 7.0 would be better for smaller rotation demand for the ECA 

since the softening stiffness ratio is smaller than the other two in this range. Therefore, a tensile 

reinforcement ratio not larger than 1.0% and a span-to-depth ratio not less than 7.0 are suggested 

for the two-span RC beams bridging over the removed column if catenary action is expected in the 

collapse resistance.  

 

5.4.2 Generalized empirical formula  
From the figures of the rotation demand for the ECA, it is known that it may be expressed as a 

power function of the span-to-depth ratio. Hence, an empirical formula is proposed as  

B
r

h

L
A )(                                (13) 

where A and B are the undetermined coefficients. Using the parametric study results, the 

undetermined coefficients A and B have been obtained for each rotation demand curve. They are 

approximated with linear functions of the three stiffness ratios as 

3322110  aaaaA                          (14a) 

3322110  bbbbB                          (14b) 

where ai and bi with i= 0~3 are the regression coefficients. Least-square fit is carried out for the 

twenty sets of coefficients to find the optimal A and B. The final results give  

321 149.1377.2093.14786.0  A                    (15a) 

321 2069.03092.07370.05526.0  B                 (15b) 

Corresponding to Figs. 8(a) and 9(a), the rotation demands for the ECA predicted by using the 

empirical formulae are shown in Figs. 11(a) and 11(b), respectively. From the comparison of the 

figures, it is known that accuracy of the empirical formulae is acceptable in most cases. Therefore, 

instead of the derived rigorous analytical expressions, the empirical formulae may be used to  
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Fig. 11(a) Predicted rotation demand of effective 

catenary action with α1=0.1 

Fig. 11(b) Predicted rotation demand of effective 

catenary action with α1=0.2 
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estimate an approximate rotation demand for the ECA of the two-span RC beams under column 

loss. 

 

 

6. Conclusions 
 

Because of the widespread attention paid to the progressive collapse resistance of building 

structures under column loss in the past decade, several experimental studies have been performed 

with beam-column sub-assemblages composed of a two-span beam. Most test results reveal that 

the development of catenary action is dependent on the beam-end rotational capacity. Hence, chord 

rotation demands for effective catenary action (ECA) of the two-span RC beams are investigated 

in this study. The ECA is defined as the recovery of the peak arch resistance (PAR) in the catenary 

phase. The nonlinear static response of the two-span RC beams under monotonic gravitational 

loadings is idealized as a piece-wise linear curve characterized by the yield strength, PAR, leveled 

off strength, and peak catenary resistance before bar fracture. Arch, softening, and catenary 

stiffness ratios are defined for the post-yield stiffness of the corresponding linearized region. Based 

on the idealized static response, analytical formulations are derived to determine the rotation 

demands for the ECA and snap-through response. Static test results of several published 

experimental studies are used to determine the analytical parameters for the numerical parametric 

study. The study results reveal that the rotation demand of 0.20 rad recommended in the GSA and 

DoD guidelines for catenary development does not always guarantee the ECA. A larger rotation 

demand for the ECA may be induced if the span-to-depth ratio of the two-span RC beams 

decreases. Also, increasing the arch and catenary stiffness ratios and decreasing the softening 

stiffness ratio are beneficial to the reduction of rotation demands. Because of a larger span-to-

depth ratio, earlier triggered ECA may be expected for the two-span beams designed with a 

shallow section. On the contrary, higher rotation demands may be induced for those designed with 

a deep section. Since RC members with a deep section are usually responsible of large shear 

and/or moment demands, it is thus suggested to use their PAR, instead of the ultimate catenary 

strength, as the progressive collapse resistance for safety concern. The snap-through prevention 

limit, which is the rotation demand at the PAR, approximately varies between 0.05 rad and 0.10 

rad for the considered span-to-depth range. Furthermore, the rotation demand for the ECA may be 

underestimated by using the nonlinear static response. Thus, complementary pseudo-static analysis 

is advised to verify the ECA under realistic dynamic column loss even if the static PAR can be 

recovered in the nonlinear static response. From the variations of the analytical parameters 

estimated from the referred experimental studies and the parametric study results, a tensile 

reinforcement ratio not greater than 1.0% and a span-to-depth ratio not less than 7.0 are suggested 

for the two-span RC beams bridging over the removed column if the ECA is expected in the 

collapse resistance. Instead of the rigorous analytical expressions, the proposed empirical formula 

is practical for estimating an approximate rotation demand for the ECA of the two-span RC beams.  
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