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Abstract.  The aim of this study is to investigate the seismic resistance of dry stone arches under in-plane 

seismic loading. For that purpose, several numerical analyses were performed using the combined finite-

discrete element method (FDEM). Twelve types of arches with different ratios of a rise at the mid-span to 

the span, different thicknesses of stone blocks and different numbers of stone blocks in the arch were 

subjected to an incremental dynamic analysis based on excitation from three real horizontal and vertical 

ground motions. The minimum value of the failure peak ground acceleration that caused the collapse of the 

arch was adopted as a measure of the seismic resistance. In this study, the collapse mechanisms of each type 

of stone arch, as well as the influence of the geometry of stone blocks and stone arches on the seismic 

resistance of structures were observed. The conclusions obtained on the basis of the performed numerical 

analyses can be used as guidelines for the design of dry stone arches. 
 

Keywords:  seismic resistance; dry stone arch; seismic loading; stability; combined finite-discrete element 

method (FDEM) 

 
 
1. Introduction 
 

Arches are one of the most common structural shapes present in the worldwide architectural 

heritage. They have been used in architecture since the early beginnings of the building of 

settlements, religious structures, monuments, bridges and vaults. Dry stone arches are often used, 

probably due to their simple geometry, construction and their ability to transfer external load by a 

compressive stress (Boyd 1978, DeJong 2009). Some of these types of structures are situated in 

seismically active areas. Further, most of these structures are of historical and architectural value, 

therefore accurate and precise tools of analysis are needed to ensure reliable predictions of their 

seismic safety. 

Arches are rarely found as detached structures. They are usually located within bridges and 

walls. If one takes into account the influence of surrounding walls or a bridge over arches, the 

number of variables that can affect the stability of such a structure increases. Therefore, to reduce 
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the number of parameters and reach some general conclusions, this article focuses on the seismic 

resistance of dry stone arches. Investigation into a wider influence of boundary conditions (such as 

walls or bridges over the arches) is indicated for further research. 

To determine the collapse and seismic resistance of masonry structures, as well as arch bridges 

and masonry arches in general, one can use different numerical methods. The finite element 

method is the most commonly used method for the analysis of a structure. It has found its 

application in the analysis of block and block-like structures and stone masonry structures (Croci 

1995, Lourenço and Rots 1997, Macchi 2001, Pelà et al. 2009, Erdolen and Doran 2012, Milani 

and Lourenço 2012, Turker 2014). In the framework of this method, the material of a structure is 

mostly regarded as a fictitious, homogeneous, orthotropic continuum where the average stress and 

strain relation is obtained either experimentally or by homogenization techniques. The 

disadvantages of modelling masonry structures as a continuum lie in the fact that such models are 

unable to take into account the appearance of large discontinuities in the displacement field 

between the blocks, as well as to simulate the mechanical interaction between blocks. This is 

important in the analysis of structures exposed to an intensive seismic load and in the analysis of a 

progressive collapse of masonry structures. Drosopoulos et al. (2008) investigated the influence of 

geometry and the movement of abutments on the collapse of stone arch bridges using the finite 

element method. 

For the analysis of problems with a mechanical interaction between several blocks that can 

have finite rotations and displacements, numerical models based on the discrete element method 

were developed. The original discrete element method was initially oriented towards the study of 

jointed rock (Cundall 1971) and was later extended to other engineering applications including the 

modelling of masonry structures (Pagnoni 1994, Lemos 1998, Sincraian 2001, Bićanić et al. 2003, 

Rafiee et al. 2008, Rafiee and Vinches 2013). The general idea behind various applications of the 

discrete element method in masonry is an idealization of material as a discontinuum where joints 

are modelled as contact surfaces between different blocks. This approach is suitable for modelling 

different types of non-linear behaviour, including large displacements and rotation with complete 

detachment of blocks. A disadvantage of models based on the discrete element method is their 

inability to account for the state of stress and strain within the discrete element.  

Bernat-Maso et al. (2012) used an experimental testing of masonry arches to validate different 

methods of analysis. DeJong et al. (2008) evaluated the susceptibility of masonry arches to 

earthquake loading through experimental testing. 

Recently, an increasing number of models have attempted to combine the advantages of both 

finite and discrete element method (Petrinic 1996, Barbosa 1996, Mamaghani et al. 1999). Pérez-

Aparicio et al. (2013) investigated the behaviour of masonry arches using a discontinuous 

deformation analysis. One of these methods is the combined finite-discrete element method 

(FDEM) developed by Munjiza (Munjiza 2004, Munjiza et al. 2012). The combined FDEM 

method, the subject of this paper, is based on a simulation of the behaviour of a large number of 

discrete elements which can be found in interaction. Within the framework of this method, discrete 

elements are discretized by constant-strain, triangular finite elements that enable deformability of 

discrete elements. Material non-linearity, including fracture and fragmentation of discrete 

elements, is considered through contact elements (Munjiza et al. 1999) that are implemented 

within a finite element mesh. The contact interaction between discrete elements, including friction, 

is taken into account by a distributed potential contact force (Munjiza 2004). The main processes 

included in the FDEM method are contact detection, contact interaction, finite strain elasticity, 

fracture and fragmentation, all of which are explained below. To take all these effects into account,  
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Fig. 1 Discretization of a dry stone masonry structure 

 

 

appropriate algorithms were developed within the scope of this method (Munjiza 2004).  

The FDEM method was successfully applied in the analysis of dry stone masonry structures 

and it showed good agreement with experimental results (Smoljanovic et al. 2013). This model is 

capable of predicting the collapse mechanism of dry stone masonry structures under seismic loads, 

as well as determining the safety of a structure by determining the value of the collapse load. To 

identify the influence of the geometry of a dry stone arch on seismic resistance, several numerical 

analyses using the combined finite-discrete element method were performed in this research. 

Twelve types of arches with different ratios of a rise at the mid-span to the span, different 

thicknesses of stone blocks and different numbers of stone blocks in the arch were subjected to an 

incremental dynamic analysis based on excitation from three real ground motions. The seismic 

resistance and collapse mechanisms for each type of arch were analysed on the basis of these 

results. Finally, based on the analyses performed in this study, recommendations for the design of 

stone arches with a greater seismic resistance were given. 

 

 

2. The basics of the combined finite-discrete element formulation 
 

2.1 Discretization of structure 
 

Discretization of a dry stone masonry structure in the framework of the FDEM method is 

shown in Fig. 1. Each stone block is modeled as a discrete element, and each discrete element has 

its own finite element mesh which is used for the analysis of particle deformability. Masses are 

lumped into the nodes of finite elements, as shown in Fig. 1. 

Given that the strength of stone is mostly much greater than the effective stress level occurring 

in stone structures (Oliveira 2003, Smoljanovic et al. 2013) and that, consequently, structural 

failure occurs mainly due to the loss of stability caused by relative displacements between blocks 

under the influence of a horizontal force, the cracking of stone blocks has not been considered in 

the performed analysis. 

 
2.2 Deformability of finite elements 
 

In the combined finite-discrete element method, the geometry of a three-noded, triangular finite  
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Fig. 2 Initial and current configuration of a triangular finite element 

 

 

element is defined by global coordinates of each node (x, y), where (xi, yi) represent the 

coordinates of their initial configuration and (xc, yc) the coordinates of their current configuration 

(see Fig. 2). Since discrete elements change their positions in space, their displacements can be 

divided into two different components: displacements of discrete elements as solid bodies which 

cause translation and rotation and displacements causing deformations in shape and volume. 

Displacements of a deformable body involving rotation and deformation in the vicinity of a certain 

point are defined by the deformation gradient F (Munjiza 2004). 

As a consequence of utilising triangular, three-noded finite elements, the deformation gradient 

is constant in all the points of the triangle and it can be obtained as follows 
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Knowing the deformation gradient F, it is possible to calculate the Green-St. Venant strain tensor 

E


 from the following expression 

 IFFE  T

2

1
                    (2) 

Adopting the linear-elastic relationship between the stress and strain, the Cauchy stress tensor T 

can be obtained from the following expression 

DIET 

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
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

 v

EE

211


                  (3) 

where E is the modulus of elasticity, υ is the Poisson ratio, εv is the volume deformation expressed 

by the following equation: 

zzyyxxv                 (4) 

where the last element on the right-hand side of Eq. (3) represents the contribution of the 

deformation velocity, where   is the damping coefficient and D is the rate of the deformation 

tensor (Munjiza et al. 1995). 
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Fig. 3 Contact force due to an infinitesimal overlap around points Pt and Pc 

 

 

The force belonging to each node and acting per unit of length on the side of a triangular finite 

element is obtained by directly integrating the strain tensor according to the following expression 
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where nx,c and ny,c present components of the unit outer normal to the side of the triangular finite 

element. 

 
2.3 Contact detection and interaction 
 

The purpose of the contact detection algorithm is to detect pairs of discrete elements that are 

close to each other and eliminate those that are far apart and cannot establish contact. To this end, 

an NBS (no binary search) contact detection algorithm (Munjiza 2004, Munjiza et al. 1998) was 

implemented in the FDEM code.  

Contact interaction and friction between discrete elements are taken into account via a 

distributed potential contact force (Munjiza 2004). In FDEM, a penalty function method based on 

potential contact force is employed to calculate the normal contact force. This method is based on 

the assumption that contact pairs (contactor and target) tend to collide and generate distributed 

contact forces. 

The total contact force fc is obtained by integrating the infinitesimal contact force df (see Fig. 

3), which leads to 

 dSgradgradp
ctS

tcc 





f             (6) 

where p is the penalty term, φc and φt are potential fields defined in contactor and target, 

respectively (Munjiza and Andrews 2000). The calculated contact force is distributed around the 

nodes surrounding the contact to preserve the system from artificial stress concentration. By 

replacing the integration over finite elements with the equivalent integration over finite element 

boundaries (Munjiza 2004), the following equation for contact force fc is obtained 
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where βc and βt are the contactor and target discrete elements, respectively; n is the outward unit 
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normal to the boundary of the overlapping area and φ is a potential function. The integration over 

finite element boundaries can be written as a summation of the integration over the edges of the 

finite elements. 

The total contact force exerted by the target triangle on an element edge is given by the area of 

the diagram of the potential over the edge 


L

edgec dvvp
0

2, )(
1

u
u

f               (8) 

where the term u
2
 comes from the fact that vector u, which is orthogonal to the edge of the finite 

element, and the tangential vector v are not unit vectors (Munjiza 2004). The calculated elemental 

contact force is distributed around the nodes surrounding the contact to preserve the system from 

artificial stress concentration. The well-known, classic, Coulomb-type friction is implemented and 

described as follows: 

ttt k δf                  (9) 

where ft is the tangential elastic contact force, kt is the penalty term for friction, and δt is the 

tangential displacement vector between particles (Xiang et al. 2009). 

If ft is greater than the friction force satisfying the Coulomb-type friction law, | ft |>µ| fn |, the 

particles slide over each other, and the tangential force is calculated using the total normal elastic 

contact force fn 

nt ff                 (10) 

where µ  is the coefficient of sliding friction. 

 
2.4 Time integration of equations of motion 
 

In the combined finite-discrete element method, the mass of a system is concentrated in the 

nodes of finite elements (see Fig. 4), which leads to a lumped-mass model. 

Time integration of the equations of motion in time was conducted explicitly for each 

corresponding node by means of the finite differences method (Munjiza 2004), which is 

conditionally stable and whose stability and accuracy depend on the choice of a time step. The 

description of the update of variables can be written as 
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Fig. 4 Lumped-mass model 
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Fig. 5 Flowchart of the numerical procedure 

 

  
(a) (b) 

Fig. 6 Dry stone arch: (a) geometry (b) finite element mesh 

 
 
where xi, vi, fi, mi are the displacement vector, the velocity vector, the total force vector and the 

mass of each node, respectively, and Δt is a time step. 

Fig. 5 shows a flowchart of the presented numerical procedure.  

 

 

3. Numerical analyses and discussion 
 

To identify the influence of the geometry of a dry stone arch on its seismic resistance, several 

numerical analyses were performed using the combined finite-discrete element method. Twelve 

types of arches (A1, A2, B1, B2, C1, C2, D1, D2, E1, E2, F1, F2) with different ratios of a rise at 
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the mid-span f to the span L, different thicknesses of stone blocks t and different numbers of stone 

blocks in the arch were subjected to an incremental dynamic analysis based on excitation from 

three real ground motions. The geometry of the dry stone arch with the symbols f, L and t is shown 

in Fig. 6(a), and a typical finite element mesh is shown in Fig. 6(b). 

Material characteristics used in the numerical analyses, which proved suitable for analysis of 

dry stone masonry structures, were adopted according to bibliographic information found in 

Smoljanovic (2013) and shown in Table 1. 

The geometry of dry stone arches with a rise at the mid-span of f=2.5 m are shown in Fig. 7. 

The geometry of dry stone arches with a rise at the mid-span of f=4.0 m are shown in Fig. 8.  

 

 
Table 1 Material characteristics of stone 

Density Modulus of elasticity Friction coefficient Damping coefficient 

ρ (kg/m
3
) E (MPa) µ   

2600 48400 0.6 4.5∙10
6
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 7 Geometry of the arches type: (a) A1 (b) A2 (c) B1 (d) B2 (e) C1 (f) C2 

 

 
(a) 

 
(b) 

Fig. 8 Geometry of the arches type: (a) D1 (b) D2 (c) E1 (d) E2 (e) F1 (f) F2 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 8 Continued 

 
 

In the presented numerical analyses, twelve different types of dry stone arches were exposed to 

horizontal and vertical ground acceleration whose values were taken from accelerograms of three 

real earthquakes recorded on the rock soil. The horizontal accelerograms were first scaled to the 

peak ground acceleration ag of 0.30 g and the arches were exposed to that excitation with 

associated vertical amplitudes. After that, the horizontal and associated vertical accelerations were 

gradually increased until the collapse of the arch. 

The earthquake accelerograms were taken from the European Strong-Motion Database (2014). 

The selected earthquakes are Campano Lucano (Italy)-1980, Valnerina (Italy)-1979 and Calabria 

(Italy)-1978. 

Figs. 9, 10 and 11 show the dynamic behaviour of the type A1 dry stone arch exposed to the 

failure peak ground acceleration ag equal to the seismic excitation generated by the Campano 

Lucano, Valnerina and Calabria earthquakes (ag=1.00 g, ag=2.00 g and ag=2.20 g, respectively). 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 9 Behaviour of the type A1 arch exposed to the failure peak ground acceleration of the Campano 

Lucano earthquake (ag=1.00 g) in time periods of: (a) t=13.60 s (b) t=14.96 s (c) t=15.38 s 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 10 Behaviour of the type A1 arch exposed to the failure peak ground acceleration of the Valnerina 

earthquake (ag=2.00 g) in time periods of: (a) t=5.85 s (b) t=6.95 s (c) t=8.38 s 
 

251



 

 

 

 

 

 

Ivan Balic, Nikolina Zivaljic, Hrvoje Smoljanovic and Boris Trogrlic 

 
(a) 

 
(b) 

 
(c) 

Fig. 11 Behaviour of the type A1 arch exposed to the failure peak ground acceleration of the Calabria 

earthquake (ag=2.20 g) in time periods of: (a) t=4.77 s (b) t=10.23 s (c) t=12.80 s 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 12 Behaviour of the type B1 arch exposed to the failure peak ground acceleration of the Campano 

Lucano earthquake (ag=1.20 g) in time periods of: (a) t=13.31 s (b) t=14.41 s (c) t=16.17 s 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 13 Behaviour of the type C1 arch exposed to the failure peak ground acceleration of the Campano 

Lucano earthquake (ag=1.40 g) in time periods of: (a) t=10.87 s (b) t=11.29 s (c) t=13.75 s 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 14 Behaviour of the type A2 arch exposed to the failure peak ground acceleration of the Campano 

Lucano earthquake (ag=2.00 g) in time periods of: (a) t=11.55 s (b) t=12.76 s (c) t=14.52 s 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 15 Behaviour of the type B2 arch exposed to the failure peak ground acceleration of the Campano 

Lucano earthquake (ag=2.10 g) in time periods of: (a) t=10.87 s (b) t=12.25 s (c) t=13.13 s 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 16 Behaviour of the type C2 arch exposed to the failure peak ground acceleration of the Campano 

Lucano earthquake (ag=2.20g) in time periods of: (a) t=10.98 s (b) t=12.34 s (c) t=12.61 s 
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Seismic resistance of dry stone arches under in-plane seismic loading 

The performed numerical analysis of the seismic resistance for all types of arches indicated that 

the Campano Lucano earthquake was the most unfavourable, as it is shown in Table 2. Therefore, 

the results of the numerical analysis are shown below only for the Campano Lucano earthquake. 

Figs. 12-16 show the behaviour of dry stone arches with the ratio of the rise at the mid-span to 

the span f/L=0.25 exposed to failure peak ground acceleration. 

Figs. 17-22 show the behaviour of dry stone arches with the ratio of the rise at the mid-span to 

the span f/L=0.40 exposed to failure peak ground acceleration. 

As the result of the numerical analysis, the minimum values of the ratio ag/g causing the loss of 

stability of each type of stone arch are presented in Table 2. The minimum value (ag/g)min of the 

dynamic response for a series of three earthquake excitations was adopted as a measure of the 

seismic resistance. 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 17 Behaviour of the type D1 arch exposed to the failure peak ground acceleration of theCampano 

Lucano earthquake (ag=0.45 g) in time periods of: (a) t=12.83 s (b) t=13.42 s (c) t=14.15 s 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 18 Behaviour of the type E1 arch exposed to the failure peak ground acceleration of the Campano 

Lucano earthquake (ag=0.50 g) in time periods of: (a) t=12.85 s (b) t=13.79 s (c) t=14.15 s 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 19 Behaviour of the type F1 arch exposed to the failure peak ground acceleration of Campano 

Lucano earthquake (ag=0.55 g) in time periods of: (a) t=12.96 s (b) t=13.66 s (c) t=14.12 s 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 20 Behaviour of the type D2 arch exposed to the failure peak ground acceleration of the Campano 

Lucano earthquake (ag=1.35 g) in time periods of: (a) t=12.32 s (b) t=14.30 s (c) t=15.14 s 
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(a) 

 
(b) 

 
(c) 

Fig. 21 Behaviour of the type E2 arch exposed to the failure peak ground acceleration of the Campano 

Lucano earthquake (ag=1.40 g) in time periods of: (a) t=8.93 s (b) t=9.59 s (c) t=10.14 s 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 22 Behaviour of the type F2 arch exposed to the failure peak ground acceleration of the Campano 

Lucano earthquake (ag=1.40 g) in time periods of: (a) t=12.23 s (b) t=12.87 s (c) t=14.48 s 

 
Table 2 The failure peak ground acceleration due to which the dry stone arches lose their stability 

Arch type 
ag/g 

(ag/g)min 
Campano Lucano Valnerina Calabria 

A1 1.00 2.00 2.20 1.00 

B1 1.20 2.20 2.35 1.20 

C1 1.40 2.10 2.55 1.40 

A2 2.00 2.70 2.65 2.00 

B2 2.10 2.75 2.75 2.10 

C2 2.20 2.80 3.00 2.20 

D1 0.45 0.85 1.15 0.45 

E1 0.50 0.80 1.10 0.50 

F1 0.55 0.90 1.10 0.55 

D2 1.35 1.85 2.60 1.35 

E2 1.40 1.90 2.20 1.40 

F2 1.40 1.90 2.30 1.40 

 

 

One of the most important parameters in the design and construction of arches is the ratio of the 

rise at the mid-span to the span of the arch f/L. The results of the numerical analyses presented in 

the Table 2 show that shallow dry stone arches (arches A1, A2, B1, B2, C1, C2) have greater 

seismic resistance in comparison to deep arches. This is due to the fact that arches with a higher 

ratio of the rise at the mid-span to the span f/L require less horizontal inertial force that causes 

separation of stone blocks and the occurrence of the mechanism. 

Also, it can be observed that dry stone arches with a higher stone block thickness t (arches A2, 

B2, C2, D2, E2, F2) have greater seismic resistance in comparison to thinner arches. This is related 

to the thrust zone which, in blocks with higher thickness, is wide enough to transmit the whole 

thrust. 
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Seismic resistance of dry stone arches under in-plane seismic loading 

The presented results also indicate that arches with a larger number of stone blocks mostly 

possess higher seismic resistance in comparison to arches consisting of smaller number of stone 

blocks. The authors firmly believe that this is related to the fact that arches with larger number of 

stone blocks have greater possibility to change their shape in order to hold the thrust line inside the 

width of cross section.  

From the obtained results, shown in Figs. 9 and 12-22, it can be observed that for the stone 

arches with a smaller ratio of the rise at the mid-span to the span f/L, especially for arches with 

higher thickness of stone blocks, the collapse occurs due to the sliding of the boundary blocks on 

the support. On the other hand, in the arches with a higher ratio of the rise at the mid-span to the 

span f/L, the collapse occurs as the appearance of the mechanism, i.e., formation of the minimum 

of four hinges. This is related to the fact that by increasing thickness of stone blocks, horizontal 

inertial force which causes separation of stone blocks increases, too, and in the case of shallow 

stone arches it can become bigger than frictional resistance between a stone block and the base. 

Also, it can be observed that for the dry stone arches with a higher ratio of the rise at the mid-span 

to the span f/L, regardless of the thicknesses and number of blocks, the collapse of arches occurs as 

the appearance of the mechanism, i.e., formation of the minimum of four hinges. 

 

 

4. Conclusions 
 

This paper presents the application of the combined FDEM method with the scope of 

identifying the influence of the geometry of dry stone arches on their seismic resistance. Twelve 

types of arches with different ratios of the rise at the mid-span to the span, different thicknesses of 

stone blocks and different numbers of stone blocks in the arch were subjected to an incremental 

dynamic analysis based on excitation from three ground motions. The minimum value of the 

failure peak ground acceleration that caused collapse of arches was adopted as a measure of the 

seismic resistance. Collapse mechanisms for each type of stone arch and their seismic resistance 

were observed.  

Based on the numerical analyses performed in this paper, the following conclusions can be 

reached: 

• Shallow dry stone arches have greater seismic resistance in comparison to deep arches. 

• Dry stone arches with a higher stone block thickness have greater seismic resistance in 

comparison to thinner arches. 

• Arches with a larger number of stone blocks mostly possess higher seismic resistance in 

comparison to arches consisting of smaller number of stone blocks. 

• For the dry stone arches with a smaller ratio of the rise at the mid-span to the span, especially 

arches with higher thickness of stone blocks, the collapse occurs due to sliding of boundary 

blocks on the support, whereas in the arches with a higher ratio of the rise at the mid-span to 

the span, the collapse occurs as the appearance of the mechanism, i.e., formation of the 

minimum of four hinges. 
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