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Abstract.  A large number of bridges were built several decades ago, and most of which have gradually 

suffered serious deteriorations or damage due to the increasing traffic loads, environmental effects, and 

inadequate maintenance. However, very few studies were conducted to investigate the vibration behaviors of 

a damaged bridge under moving vehicles. In this paper, the vibration behaviors of such vehicle-bridge 

system are investigated in details, in which the effects of the concrete cracks and bridge surface roughness 

are particularly considered. Specifically, two vehicle models are introduced, i.e., a simplified four 

degree-of-freedoms (DOFs) vehicle model and a more complex seven DOFs vehicle model, respectively. 

The bridges are modeled in two types, including a single-span uniform beam and a full scale reinforced 

concrete high-pier bridge, respectively. The crack zone in the reinforced concrete bridge is considered by a 

damage function. The bridge and vehicle coupled equations are established by combining the equations of 

motion of both the bridge and vehicles using the displacement relationship and interaction force relationship 

at the contact points between the tires and bridge. The numerical simulations and verifications show that the 

proposed modeling method can rationally simulate the vibration behaviors of the damaged bridge under 

moving vehicles; the effect of cracks on the impact factors is very small and can be neglected for the bridge 

with none roughness, however, the effect of cracks on the impact factors is very significant and cannot be 

neglected for the bridge with roughness. 
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1. Introduction 
 

The studies on the bridge vibration under moving vehicles have been conducted extensively 

and achieved great success during the recent decades. The dynamic performance of bridges can be 

affected by many factors, such as the vehicle type, vehicle speed, and road surface condition, etc. 

For a bridge with given structural properties and road surface conditions, the mechanical 

properties (or dynamic characteristics) of vehicles traveling on the bridge play a very important  
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(a)Cracks at beam bottom (b) Cracks at beam web 

Fig. 1 The damaged cracks at bottom and web of the beam (Inside of red line is the crack zone) 

 

 

role in affecting the dynamic response of the structural system. In the literature, many 

vehicle-bridge interaction models have been proposed. For example, the vehicle was usually 

simulated as a single degree-of-freedom (DOF) system, two-DOF system (Fryba 1974, Wang et al. 

1992, Green and Cebon 1997), or a more complex seven DOFs system (Law and Zhu 2005, Deng 

and Cai 2010a, Zhang and Cai 2012). The bridge was simplified as simply-support beams (Law et 

al. 1997, Law et al. 1999, Law et al. 2001) or multi-span continuous beams (Zhu and Law 2002, 

Chan and Ashebo 2006, Yin et al. 2010, Yang et al. 2013). However, most of these studies were 

primarily focused on the intact bridge structures, and very few studies examined the behaviors of 

damaged bridge structures with cracks.  

As a matter of fact, a large number of bridges were built several decades ago, and many of 

which have gradually suffered serious deteriorations or damage due to the increasing traffic loads, 

environmental effects, material aging, and inadequate maintenance (Czaderski and Maotavalli 

2007, AASHTO 2004). For most of the in-service bridges, the cracked zones usually occurred at 

the bottom or web of the beams, as shown in Fig. 1. These cracks of the concrete may significantly 

influence vibration performance of the vehicle-bridge system, which deserves a more in-depth 

investigation. 

Some studies have been tentatively conducted on the vehicle-bridge vibration of damaged 

structures. Lee and Ng (1994) analyzed the dynamic responses of a beam with a single-sided crack 

under a moving load. Abdel Wahab et al. (1999) used a damage function to describe the damage 

pattern of reinforced concrete beams with three parameters, i.e., the length of damaged zone, the 

magnitude of damage, and the variation of the Young’s modulus of material. Mahmoud and Abou 

Zaid (2002) studied the dynamic responses of simply supported beams with transverse cracks 

subjected to a moving mass. Law and Zhu (2004) presented a method to assess the condition and 

load-carrying capacity of a damaged simply supported beam. Ariaei et al. (2009) demonstrated the 

differences between the displacement responses of the intact beam and cracked beam. Nguyen and 

Tran (2010) studied a cracked bridge subject to a moving vehicular load by analyzing the time 

history of deflections from a vehicle-bridge system. Khoa (2013) studied the open and breathing 

crack detections of a beam subjected to a simple moving vehicle. As can be noted, some simplified 

assumptions were made in all above studies. The complicated bridge structures, vehicles, and 

crack mechanisms were simplified into the simply supported beams, moving loads, and simple 
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crack models. In addition, one of the most important key factors i.e., the impact factor, was almost 

not fully investigated during the above analysis of bridge-vehicle interaction responses. The 

neglect of these two perspectives may results in an incomprehensive understanding of the bridge 

vibration under moving vehicles. 

This study is mainly focused to study the dynamic responses of a high-pier bridge under 

moving vehicular loads, where the effects of the concrete cracks and bridge surface roughness are 

considered. Specifically, two vehicle models, (i.e., a four DOFs vehicle model and a seven DOFs 

vehicle model), and two bridge models, (i.e., a single-span uniform beam and a real reinforced 

concrete high-pier bridge), are respectively introduced. The crack zone in the reinforced concrete 

bridge is modeled as a damage function. The bridge-vehicle coupled equations are established by 

combining the equations of motion of both the bridge and vehicles, together with considering the 

displacement and interaction force relationships at the contact points between the bridge and tires. 

The numerical simulations and verifications demonstrate that the proposed methodology can 

rationally simulate the vibration behaviors of the damaged bridge under moving vehicles.  

 

 

2. Model of vehicle-bridge coupled system 
 

2.1 Vehicular load model 
 

The three-dimensional mathematical model for a vehicle is shown in Fig. 2. The vehicular body 

is assigned three DOFs, each corresponding to the vertical displacement (yt), pitch rotation about 

the transverse axis (θt), and roll rotation about the longitudinal axis (ϕt). Each wheel/axle has two 

degrees of freedom in the vertical and roll directions (
1 2 1 2

a a ay , y , ,a  ), respectively. Thus, the 

total number of the independent degrees of freedom is seven. The equations of motion of the 

vehicle are derived using the Lagrange's formulation as follows. 

The vertical displacements of the suspension springs of the vehicle can be written as 

 

 

 

 

(a) Elevation View (b) Cross-sectional View 

Fig. 2 Idealization of two-axle vehicle: (a) Elevation view; (b) Cross-sectional view 
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1 1 1

1 2( ) ( / 2)( )sy t a t a tU y y s l                            (1) 

2 1 1

1 2( ) ( / 2)( )sy t a t a tU y y s l                            (2) 

3 2 2

2 3( ) ( / 2)( )sy t a t a tU y y s l                            (3) 

4 2 2

2 3( ) ( / 2)( )sy t a t a tU y y s l                            (4) 

where 
i

syU (i=1, 2, 3, and 4) is the vertical displacements of axles; l2 is the distance between the 

front axle and the center of the vehicle; l3 is the distance between the rear axle and the center of the 

vehicle; and s1 and s2 are the distance between two tires at each of the front and rear axles, 

respectively.  

The vertical elastic and damping forces of the i
th
 (i=1, 2, 3, and 4) vehicle suspension can be 

written as 

i i i

sy sy syF K U                                (5) 

    i
sy

i
sy

i
dsy UDF                                  (6) 

where 
i

syU ( i=1, 2, 3, and 4) is the vertical displacements of each tire and can be expressed as 

1 1 1 1 1

1 _( / 2) [ ( ) ]tyx a a b contactU y s r x y    
                     

(7) 

2 1 1 2 2

1 _( / 2) [ ( ) ]tyx a a b contactU y s r x y                          (8) 

3 2 2 3 3

2 _( / 2) [ ( ) ]tyx a a b contactU y s r x y                          (9) 

4 2 2 4 4

2 _( / 2) [ ( ) ]tyx a a b contactU y s r x y                         (10) 

where r(x) represents the vertical bridge surface roughness at x location of the i
th
 (i=1, 2, 3, and 4) 

tire contact position; _

i

b contacty
 

represents the bridge dynamic vertical deflection at x location of 

the i
th
 (i=1, 2, 3, and 4) tire contact position with bridge. 

The vertical bridge-vehicle interaction forces acting at the bridge surface can be written as 

i i i

ty ty tyF K U                                 (11) 

i
ty

i
ty

i
dty UDF                                   (12) 

Therefore, the equations of motion of the full-scale vehicle can be obtained from the 

Lagrangian formulation and expressed as 

gmFFFFFFFFym tdsydsydsydsysysysysyyt  )()( 43214321               (13) 

0))(2/())(2/(

))(2/())(2/(
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21

1

43
2

21
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



dsydsydsydsy

sysysysytxt

FFsFFs

FFsFFsI 
                   (14) 
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Eqs. (13)-(19) can be rewritten in a matrix form as 

}{}{}]{[}]{[}]{[ bvGvvvvvv FFyKyCyM                     (20) 

Where [Mv], [Cv], [Kv]=mass, damping, and stiffness matrices of the vehicle, respectively; {yv}= 

vector of the vertical displacements of the vehicle; {FG}=gravity force vector of the vehicle; and 

{Fv-b}=vector of the wheel-road contact forces acting on the vehicle. 

 

2.2 Equations of motion of bridge model 
 

The equation of motion of a bridge can be written as 

          b b b b b b b-vM U + C U + K U = F                    (21) 

Where [Mb], [Cb], and [Kb] are the mass, damping, and stiffness matrices of the bridge,  

respectively; {Ub} is the displacement vector for all DOFs of the bridge;  bU  and  bU  are the  

first and second derivative of {Ub} with respect to time, respectively; and {Fv-b} is a vector 

containing all external forces acting on the bridge.  

 

2.3 Assembling the vehicle-bridge coupled system 
 

Using the displacement relationship and the interaction force relationship at the contact points 

between bridge and tires, the vehicle-bridge coupled system can be established by combining the 

equations of motion of both the bridge and vehicle, as shown below 

b b b b b b v b b b b b v b b r

v v v b v v v b v v b r G

M y C C C y K K K y F

M y C C y K K y F F

    

  

              
              

             
      (22) 

where Cb-b, Cb-v, Cv-b, Kb-b, Kb-v, Kv-b, and Fb-r are related to the contact forces at the interface of the 

wheel and bridge. Since the positions of the contact points, as well as the contact forces, change 

with the vehicle moving along the bridge, all these sever terms are time-dependent and varied with 

different vehicle positions on the bridge.  

To simplify the bridge model and save computation effort, the modal superposition technique 

method can be used; the displacement vector of the bridge {yb} in Eq. (22) can be expressed as:  
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            1 2 1 2

T

b n n b by                     (23) 

where n is the total number of modes used for the bridge; {Φi} and ξi are the i
th
 (i=1..n) mode 

shape of the bridge and the i
th
 generalized modal coordinate, respectively. Each mode shape is 

normalized such that      1 ib

T

i M  and     2

iib

T

i K  .  

Assuming [Cb] in Eq. (22) equal to 2ωiηi[Mb], where ηi is the percentage of the critical damping 

for the i
th
 mode of the bridge, Eq. (22) can be simplified as 

 
2

2 T T

b i i b b b b b b v b

v v b b v vv

T T T
bi b b b b b b v b b r

vv b b v v r G

I ω η I Φ C Φ Φ C

M C Φ C yy

ξω I Φ K Φ Φ K Φ F

yK Φ K F F

  



  

 

       
     

       

     
     

    

        (24) 

The vehicle-bridge coupled system in Eq. (24) contains only the modal properties of the bridge 

and the physical parameters of the vehicles. As a result, the complexity of solving the 

vehicle-bridge coupling equations is greatly reduced. Eq. (24) is solved by the Newmark-β
 
method 

in time domain.  

 

2.4 Damage functions of the reinforced concrete bridge 

 

When dealing with cracks in the concrete bridge, Abdel Wahab et al. (1999) used a damage 

function to describe the damage pattern of reinforced concrete beams with three parameters, i.e. 

the length of damaged zone, the magnitude of damage, and the variation of the Young’s modulus 

of material from the center to the ends of the damaged zone. Law and Zhu (2004) verified the 

accuracy of this proposed damage function with the dynamic tests on a simply supported 

reinforced concrete bridge deck. In the present paper, such same damage function was used to 

study the effects of cracks on the vehicle-bridge coupled vibration.  

Based on the results in Abdel Wahab et al. (1999), the damage in a reinforced concrete beam is 

considered as a reduction in the Young’s modulus of material with the following function 

2

0( ) (1 cos ( ( ) ))
2 / 2

( / 2 / 2)

c m

c c

x l
EI x E I

L

l L x l L






 


 

   

                     (25) 

Where α, β, and m are the damage parameters. lc denotes the mid-point of the damage zone from 

the left support of the beam. β characterizes the length of the damaged zone and the value is in the 

range between 0.0 and 1.0. α characterizes the magnitude of the damage and the value is between 

0.0 and 1.0. The beam is intact when α equals to 0.0; and the bending stiffness of the damage zone 

is zero when α equals to 1.0. m characterizes the variation of the Young’s modulus from the center 

to the two ends of the damage zone. If m is larger than 1, a flat damage pattern is produced; 

otherwise a steep pattern is generated. E0 is the modulus of the intact beam. A sketch of the 

proposed function is shown in Fig. 3. According to the above definition, the stiffness of an element 

with an open crack zone can then be expressed as 
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Fig. 3 A sketch of the damage function 
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(26) 

 

2.5 Bridge surface condition 

 

The bridge surface condition is an important factor that affects the dynamic responses of both 

the bridge and vehicles. The bridge surface profile is usually assumed to be a zero-mean stationary 

Gaussian random process and can be generated through an inverse Fourier transformation based on 

a power spectral density (PSD) function (Yin et al. 2011) as 

1

( ) 2 ( ) cos(2 )
N

k k k

k

r x n n n x  


                       (27) 

where θk 
is the random phase angle uniformly distributed from 0 to 2; φ() is the PSD function for 

the elevation of the bridge surface; and nk is the wave number. In the present study, the following 

PSD function (Yin et al. 2011) has been used 

)())(()( 21

2

0

0 nnn
n

n
nn                      (28) 

where n is the spatial frequency; n0 is the discontinuity frequency of 1/2; φ(n0) is the roughness 

coefficient which is determined based on the road condition; and n1 and n2 are the lower and upper  

zone I zone II zone III

(Intact) (Intact)(Damage)

( )EI x



( )EI x

2 | |
( ) 1 cos

2 / 2

m

cx l
E I EI x

L






    
           

/ 2L

cl

/ 2L

(

)

L the length

of beam element

EI

cx

0 1m 

1m 
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Table 1 Values of φ(n0) for road roughness classifications 

Classifications Ranges of φ(n0) 

Very good 2×10
-6

 to 8×10
-6

 

Average 8×10
-6

 to 32×10
-6

 

Poor 32×10
-6

 to 128×10
-6

 

Very poor 512×10
-6

 to 2048×10
-6

 

 

 

Fig. 4 The simply supported beam model subjected to a moving vehicle 

 

 

cut-off frequencies, respectively. The International Organization for Standardization (1995) has 

proposed a road roughness classification index from A (very good) to H (very poor) according to 

different values of φ(n0) shown in Table 1.  

 

2.6 Impact factor 
 

As discussed in the above section, the impact factor is generally treated as a key factor to 

reflect the dynamic effect of moving vehicles. This factor is usually served to provide guidelines 

for bridge design. However, the impact factors of the damaged bridge were not studied and thus 

not included in the current design codes.  

In this study, the impact factor is defined as follows 

      

( ) ( )

( )

d s

s

R x R x
IM

R x




 

(29) 

where Fd(x) and Rs(x)
 
are the maximum dynamic and static responses of the bridge at location x, 

respectively. 

 

 

3. Numerical examples 
 

3.1 Case one-a uniform single-span cracked beam 
 

To verify the proposed method, a comparison is made with the prediction from Law and Zhu 

(2004) on the normalized mid-span deflection of the beam with a moving vehicle model. Fig. 4 

shows the vehicle-bridge coupled system. The parameters of the simply supported beam are L=30 
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m, EI=2.5x10
10

Nm
2
, ρA=5000 kg/m. The parameters of the crack zone are α=0.5, β=0.5, m=2.0, 

and lc=0.5. The characteristics of the 4 DOFs vehicle model are mv=17735 kg, m1=1500 kg, 

m2=1000 kg, S=4.27 m, a1=0.519, a2=0.481, ks1=2.47×10
6 
Nm

-1
, ks2=4.23×10

6 
Nm

-1
, kt1=3.74×10

6 

Nm
-1

, kt2=4.60×10
6 
Nm

-1
, cs1=3.00×10

4 
Nm

-1
, cs2=4.00×10

4 
Nm

-1
, ct1=3.90×10

3 
Nm

-1
, ct2=4.30×10

3 

Nm
-1

. 

 

3.1.1 Comparison of the beam deflections 
Fig. 5 shows the comparison of the beam normalized deflections, which is calculated by the 

dynamic deflection responses divided by the static deflections. The later value is calculated when 

the static vehicle weight is exerted at the mid-span of the beam. It can be observed that the 

proposed approach gives the same results as that from Law and Zhu (2004) for both the cracked 

and intact cases under vehicle with either 15 m/s or 30 m/s. Therefore, the proposed method is 

valid. In addition, the crack at the mid-span can significantly affect the deflections of the beam 

under a moving vehicle. For example, the maximum normalized deflections at mid-span increase 

approximately twice when intact beam is cracked. 

 

3.1.2 Effect of road surface roughness 
The bridge surface condition is an important factor that affects the dynamic responses of intact 

bridges based on the studies in Yin et al. (2011), Deng and Cai (2010b, 2011). However, in Law 

and Zhu (2004), the effect of surface condition on the dynamic responses of damaged beam was 

not studied. In this section, such effects of bridge roughness on damaged bridges are discussed. 

Fig. 6 shows the comparison results of beam normalized deflections under three conditions, 

including None roughness, Average, and Poor. The two vehicle speed cases are also included. 

Based on the simulation results, the normalized deflections increase when the bridge roughness 

condition changes from None roughness to Poor. For example, the maximum normalized 

deflections at the mid-span change from 1.92 to 2.51 for None and Poor roughness conditions. In  

 

 

 
 

(a) V=15 m/s (b) V=30 m/s 

Fig. 5 The comparsion of the beam deflection with exsiting methods[(1)—Law and Zhu (2004) (intact); 

(2)  Proposed approach (intact); (3) Law and Zhu (2004) (cracked); (4) Proposed 

approach (cracked)] 
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(a) V=15 m/s (b) V=30 m/s 

Fig. 6 The comparison of the beam displacements under bridge surface roughness ( None 

roughness; -----Average ; Poor) 
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Fig. 7 Impact factors of damaged beam 

 

 

this sense, it can be stated that the bridge surface condition has a great influence on the vibration of 

damaged bridges.  

 

3.1.3 Impact factors of cracked beam 

The impact factor of damaged bridge can be calculated as the changes of deflections between 

the static and dynamic conditions as described in Eq. (29). However, the cracks usually can 

simultaneously increase the beam deflections under either the static or dynamic condition. 

Therefore, the effect of cracks on impact factors of damaged beams cannot be directly obtained. 

This uncertainty will be clarified in this section, where three roughness conditions and vehicle 

speeds from 2.5 m/s to 40m/s are varied in the intact and damaged beam cases. 
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As shown in Fig. 7, the effect of cracks on the impact factors is very small and can be neglected 

for bridge surface with none roughness condition. For the Average and Poor surface roughness 

conditions, however, the effect of cracks become significant. Taking one of the most obvious Poor 

surface roughness condition for an example, the impact factors are as large as 0.220 and 0.301, 

respectively, corresponding to the intact beam and damaged beam for the vehicle traveling with 20 

m/s. In addition, another two important trends are also shown in Fig. 7. The impact factors of 

both intact and damaged beams are varied with the vehicular speeds and bridge surface 

roughness conditions. The higher vehicle speed and the poorer roughness surface induce the larger 

impact factors. 

 

3.2 Case two-a reinforced concrete high-pier bridge 
 

A typical high-pier bridge, located at the Luping town in Hunan province of China, is discussed 

as a case to examine the proposed method and the corresponding bridge vibration behaviors. The 

bridge is a seven-span and straight continuous beam bridge with each span 40 m long and 12 m 

wide. The bridge elevation view and its cross section view are shown in Fig. 8. The vertical road 

roughness of the contact points corresponding to the vehicular wheels acting on the road surface 

was measured and shown in Fig. 9. The time histories of the vertical displacements of mid-span 

for the fourth span were measured independently using the dynamic measurement system. Using 

the ambient vibration method and the given crack parameters, the damage function can be used to 

modify the he stiffness of an element in the bridge finite element model, and bridge modal tests 

were performed to update the finite element model of Luping Bridge as shown in Fig. 10. More 

details of the test setups and model updating process can be referred to Yin et al. (2011). For the 

convenience of reviewer, the relevant parameters of the full-scale vehicle are shown in Table 2. It 

should be noted that only the dimensions, axle loads, and total weight of the vehicle were 

measured and can be treated as reliable information. The values of suspension stiffness and  

 

 

0 1 2 3 4 5 6 7

(a)

 
(a) elevation view 

 
(b) cross section view 

Fig. 8 Luping Bridge: (a) elevation view, and (b) cross section view 
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(a) Roughness of the left wheel (b) Roughness of the right wheel 

Fig. 9 Road roughness of the bridge: (a) Roughness of the left wheel and (b) Roughness of the right wheel 

 

 

Fig. 10 FE model of Luping bridge 

 

 

damping, however, might not be exactly the same as that from the actual trucks, which may results 

in some errors. This inaccuracy can be generally accepted based on previous studies (Yin et al. 

2011, Yang et al. 2004) and will not affect the discussions and conclusions in the present study. 

 

3.2.1 Comparison of vertical displacement 
Fig. 11 shows the comparison of the simulations and measurements of displacements at the 

mid-span of the fourth span. The vehicle was traveling along the center of bridge with two types of 

constant speeds. It can be seen that the general trend of the simulated and measured mid-span 

response of the bridge matches very well, thus, the proposed method can appropriately simulate 

the bridge-vehicle coupled vibration behavior. Some minor differences are observed which may be 

explained with two reasons. Firstly, the bridge model and the vehicle model may be different from 

the real bridge and truck used in the test. Secondly, the human errors in controlling the truck 

locations would affect the accuracy of the measured data.  
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Table 2 The parameters of the full-scale vehicle 

Vehicle Parameter Value 

Mass of truck body mt 24808 kg 

Pitching moment of inertia of truck body Izt 172,160 kg.m
2
 

Rolling moment of inertia of truck body Ixa1,Ixa2 31,496 kg.m
2
 

Mass of truck front axle ma1 724kg 

Mass of truck rear axle ma2 800kg 

Suspension spring vertical stiffness of the first axle Ksy
1
, Ksy

2
 242604 (N/m) 

Suspension vertical damper of the first axle Dsy
1
, Dsy

2
 2190 (N.s/m) 

Suspension spring vertical stiffness of the second axle Ksy
3
, Ksy

4
 1903172(N/m) 

Suspension damper coefficient of the second axle Dsy
3
, Dsy

4
 7982 (N.s/m) 

Stiffness of the tires for front axle 1,972,900 (N/m) 

Stiffness of the tires for rear axle 4,735,000 (N/m) 

Distance between the front and the center of the truck l1 3.73m 

Distance between the rear axle and the center of the truck l2 1.12m 

Distance between the right and left axles s1 2.40m 

 

  

(a) Vehicle speed=40 km/h (b) Vehicle speed=80 km/h 

Fig. 11 Comparison of simulated and measured responses of intact beam (── measured; ------ simulated) 

 

0 1 2 3 4 5 6 7

Crack zone

 

Fig. 12 A cracked zone at location of mid-span of the fourth span 
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(a) Vehicle speed=40 km/h (b) Vehicle speed=80 km/h 

Fig. 13 The comparison of the beam displacements with cracked and intact beams ( Intact beam; 

Cracked beam with a cracked zone) 

 

 

3.2.2 Comparison of the beams deflections 

The effects of the crack zone on the deflection of bridge were studied in this section, where the 

damaged zone was assumed at location of mid-span of the fourth span, as shown in Fig. 12, with 

the parameters of α=0.5, β=0.25, m=2.0, and lc=1/3. It can be seen from Fig. 13 that the effects of 

crack zone on the vertical deflections at the mid-span of the fourth span for the real bridge are 

significant. For example, for the vehicle speed with 40 km/h, the maximal vertical deflections 

increase from 4.3 mm for intact beam to 5.0 mm for the damaged beam. In this sense, the crack 

zone is a key factor to the bridge vibration for such a full scale high-pier bridge. 

 

3.2.3 Effect of the crack zone number 
Three damaged zones were considered at three locations of mid-span of the third span, fourth 

span, and fifth span. Each damaged crack zone has the same parameters of α=0.5, β=0.25, m=2.0, 

and lc=1/3. The effects of the three crack zones on the deflections at the mid-span of the fourth 

span for the bridge were shown in Fig. 14. It can be seen that effects of the beam deflections 

increase as the number of crack zones increases, and the maximal deflection for the beam with 

three crack zones is 1.40 times of that for the beam with one crack zone. Therefore, the number of 

crack zone is also an important factor to the vibration of cracked bridge.  

In addition, for the most in-serviced bridge under the action of moving vehicles, the cracked 

zones may occur at the bottom and web of the beam, as discussed in Fig. 1. For the vehicles 

moving on the cracked beam, the length and height of the crack would be enlarged. For a case 

when the small cracked zone of α=0.5, β=0.25, m=2.0, and lc=1/3 is developed to the large cracked 

zone of α=0.58, β=0.5, m=2.0, lc=1/2, Fig. 15 shows the comparison of two cracked zones on the 

dynamic responses at the mid-span of the fourth span for the bridge. It can be seen that the 

maximal deflection of the beam with large crack zone is 1.24 times of that for the beam with small 

crack zone.   

 

3.2.4 Effect of bridge surface roughness 
The effects of the bridge roughness on the dynamic deflections are discussed in this section. As 

shown in Fig. 16, the vibration deflections at the mid-span of the fourth span for the bridge  
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(a) Vehicle speed=40 km/h (b) Vehicle speed=80 km/h 

Fig. 14 The comparison of the beam displacements with different number of cracked zones (

Cracked beam with three cracked zones;  Cracked beam with a cracked zone) 

 

  

(a) Vehicle speed=40 km/h (b) Vehicle speed=80 km/h 

Fig. 15 The comparison of two cracked zones on the dynamic responses ( large cracked zone; 

 small cracked zones) 

 

  

(a) Vehicle speed=40 km/h (b) Vehicle speed=80 km/h 

Fig. 16 The comparison of the beam displacements under bridge surface roughness( Tested 

roughness; -----Poor) 

213



 

 

 

 

 

 

Xinfeng Yin, Yang Liu and Bo Kong 

 

0 20 40 60 80 100 120
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

 Good
 Average 
Poor

Im
pa
ct
 f
ac
to
rs

Vehicular speed (km/h)

 

0 20 40 60 80 100 120
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

 Intact beam
 Small crack 
 Large crack

Im
pa

ct
 f

ac
to

rs

Vehicular speed (km/h)

 

(a) Surface roughness (b) Crack parameters 

Fig. 17 Impact factors of damaged beam 

 

 

increase when the bridge roughness condition changes from tested roughness to Poor roughness. 

The maximum vertical deflections of the beam change from 5.0 mm to 6.13mm for tested 

roughness and poor roughness conditions. Therefore, the bridge surface condition has proven to 

have a large influence on the vibration of damaged bridges. 

 

3.2.5 Impact factors of cracked beam 
The impact factors of damaged beams are conducted under different vehicular speeds, three 

levels of bridge surface roughness, and two crack parameters. From Fig. 17, it is found that the 

impact factors increase significantly with the vehicular speed and bridge surface roughness 

increases. For example, for the damaged beam under the same vehicular speed of 60km/h, the 

impact factor increases from 0.17 for Good roughness to 0.38 for Poor roughness. For bridge 

surface with Average roughness, the effect of cracks on the impact factors is even more obvious, 

where the impact factors are equal to 0.22 and 0.36, respectively, corresponding to the small 

damaged beam and large damaged beam for the vehicle travel with 60km/h.   

 

 

4. Conclusions 
 

This study is mainly focused on establishing a new methodology which can fully consider the 

effect of the damaged bridge cracks, vehicle models, and bridge surface roughness conditions. Two 

vehicle models were introduced, including a four DOFs vehicle model and a full-scale vehicle 

model with seven DOFs. The bridges are modeled in two types, including a single-span uniform 

beam and a full scale reinforced concrete high-pier bridge, respectively. The crack zone in the 

reinforced concrete bridge is considered by a damage function. The bridge and vehicle coupled 

equations are established by combining the equations of motion of both the bridge and vehicles 

using the displacement relationship and interaction force relationship at the contact points. 

The verifications of the numerical simulations demonstrated that: 

• The proposed method can rationally simulate the vibration behaviors including the dynamic 
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responses and impact factors of the damaged bridge under moving vehicles, and factors such as 

bridge surface roughness, bridge model, and crack parameters cannot affect the accuracy of the 

verifications; 

• The crack is a key factor for the bridge dynamic responses of the vehicle-bridge coupled 

system, which can obviously increase the dynamic responses of bridge; 

•For the bridge with no roughness, the effect of cracks on the impact factors is very small and 

can be neglected. For the bridge with roughness, however, the effect of cracks on the impact 

factors is very significant and cannot be neglected. 

• The bridge surface condition has proven to have a large influence on the dynamic responses 

and impact factors of damaged bridges. 

The successful application of the proposed methodology to simulate the dynamic response of a 

damaged bridge induced by the moving vehicles indicates that the proposed methodology can be 

applied to improve the current study of the interaction between bridges and vehicles. The proposed 

method will also be further developed to verify by the results tested by the real bridge structures in 

the future studies. 
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