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Abstract.  The analysis and design of skeletal structures is greatly influenced by the behaviour of beam-

to-column connections, where patented designs have led to a wide range of types with differing structural 

quantities. The behaviour of beam-to-column connections plays an important role in the analysis and design 

of framed structures. This paper presents an overview of the influence of connection behaviour on structural 

stability, in the in-plane (bending) mode of sway. A computer-based method is presented for geometrically 

nonlinear plane frames with semi-rigid connections accounting for shear deformations. The analytical 

procedure employs transcendental modified stability functions to model the effect of axial force on the 

stiffness of members. The member stiffness matrix were found. The critical load has been searched as a 

suitable load parameter for the loss of stability of the system. Several examples are presented to demonstrate 

the validity of the analysis procedure. The method is readily implemented on a computer using matrix 

structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks. Combined 

with a parametric column effective length study, connection and frame stiffness are used to propose a 

method for the analysis of semi-rigid frames where column effective lengths are greatly reduced and second 

order (deflection induced) bending moments in the column may be distributed via the connectors to the 

beams, leading to significant economies. 
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1. Introduction 
 

The column effective length factor k has been widely used by practicing engineers for many 

years. The notion of using effective length factor k to asses the buckling capability of a column 

has found favour with designers. Simple equations and Tables for k have been presented in terms 

of column end boundary conditions and/or relative frame stiffness functions, connection stiffness 

factors and shear effects so that the designer may compute not only column buckling capacities but 

also second order deflections and ultimate second order bending moments, often termed Msd in 

Eurocode 2 for concrete structures, EC 2 (2002) or Madd in the British Code for concrete structures, 

BS 8110 (1997). BS 8110 (1997) has adopted such an approach whereby column end conditions 

were equated to α, the total relative stiffness EI/L of the column to that of the beam(s) (or beams 

and slabs) framing into the ends of the column for rigid connections. 
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The Turkish Code for Requirements for design and construction of reinforced concrete 

structures, TS 500 Building Code (2000) uses the moment magnifier design approach to account 

for the second-order P-δ (member instability) and P- (frame instability) effects in the design of 

reinforced concrete columns. The validity of this approach depends to a large extent on an accurate 

determination of the effective length factor, often termed k in the TS 500 (2000), and ACI 318 

Building Code (2011). The TS 500 Building Code (2000) recommends the use of simplified 

equations, as in the current ACI 318 Building Code (2011). The paper discusses the k-factor 

problems to highlight the basic assumptions and particular difficulties associated with reinforced 

concrete columns in sway frames. 

The results from the connection tests by Görgün (1997) show that, although the degree of semi-

rigidity (defined by Ks=joint stiffness (a semi-rigid connection of rotational stiffness J at the end of 

beam)/beam flexural stiffness 4EI/L) varies over a very wide range, there is clearly scope for the 

implementation of k factors that incorporate the flexural responses of the frame, the semi-rigid 

connections and shear effects. 

This study presents the results for column effective length factors in three types of sub-frames 

commonly occurring in skeletal frames. Only sway frames are considered in this work. This 

instability was obtained using a geometric second-order two-dimensional frame computer program 

analysis developed by Gorgun and Yılmaz (2012). In all cases maximum column loads in each 

sub-frame, and hence k-factors are obtained for given values of α, Ks and Poisson’s ratio c=0.20 

(defined in TS 500/2000). 

It is customary in conventional analysis and design of steel and precast concrete frameworks to 

represent the actual joint behaviour by two extreme kinds of idealized models, i.e., the fully rigid 

joint model and the pinned joint model. The notions of either pinned or rigid joints are, however, 

simply extreme cases of true joint behaviour, and experimental investigations, many of which are 

referred to in (Jones et al. 1983), show clearly that actual joints exhibit characteristics over a wide 

spectrum between these extremes. The models with ideal connections simplify analysis procedure, 

but often cannot represent real structural behaviour. This discrepancy is reported in numerous 

experimental investigations of steel frames with different types of connections (Jones et al. 1983). 

The rigid connection idealization indicates that relative rotation of the connection does not exist 

and the end moment of the beam is entirely transferred to the columns. In contrast to the rigid 

connection assumption, the pinned connection idealization indicates that any restraint does exist 

for rotation of the connection and the connection moment is zero. Although these idealizations 

simplify the analysis and design process, the predicted response of the frame may be different 

from its real behaviour. Therefore, this idealization is not adequate as all types of connections are 

more or less, flexible or semi-rigid. It is proved by numerous experimental investigations that have 

been carried out in the past (Nethercot 1985, Davisson et al. 1987, Moree et al. 1993, Görgün 

1997). The term semi-rigid is used to express the real connection behaviour. Therefore, beam-to-

column connections in the analysis/design of steel and precast concrete frames should be described 

as semi-rigid connections. 

Generally, nodal connections of plane frames are subjected to influence of bending moments, 

axial forces and shear forces. The effects of axial and shear forces can usually be ignored, and only 

the influence of bending moments is of practical interest. The constitutive moment-relative 

rotation relation, M-, depends on the particular type of connection. Most experiments have shown 

that the M- curve is nonlinear all the whole domain and for all types of connections (Görgün 

1997). Therefore, modelling of the nodal connection is very important for the analysis and design 

of frame structure. 
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Based on experimental work due to static monotonic loading tests carried out for various types 

of beam-to column connections, many models have been suggested to approximate the connection 

behaviour. The simplest and the most common one is the linear model that has been broadly used 

for its simplicity (Aksogan and Akkaya 1991, Aksogan and Gorgun 1992, Gorgun et al. 2012, 

Gorgun and Yilmaz 2012, Gorgun 2013). This approach is based on modelling the connection as a 

lengthless rotational spring. This method is widely used in semi-rigid analysis of frames, and the 

implementation of this approach requires small modifications in the existing analysis programs. 

This modification does not considerably increase the computational time. Therefore, each element 

of the frame consists of a finite length element with a lengthless rotational spring. However, this 

model is good only for the low level loads, when the connection moment is quite small. In each 

other case, when the connection rigidity decrease compared with its initial value, a nonlinear 

model is necessary. Several mathematical models to describe the nonlinear behaviour of 

connections have been formulated and widely used in research practice (Wu and Chen 1990). 

Often, many authors use the so called corrective matrices to modify the conventional stiffness 

matrices of the beams with fully fixity at both ends. Elements of the corrective matrices are 

functions of the particular nondimensional parameters-fixity factors, or rigidity index. 

In addition to the linear behaviour, many studies have been developed to the nonlinear analysis 

of the static and dynamic behaviour of frames with semi-rigid connections using different models 

of geometric nonlinearity of elements and nodal connections (Xu et al. 2005, Aristizabal-Ochoa 

2007, Liu 2009, Gorgun 2013, Hadidi and Rafiee 2014, Zhang et al. 2014, Han et al. 2015). In 

most studies, the effect of shear deformation and axial force on elastic behaviour has been ignored 

as being of little consequence. However, there are steel frameworks for which shear effects may be 

significant (e.g., those that have deep transfer girders (Aksogan and Dincer 1991, Aristizabal-

Ochoa 2012, Gorgun et al. 2012). Also, in the analysis of structural systems the members forming 

the planar frames are generally assumed to be rigidly connected among each other. However, more 

often than not the assumption of pin connections is also employed in such cases where the rigidity 

of the connection cannot be provided to a dependable degree. In fact, both of the foregoing 

assumptions are unrealistic when one is treating steel frames and especially, nowadays, widely 

used precast reinforced concrete structures. In such structures beams and columns behave as if 

they are semi-rigidly, or flexibly, connected among themselves, as far as the rotations of the ends 

are concerned. Hence, experimentally determined effective rotational spring constants for those 

connections should be used in the analyses of such structures. This paper presents a computer-

based method for geometrically nonlinear analysis of planar frameworks with semi-rigid 

connections to explicitly account for the influence of axial force on elastic behaviour. Stability 

functions are employed to model the effect of axial force on the elastic bending stiffness of 

members (Chen and Lui 1991), and the influence of semi-rigid connections is taken into account. 

The shear-stiff stability functions presented in (Chen and Lui 1991) are modified to take shear 

deformability into account for comparison. The history of the stability functions for shear-flexible 

members is given in (Al-Sarraf 1986, Mottram 2008). 

The geometrically nonlinear elastic analysis procedure is a direct extension of the conventional 

matrix displacement method of linear-elastic analysis. The nonlinear analysis method is verified 

for three example subframes from the literature (Elliott et al. 1996, Elliott et al. 1998, Görgün and 

Kaymak 2012). 

The present study is an attempt to prepare a computer program that treats the aforementioned 

type of structures elegantly, taking into consideration the behaviour of the flexible connections on 

elastic behaviour along with the effect of geometric nonlinearity due to the axial forces in the 

1067



 
 

 

 

 

 

Halil Gorgun 

members. As is well known, the upper limit of the load in any structure is the critical value of the 

load, the buckling load, which is found by taking geometric nonlinearity into consideration. 

Hence, the results of the present study will constitute the basis of the stability analysis of the same 

type of structures. 

The method used in the present study is the well-known stiffness method of structural analysis. 

The stiffness matrix of a member elastically supported against rotation at both ends is obtained 

using the second order analysis, along with the use of differential equations which yielded 

trigonometric functions for the case of axial compressive force and hyperbolic functions for the 

case of axial tensile force. 

The computer program that was prepared can be used to solve stability and static problems of 

plane frames composed of members that are semi-rigidly connected at the joints. 

 

 

2. Research significance 
 

This paper evaluates the current Turkish Code for Requirements for design and construction of 

reinforced concrete structures, TS 500 Building Code (2000) and BS 8110 (1997) Building Code 

effective length factors and develops alternative k-factor equations based on a parametric study for 

framed columns. It is found that very conservative results are obtained by the codes simplified 

equations when the end restraints of columns are large. The proposed k-factor equations are found 

simple to use, can be programmed on small calculators, and in good agreement with results 

obtained from the exact solution considering shear effect for fully rigid connections. It is 

concluded that the proposed equation may be suitable for adoption in practice for rigid 

connections, and k-factors may be obtained for given values of frame stiffness α and connection 

stiffness factor Ks from Tables given below for semi-rigid connections. 

 

 

3. BS 8110 (1997) equations for k-factor of sway framed structures 
 

The present BS 8110 (1997) recommends the use of following equations to obtain a more 

rigorous assessment of the effective length factor. It should be noted that the effective length factor 

of a column in the two plan directions may be different. 

Sway columns: effective length factor for framed structures may be taken as the lesser of 

 c,1 c,2k 1.0 0.15    
                          

(1) 

c,mink 2.0 0.3  
                             

(2) 

where αc,1 and αc,2 are ratio of the sum of the column stiffnesses to the sum of the beam stiffnesses 

at the lower and upper ends of a column, respectively. αc,min is the lesser of αc,1 and αc,2. 

 

 

4. The current TS 500 (2000) simplified equations for k-factor of sway framed 
columns 
 

For columns in a sway frame, TS 500 (2000) adopted the Furlong (1971) formulas with the 

following adjustments 
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The stability of semi-rigid skeletal structures accounting for shear deformations 

For m 2   

 m
m

20
k 1

20

 
  

                            
(3) 

For m 2   

 
mk 0.9 1  

                              
(4) 

For an unbraced column with a hinge at one end, the following formula is suggested 

 k 2.0 0.3                                 (5) 

where  is the value at the restrained end. 

    1,2 column beam
I I    ;  m 1 20.5    

               
(6) 

The αm factor is defined as the mean value of the α1 and α2 (α1α2) at the two ends of a 

compression member. 

 

 

5. Parametric study 
 

Generally reinforced concrete sway plane frames are analysed either as fully unbraced frames, 

Fig. 1(a), or as partially braced frames, Fig. 1(b), where shear walls (or cores) provide lateral 

bracing up to a certain level and the frame is unbraced above this point. 

Three sub frames, labelled F1, F2 and F3 in Fig. 2, were identified for the analysis. Sub frames 

F1 and F2 represent the upper floor and the ground floor levels, respectively, in an unbraced frame, 

whilst sub frame F3 represents the upper floor in a partially braced frame immediately above the 

level of the bracing. It may be seen in Fig. 1(b) that the columns adjacent to the bracing walls are 

 

 

 

Fig. 1 Types of frames used in the analysis (a) unbraced (left) and (b) partially braced (right) 
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Fig. 2 Definitions of sub-frames used in effective length study 

 

 
fully encastre at their upper end, and may therefore be considered fully rigid at their lower end in 

the sub frame F3 (left column). There is only axial deformation of columns if the frames are 

perfectly symmetric. To allow a large deflection problem non vertical frames are considered 

assuming 1 mm sway deflection at the top of the columns before applying P. 

For the analysis, the range of values for α was obtained from realistic joint values used in 

typical concrete frames, i.e., α=0.5 to 10. In fact because the computer program requires a value 

for α greater than 0, α=0.001 was used to simulate α=0. For simplicity and reliability in the 

analysis, the length of the beams and columns in the sub-frames were made equal (L=4000 mm), 

and in general the cross sectional properties of the column members were varied in order to 

necessitate a change in α, although this is not important once the results are normalised with 

respect to α and k. The maximum critical load for the column converged to within an inaccuracy 

of less than 0.1 per cent of the ultimate squash load for the column, so that the error in k is 

approximately 0.1 per cent. 

 
 
6. Results 
 

6.1 Variations in column effective length factors with rigid connections ignoring shear 
effects 

 

 Comparing the results obtained from this work and those calculated using BS 8110, and TS 500 

equations, Figs. 3 through 6 show the results for the variation in k with α assuming fully rigid 

connections. Note that in the case of sub-frame F1, α1=α2, where α1 and α2 are the relative 

stiffnesses of the column to the lower and upper beams, respectively. In sub-frame F2, α1=0 

because the foundation is rigid. There is no equation in BS 8110, and TS 500 to deal with sub-

frame F3 (Görgün and Kaymak 2012). 
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The stability of semi-rigid skeletal structures accounting for shear deformations 

 

Fig. 3 Variation in column effective length factor k with frame stiffness α (α1=α2) for sub-frame F1 

 

 

Fig. 4 Variation in column effective length factor k with frame stiffness α (α1=0) for sub-frame F2 

 
 

The results in Figs. 3 through 5 show that the codes equations are in good agreement with 

analytical results for 0<α<2, and conservative thereafter. It is postulated that an equation for sub- 
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Fig. 5 Variation in column effective length factor k with frame stiffness α (α1=α2) for sub-frame F3 

 

 

Fig. 6 Variation in column effective length factor k with frame stiffness for sub-frames used in the analysis 

 
 
frame F3 may be taken as the mean of the equations for F1 and F2. The results suggest that the TS 

500 code equations might be modified for values of α>3. 

Fig. 6 shows the results for the variations in k for selected values of α in the sub-frames F1, F2, 

and F3. The dashed lines show the plots of the proposed parametric equations given in Section 6.2. 
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6.2 Parametric equations for rigid connections 
 

From Fig. 3, the data for the upper storey sub-frame F1 may be approximated by using the 

following empirical relationship (Görgün and Kaymak 2012) 

 
2

m mk 1.0 0.30 0.01    
                          

(7) 

Referring to Fig. 4, the data for the ground floor sub-frame F2 may be given as 

 
2

m mk 1.0 0.28 0.01    
                          

(8) 

Referring to Fig. 5, the data for the upper storey sub-frame F3 may be given as 

 
2

m mk 1.0 0.25 0.01    
                          

(9) 

 
6.3 Variations in column effective length factors with semi-rigid connections ignoring 
shear effects 

 

 Comparing the results obtained from this work with semi-rigid connections ignoring shear 

effects (c=0.00) and those calculated using TS 500 equations with fully rigid connections 

ignoring the shear effects, Tables 1 through 6 show the results for the variation in critical load Pcr 

(kN) and column effective length factor k with frame stiffness α and the degree of semi-rigidity 

Ks. 

 

 
Table 1 Variation in critical load Pcr with frame stiffness  and connection stiffness factor Ks for frame F1 

without shear effect (c=0.00) 

Frame 

stiffness 

 

Pinned 

connections 
Semi-rigid connections 

Rigid 

connections 

PE 

(kN) 

Connection stiffness factor, Ks 
2

2

EI

L


 

0.0 0.1 0.2 0.5 1.0 2.0 4.0 10  

0.001 Unstable 13.637 13.703 13.746 13.760 13.767 13.770 13.772 13.774 13.805 

0.010 Unstable 125 131 135 136 136.23 136.76 136.77 136.93 138.05 

0.050 Unstable 436 531 606 635 651 659 663 667 690 

0.200 Unstable 789 1205 1741 2031 2211 2311 2375 2422 2761 

0.500 Unstable 928 1582 2721 3558 4190 4590 4864 5078 6903 

1.000 Unstable 985 1757 3313 4685 5893 6753 7395 7923 13805 

2.000 Unstable 1015 1858 3701 5525 7323 8738 9878 10874 27610 

3.000 Unstable 1025 1893 3848 5866 7945 9652 11076 12355 41415 

4.000 Unstable 1031 1912 3925 6049 8291 10174 11776 13235 55220 

5.000 Unstable 1034 1923 3973 6164 8511 10511 12234 13822 69026 

10.000 Unstable 1040 1945 4071 6405 8982 11245 13247 15132 138051 

20.000 Unstable 1044 1956 4121 6532 9234 11644 13807 15868 276102 

30.000 Unstable 1045 1960 4138 6875 9321 11782 14002 16126 414153 
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Table 2 Variation in column effective length factor k with frame stiffness  and connection stiffness factor 

Ks for frame F1 without shear effect (c=0.00) 

Frame 

stiffness 

 

Pinned 

connections 
Semi-rigid connections 

Rigid 

connections TS 500 

(2000) Connection stiffness factor, Ks 

0.0 0.1 0.2 0.5 1.0 2.0 4.0 10  

0.001 Unstable 1,006 1,004 1,002 1,002 1,001 1,001 1,001 1,001 1,000 

0.010 Unstable 1,051 1,027 1,011 1,008 1,007 1,005 1,005 1,004 1,004 

0.050 Unstable 1,258 1,140 1,067 1,042 1,030 1,023 1,020 1,017 1,022 

0.200 Unstable 1,871 1,514 1,259 1,166 1,117 1,093 1,078 1,068 1,084 

0.500 Unstable 2,727 2,089 1,593 1,393 1,284 1,226 1,191 1,166 1,194 

1.000 Unstable 3,744 2,803 2,041 1,727 1,531 1,430 1,366 1,320 1,343 

2.000 Unstable 5,216 3,855 2,731 2,235 1,942 1,778 1,672 1,593 1,559 

3.000 Unstable 6,356 4,677 3,281 2,657 2,283 2,071 1,934 1,831 1,800 

4.000 Unstable 7,318 5,374 3,751 3,021 2,581 2,330 2,165 2,043 2,012 

5.000 Unstable 8,170 5,991 4,168 3,346 2,848 2,563 2,375 2,235 2,205 

10.000 Unstable 11,521 8,425 5,823 4,643 3,920 3,504 3,228 3,020 2,985 

20.000 Unstable 16,262 11,881 8,185 6,501 5,468 4,869 4,472 4,171 4,124 

30.000 Unstable 19,908 14,536 10,004 7,761 6,666 5,929 5,439 5,068 5,011 

 
Table 3 Variation in critical load Pcr with frame stiffness  and connection stiffness factor Ks for frame F2 

without shear effect (c=0.00) 

Frame 

stiffness 

 

Pinned 

connections 
Semi-rigid connections 

Rigid 

connections 

PE 

(kN) 

Connection stiffness factor, Ks 
2

2

EI

L

  
0.0 0.1 0.2 0.5 1.0 2.0 4.0 10  

0.200 690 1429 1773 2164 2351 2459 2516 2552 2580 2761 

0.500 1726 2625 3227 4198 4844 5293 5560 5737 5882 6903 

1.000 3452 4414 5153 6580 7764 8743 9404 9876 10285 13805 

2.000 6903 7893 8713 10469 12152 13752 14967 15917 16795 27610 

5.000 17257 18245 19110 21097 23197 25413 27273 28852 30463 69026 

10.000 34513 35467 36335 38387 40636 43103 45254 47144 49243 138051 

20.000 69026 69899 70746 72791 75087 77663 79957 82010 84664 276102 

30.000 103539 104328 105147 107156 109438 112025 114349 116443 119486 414153 

 

 
The results in Tables 2,4,6 show that the code equations are in good agreement with analytical 

results for 0<α<2, and conservative thereafter for rigid connections. It is postulated that an 

equation for sub-frame F3 may be taken as the mean of the equations for F1 and F2 for fully-rigid 

connections. The results suggest that the TS 500 code equations might be modified for values of 

α>3 and incorporates semi-rigid connections. 
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Table 4 Variation in column effective length factor k with frame stiffness  and connection stiffness factor 

Ks for frame F2 without shear effect (c=0.00) 

Frame 

stiffness 

 

Pinned 

connections 
Semi-rigid connections 

Rigid 

connections TS 500 

(2000) Connection stiffness factor, Ks 

0.0 0.1 0.2 0.5 1.0 2.0 4.0 10  

0.200 2,000 1,390 1,248 1,130 1,084 1,060 1,048 1,040 1,034 1,044 

0.500 2,000 1,622 1,463 1,282 1,194 1,142 1,114 1,097 1,083 1,104 

1.000 2,000 1,768 1,637 1,448 1,333 1,257 1,212 1,182 1,159 1,194 

2.000 2,000 1,870 1,780 1,624 1,507 1,417 1,358 1,317 1,282 1,344 

5.000 2,000 1,945 1,901 1,809 1,725 1,648 1,591 1,547 1,505 1,684 

10.000 2,000 1,973 1,949 1,896 1,843 1,790 1,747 1,711 1,674 2,205 

20.000 2,000 1,987 1,976 1,948 1,918 1,886 1,858 1,835 1,806 2,985 

30.000 2,000 1,992 1,985 1,966 1,945 1,923 1,903 1,886 1,862 3,600 

 

Table 5 Variation in critical load Pcr with frame stiffness  and connection stiffness factor Ks for frame F3 

without shear effect (c=0.00) 

Frame 

stiffness 

 

Pinned 

connections 
Semi-rigid connections 

Rigid 

connections 

PE 

(kN) 

Connection stiffness factor, Ks 
2

2

EI

L


 

0.0 0.1 0.2 0.5 1.0 2.0 4.0 10  

0.001 1,901 13,674 13,724 13,754 13,764 13,770 13,772 13,774 13,775 13,805 

0.200 380 1117 1481 1925 2155 2296 2375 2426 2470 2761 

0.500 950 1811 2401 3381 4070 4579 4899 5120 5333 6903 

1.000 1900 2762 3459 4810 5955 6937 7630 8145 8735 13805 

2.000 3796 4496 5240 6816 8321 9771 10896 11798 13211 27610 

5.000 9473 9680 9837 11394 13076 14845 16333 17606 21490 69026 

10.000 18890 19117 19255 19610 19675 20497 21982 23288 32130 138051 

 
Table 6 Variation in column effective length factor k with frame stiffness  and connection stiffness factor 

Ks for frame F3 without shear effect (c=0.00) 

Frame 

stiffness 

 

Pinned 

connections 
Semi-rigid connections 

Rigid 

connections TS 500 

(2000) Connection stiffness factor, Ks 

0.0 0.1 0.2 0.5 1.0 2.0 4.0 10  

0.001 2,695 1,005 1,003 1,002 1,001 1,001 1,001 1,001 1,001 NA 

0.200 2,696 1,572 1,365 1,198 1,132 1,097 1,078 1,067 1,057 NA 

0.500 2,696 1,952 1,696 1,429 1,302 1,228 1,187 1,161 1,138 NA 

1.000 2,696 2,236 1,998 1,694 1,523 1,411 1,345 1,302 1,257 NA 

2.000 2,697 2,478 2,295 2,013 1,822 1,681 1,592 1,530 1,446 NA 

5.000 2,699 2,670 2,649 2,461 2,298 2,156 2,056 1,980 1,792 NA 

10.000 2,703 2,687 2,678 2,653 2,649 2,595 2,506 2,435 2,073 NA 
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Table 7 Variation in critical load Pcr with frame stiffness  and connection stiffness factor Ks for frame F1 

with shear effect (c=0.20) 

Frame 

stiffness 

 

Pinned 

connections 
Semi-rigid connections 

Rigid 

connections 

PE 

(kN) 

Connection stiffness factor, Ks 
2

2

EI

L


 

0.0 0.1 0.2 0.5 1.0 2.0 4.0 10  

0.001 Unstable 13.637 13.727 13.746 13.760 13.767 13.777 13.780 13.796 13.805 

0.010 Unstable 125 131 135 136 136.23 136.76 136.77 136.93 138.05 

0.050 Unstable 436 530 606 635 650 658 663 666 690 

0.200 Unstable 787 1202 1735 2024 2202 2301 2364 2411 2761 

0.500 Unstable 927 1577 2706 3534 4156 4550 4820 5030 6903 

1.000 Unstable 983 1751 3291 4642 5826 6666 7291 7805 13805 

2.000 Unstable 1013 1851 3674 5466 7219 8591 9690 10662 27610 

3.000 Unstable 1023 1886 3819 5798 7822 9472 10839 12067 41415 

4.000 Unstable 1029 1904 3895 5978 8157 9973 11508 12906 55220 

5.000 Unstable 1032 1915 3942 6090 8370 10297 11945 13474 69026 

10.000 Unstable 1038 1938 4038 6325 8825 11000 12908 14699 138051 

20.000 Unstable 1042 1949 4088 6448 9068 11381 13439 15408 276102 

30.000 Unstable 1043 1953 4105 6490 9152 11514 13624 15651 414153 

 
Table 8 Variation in column effective length factor k with frame stiffness  and connection stiffness factor 

Ks for frame F1 with shear effect (c=0.20) 

Frame 

stiffness 

 

Pinned 

connections 
Semi-rigid connections 

Rigid 

connections TS 500 

(2000) Connection stiffness factor, Ks 

0.0 0.1 0.2 0.5 1.0 2.0 4.0 10  

0.001 Unstable 1.006 1.003 1.002 1.002 1.001 1.001 1.001 1.000 1.000 

0.010 Unstable 1.051 1.027 1.011 1.008 1.007 1.005 1.005 1.004 1.004 

0.050 Unstable 1.258 1.141 1.067 1.042 1.030 1.024 1.020 1.018 1.022 

0.200 Unstable 1.873 1.516 1.261 1.168 1.120 1.095 1.081 1.070 1.084 

0.500 Unstable 2.729 2.092 1.597 1.398 1.289 1.232 1.197 1.171 1.194 

1.000 Unstable 3.747 2.808 2.048 1.725 1.539 1.439 1.376 1.330 1.344 

2.000 Unstable 5.221 3.862 2.741 2.247 1.956 1.793 1.688 1.609 1.559 

3.000 Unstable 6.363 4.686 3.293 2.673 2.301 2.091 1.955 1.853 1.800 

4.000 Unstable 7.326 5.385 3.765 3.039 2.602 2.353 2.191 2.068 2.012 

5.000 Unstable 8.178 6.004 4.185 3.367 2.872 2.589 2.404 2.263 2.205 

10.000 Unstable 11.532 8.440 5.847 4.672 3.955 3.543 3.270 3.065 2.985 

20.000 Unstable 16.278 11.902 8.218 6.544 5.518 4.925 4.533 4.233 4.124 

30.000 Unstable 19.927 14.562 10.044 7.988 6.727 5.997 5.514 5.144 5.011 
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Table 9 Variation in critical load Pcr with frame stiffness  and connection stiffness factor Ks for frame F2 

with shear effect (c=0.20) 

Frame 

stiffness 

 

Pinned 

connections 
Semi-rigid connections 

Rigid 

connections 

PE 

(kN) 

Connection stiffness factor, Ks 2

2

EI

L

  
0.0 0.1 0.2 0.5 1.0 2.0 4.0 10  

0.200 690 1427 1769 2158 2344 2450 2508 2543 2576 2761 

0.500 1723 2618 3224 4191 4833 5278 5543 5717 5841 6903 

1.000 3440 4394 5124 6528 7687 8643 9286 9745 10140 13805 

2.000 6856 7831 8635 10349 11981 13523 14688 15595 16430 27610 

5.000 16967 17920 18752 20650 22642 24725 26460 27924 29479 69026 

10.000 33373 34262 35070 36965 39026 41266 43201 44889 46872 138051 

20.000 64612 65371 66108 67877 69847 72036 73967 75681 77885 276102 

30.000 93915 94554 95221 96849 98686 100748 102583 104224 106626 414153 

 

Table 10 Variation in column effective length factor k with frame stiffness  and connection stiffness factor 

Ks for frame F2 with shear effect (c=0.20) 

Frame 

stiffness 

 

Pinned 

connections 
Semi-rigid connections 

Rigid 

connections TS 500 

(2000) Connection stiffness factor, Ks 

0.0 0.1 0.2 0.5 1.0 2.0 4.0 10  

0.200 2.000 1.391 1.249 1.131 1.085 1.062 1.049 1.042 1.035 1.044 

0.500 2.002 1.624 1.463 1.283 1.195 1.144 1.116 1.099 1.087 1.104 

1.000 2.003 1.773 1.641 1.454 1.340 1.264 1.219 1.190 1.167 1.194 

2.000 2.007 1.878 1.788 1.633 1.518 1.429 1.371 1.331 1.296 1.273 

5.000 2.017 1.963 1.919 1.828 1.746 1.671 1.615 1.572 1.530 1.684 

10.000 2.034 2.007 1.984 1.933 1.881 1.829 1.788 1.754 1.716 2.205 

20.000 2.067 2.055 2.044 2.017 1.988 1.958 1.932 1.910 1.883 2.985 

30.000 2.100 2.093 2.086 2.068 2.049 2.028 2.009 1.993 1.971 3.600 

 
 
6.4 Variations in column effective length factors with semi-rigid connections 
incorporating shear effects 

 

 Comparing the results obtained from this work with semi-rigid connections incorporating shear 

effects and those calculated using TS 500 equations with fully rigid connections ignoring the shear 

effects, Tables 7 through 12 and Figs. 7-12 show the results for the variation in critical load Pcr 

(kN) and k with α and Ks. 

The results in Tables 8-10-12 and Figs. 7-12 show that the codes equations are in good 

agreement with analytical results for 0<α<2, and conservative thereafter. It is postulated that an 

equation for sub-frame F3 may be taken as the mean of the equations for F1 and F2 for fully-rigid 

connections and shear effects. The results suggest that the TS 500 code equations might be 

modified for values of α>3 and incorporates semi-rigid connections and shear effects. 
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Fig. 7 Variation in column effective length factor k with frame stiffness  and connection stiffness factor 

Ks for frame F1 with shear effect (c=0.20) 

 

 

Fig. 8 Variation in column effective length factor k with frame stiffness  and connection stiffness factor 

Ks for frame F1 with shear effect (c=0.20) 
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Fig. 9 Variation in column effective length factor k with frame stiffness  and connection stiffness factor 

Ks for frame F2 with shear effect (c=0.20) 

 

 
Fig. 10 Variation in column effective length factor k with frame stiffness  and connection stiffness factor 

Ks for frame F2 with shear effect (c=0.20) 
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Table 11 Variation in critical load Pcr with frame stiffness  and connection stiffness factor Ks for frame F3 

with shear effect (c=0.20) 

Frame 

stiffness 

 

Pinned 

connections 
Semi-rigid connections 

Rigid 

connections 
PE (kN) 

Connection stiffness factor, Ks 
2

2

EI

L


 

0.0 0.1 0.2 0.5 1.0 2.0 4.0 10  

0.001 1.901 13.676 13.727 13.760 13.770 13.775 13.778 13.780 13.782 13.805 

0.200 380 1122 1485 1927 2156 2297 2375 2426 2460 2761 

0.500 949 1834 2428 3410 4095 4598 4913 5129 5287 6903 

1.000 1893 2836 3548 4918 6068 7046 7727 8232 8620 13805 

2.000 3770 4739 5520 7162 8713 10188 11321 12215 12946 27610 

5.000 9308 10066 10701 12922 14797 16738 18348 19704 20877 69026 

10.000 18241 19000 19628 21084 22635 24295 25704 29333 30736 138051 

 
Table 12 Variation in column effective length factor k with frame stiffness  and connection stiffness factor 

Ks for frame F3 with shear effect (c=0.20) 

Frame 

stiffness 

 

Pinned 

connections 
Semi-rigid connections 

Rigid 

connections TS 500 

(2000) Connection stiffness factor, Ks 

0.0 0.1 0.2 0.5 1.0 2.0 4.0 10  

0.001 2.695 1.005 1.003 1.002 1.001 1.001 1.001 1.001 1.001 NA 

0.200 2.696 1.569 1.364 1.197 1.132 1.096 1.078 1.067 1.059 NA 

0.500 2.697 1.940 1.686 1.423 1.298 1.225 1.185 1.160 1.143 NA 

1.000 2.700 2.206 1.973 1.675 1.508 1.400 1.337 1.295 1.266 NA 

2.000 2.706 2.414 2.236 1.963 1.780 1.646 1.562 1.503 1.460 NA 

5.000 2.723 2.619 2.540 2.311 2.160 2.031 1.940 1.872 1.818 NA 

10.000 2.751 2.696 2.652 2.559 2.470 2.384 2.317 2.169 2.119 NA 

 

 

 

7. Discussion 
 

It has been found that where column effective length factors k are determined within a 

structural framework, the nature of that framework, its boundary conditions, the effect of shear 

deformation and the degree of semi-rigidity of the connections will influence the results. All the 

results show an increase in k with: 

• an increasing number of degrees of freedom 

• an increase in α 

• an increase in Poisson’s ratio 

• a decrease in Ks 

The results obtained for the upper storey in the partially braced sub-frame F3 are of particular 

interest to designers because the boundary conditions for the column which is not adjacent to a 

shear wall is unspecified in codes of practice. Treating the column alone would lead to very high k 

factors. 
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Fig. 11 Variation in column effective length factor k with frame stiffness  and connection stiffness 

factor Ks for frame F3 with shear effect (c=0.20) 

 

 
Fig. 12 Variation in column effective length factor k with frame stiffness  and connection stiffness factor 

Ks for frame F3 with shear effect (c=0.20) 

 

 

Since the effective length factor of sway columns will approach infinity as the α1 and α2 values 

at both column ends approach infinity, the parametric equations are not suitable for this case. Since 
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real fixed or hinged supports for a column seldom exist in actual structure, α=1,0 and α=10 are 

recommended for fixed and hinged supports, respectively. Eqs. (7) through (9) should therefore be 

limited to a range, for example α values not greater than 10. 

From the stability analysis, we arrive at following boundary conditions for rigid and pinned 

connections without shear effect (remember: α1α2,  is the value at the restrained end for an 

unbraced column with a hinge at one end): 

1. For column fixed at bottom end and hinged at top end, Eq. (5). 

1 20,  ,  0 k 2.0        
                      

(10) 

2. For column hinged at bottom end and fixed at top end, Eq. (5). 

 1 20,  ,  0 k 2.0        
                      

(11) 

3. For column fixed at both ends 

 1 20,  k 2.0      
                         

(12) 

4. For column with equal end restraints 

 1 23,  3 k 1.83     
                         

(13) 

5. For column fixed at bottom end and α2=10 at top end 

 1 20,  10 k 1.67     
                        

(14) 

 

 

8. Conclusions 
 

In this present study frame stability analyses on three types of single-storey x single-bay sub-

frames in unbraced and partially braced skeletal frames have shown that column effective length 

factors k increase due to: 

• an increasing number of total degrees of freedom at the joints in the ends of the beams and 

columns. 

• an increase in α, the relative stiffness of the columns to the beam members; 

• an increase in Poisson’s ratio; 

• a decrease in Ks 

Parametric design equations for column effective length factors have been presented for the 

variations in k with α for rigid connections and k values are given in the Tables for semi-rigid 

connections with/without shear effects. The results enable designers to determine k factors for 

situations currently not catered for in codes of practice, in particular the upper storey in a partially 

braced frame and shear effects. 
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