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Abstract.  Vibration analysis of the beams on elastic foundation has gained the great interest of many 

researchers. In the literature, there are many studies that focus on the free vibration analysis of the beams on 

one or two parameter elastic foundations. On the other hand, there are no sufficient studies especially focus 

on the comparison of dynamic response including the bending moment and shear force of the beams resting 

on Winkler and two parameter foundations. In this study, dynamic response of the axially loaded 

Timoshenko beams resting on modified Vlasov type elastic soil was investigated by using the separation of 

variables method. Governing equations were obtained by assuming that the material had linear elastic 

behaviour and mass of the beam was distributed along its length. Numerical analysis were provided and 

presented in figures to find out the differences between the modified Vlasov model and conventional 

Winkler type foundation. Furthermore, the effect of shear deformation of elastic soil on the dynamic 

response of the beam was investigated. 
 

Keywords:  Vlasov type foundation; Timoshenko beam; forced vibration; separation of variables method 

 
 
1. Introduction 
 

The dynamic response of the beams on elastic foundation has been investigated by many 

researchers mostly using Winkler Hypothesis which represents the soil with independent elastic 

springs resist to transverse displacement. Most of these researchers have studied on free vibration 

or static response of the beams on Winkler type foundation. Ç atal investigated the free vibration of 

partially embedded piles in Winkler soil with bending moment, axial and shear force effects (Ç atal 

2002, and 2006). Ç atal and Ç atal (2006) analyzed a partially embedded pile in elastic soil using 

differential transform method. Yeşilce and Ç atal (2008) obtained the natural circular frequencies 

of piles embedded in the soil having different subgrade reaction. Çalım and Akkurt (2010) studied 

on the free vibration and static response of straight and circular beams on elastic foundation. 

Yaghoobi et al. (2014) studied on post-buckling and nonlinear free vibration analysis of FG beams 

resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM. On the other 
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hand, many foundation models exist to estimate the soil-structure interaction whose best- 

knowns are two and three parameter elastic foundations. The best-knowns and mostly used of two 

parameter foundation models are Pasternak and Vlasov type foundations which suppose that 

Winkler springs are interacted to each other due to the transverse displacement (Pasternak 1954, 

Vlasov and Leont’ev 1963). Two-parameter foundation models define a second parameter which 

represents the coefficient of an incompressible shear layer on soil surface to constitute the 

interaction between the elastic Winkler springs. The first parameter of the two-parameter elastic 

soil can be evaluated same as the Winkler model according to soil properties. However the second 

parameter of the soil can be obtained by using different ways for each two-parameter elastic soil 

model proposed by different researchers. In Pasternak model, the influence of the soil to both sides 

of foundation beam is ignored differently from the Vlasov Model but despite this difference, the 

second parameter can be taken as same values in both methods (Morfidis and Avramidis 2002). 

Many researchers studied about the vibration of beams on two parameter foundations. Arbeloda-

Monsalve et al. (2008) analyzed a Timoshenko beam-column with generalized end conditions on 

two parameter elastic foundation. Celep et al. (2010) calculated the response of a completely free 

beam on a tensionless Pasternak foundation subjected to a dynamic load. Malekzadeh and Karami  

(2008) analyzed free vibration of thick beams on two-parameter elastic foundations using 

differential quadrature and finite element method. Ma et al. (2009) analyzed statically an infinite 

beam resting on a tensionless Pasternak foundation.  

Forced vibration of the beams on one or two parameter elastic foundations are commonly 

analyzed by considering the effects of lower modes of vibration.  Although the lower modes are 

more effective especially on the displacement and angle of rotation, internal forces including 

bending moment and shear forces are affected ultimately by higher modes of vibration. This point 

has a great importance to obtain the maximum internal forces of beams subjected to dynamic 

loads. Studies about dynamic analysis of the beams which were modeled as distributed parameter 

system also contribute to solution of the forced vibration equations of beams on elastic soil.  In 

recent years, considerable amount of studies have been carried out by many researchers about 

dynamic response of uniform, prismatic or composite beams (Attarnejad et al. 2010, Gunda et al. 

2011). Dadfarnia et al. (2005) analyzed a Timoshenko beam by selecting different time function 

for displacement and angle of rotation using the Galerkin method. Demirdağ and Ç atal (2007) 

studied earthquake response of semi-rigid supported single storey frames modeled as continuous 

system. Demirdağ (2008) investigated the free vibration of elastically supported Timoshenko 

columns with attached masses by transfer matrix. Yeşilce and Çatal (2009) investigated the free 

vibration of axially loaded Reddy-Bickford beam on elastic soil by using the differential transform 

method. Ç alım (2009) investigated the forced vibration of the beams on viscoelastic foundations. 

Sapountzakis and Kampitsis (2010) analyzed Timoshenko beam-columns partially supported on 

tensionless Winkler foundation. Ç atal (2012) analyzed the response of a forced Euler-Bernoulli 

beam using the differential transform method. Yeşilce and Çatal (2011) investigated the free 

vibration of axially loaded and semi rigid connected Reddy-Bickford beam on elastic soil by using 

the differential transform method. Yeşilce (2011) analyzed the free vibration of axially loaded and 

semi rigid connected Reddy-Bickford beam on elastic soil by using the differential transform 

method and differential quadrature method. 

In this study, the dynamic response analysis of the axially loaded beams resting on the Vlasov 

type foundation was performed by considering Timoshenko beam theory and rotatory inertia of the 

beam. Free vibration equation of the beam depending on transverse displacement shape function 

which varies depending on the non-dimensional location coordinate was obtained by using the  
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Fig. 1 Timoshenko beam resting on two-parameter elastic foundation 

 

 
Fig. 2 Free body-diagram of infinitesimal element obtained from the beam shown in Fig. 1 

 

 

separation of variables method. Natural frequencies of the beam were calculated by using an 

iterative computer program prepared by the authors. Forced vibration equation of the beam was 

obtained by using the orthogonality properties of vibration modes and a general solution was 

obtained according to concentrated dynamic loading case. In numerical examples, dynamic 

response analysis of simply supported beams resting on elastic soil was analyzed by considering 

both Winkler and Vlasov type foundation models. 

 

 

2. Governing equations  
 

The analytical model proposed in this paper consists of an axially loaded uniform beam on two-

parameter elastic foundation that has the elastic spring coefficient CS, and shear layer coefficient 

CG as shown in Fig. 1. It was assumed that the beam material was linear elastic with distributed 

mass m, bending rigidity EI and shear rigidity κAG. According to these assumptions, governing 

equations of the beam on Vlasov type elastic foundation shown in Fig. 1 can be written as Eq. (1) 

and (2) by using the equations of moment and transverse force equilibrium of infinitesimal beam 

element shown in Fig. 2.  
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In Eqs. (1) and (2); N, θ(x,t), T(x,t), M(x,t) and r denote the angle of rotation,  shear force, bending 

moment functions and the radius of gyration, respectively. 
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where  E, G, I, A, κ and γ(x,t) denote the modulus of elasticity, shear modulus, moment of inertia, 

cross-sectional area, shear correction factor and shear deformation angle of the beam, respectively. 

Eq. (2) can be written as below by taking θ(x,t) as 













AG

txT

x

txy



),(),(
. 

0
),(1),(),(

),(
),(

2

2

22

4
2 




























t

txT

AGxt

txy
mr

x

txy
NtxT

x

txM

      
             (6) 

     The transverse displacement function,  y(x,t) can be written depending on bending moment and 

shear force functions by using the Eq. (4) and third order derivative of Eq. (5), as follows (Ç atal 

2006). 
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3. Free vibration analysis 
 
     The free vibration equation of motion can be written depending on transverse displacement 

y(x,t) by substituting the Eqs. (1) and (6) into Eq. (7) for p(x,t)=0, as follows. 

0
),(),(),(

),(),(),(1

),(),(),(
),(

),(1),(

22

4

2

2

4

42

4

4

2

2

22

4

2

2

22

4
2

2

2

2

2

4

4


















































































tx

txy
C

t

txy
C

t

txy
m

AGEI

mr

x

txy
C

x

txy
C

xt

txy
m

AG

x

txy
N

xt

txy
mr

x

txy
CtxyC

t

txy
m

EIx

txy

GS

GS

GS



            
(8) 

     The transverse displacement function,  y(x,t) depends on the location and time variables x and t; 

but it can be written in terms of two independent function by using the separation of variables 

method such as given below(Ç atal 2006).   
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where, Yi(x) and μi(t) denote the displacement shape and normal coordinate functions of i
th
 mode, 

respectively. If the modal coordinate function is taken as μi(t)=sin(ωit+φ) for free vibration case, 

the equation of motion becomes an ordinary differential equation and can be written as below. 
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where ωi denotes the natural angular frequency of i
th
 mode. The free vibration equation of motion 

becomes as follows for ξ=x/L. 
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where ξ denotes the non-dimensional location variable. Eq. (11) can be written as below. 
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Finally, the displacement shape function is obtained as follows by solving the Eq. (12). 
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     Angle of rotation, bending moment and shear force functions can be also written by using the 

separation of variables method as below. 
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In Eqs. (17), (18) and (19), )(i , )(iM  and )(iT  denote shape functions of angle of rotation, 

bending moment and shear force, respectively. These functions can be obtained as given in Eq. 

(20) by using Eqs. (1), (6) and (7).  
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     Natural angular frequencies of the beam can be calculated by using an iterative procedure based 

on determination of values of ωi which give the non-trivial solution of the matrix obtained from 

boundary conditions of the beam. After obtaining the natural angular frequencies, a normalization 

is required for the function of Yi(ξ). After the normalization procedure, the maximum value of Yi(ξ) 

should be equal to 1.  Thus, normalized shape functions of Θi(ξ), Mi(ξ) and Ti(ξ) can be obtained 

from the normalized displacement function of Yi(ξ). 
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4. Forced vibration analysis 
 
     Forced vibration equation of the beam on two parameter elastic foundation can be written 

depending on the parameters of ξ and t as follows by using the Eqs. (1) and (2). 
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Eqs. (26) and (27) become as follows by using the separation of variables method. 
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If the ratio of )(/)( tt ii 
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  is obtained dividing Eq. (29) by )(2 imr  , it leads to a constant value 

and equals to ωi
2
 (Chopra 2007). 
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Eq. (30) shows that the ratio of )(/)( tt ii 


  has always same value for both free and forced 

vibration cases due to the fact that it only depends on shape functions. Thus, the same equality can 

be also obtained for Eq. (28) (Chopra, 2007). 
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Thus, Eqs. (28) and (29) become as follows by using the Eq. (30) and (31). 
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     Eqs. (32) and (33) denote that the coupled ordinary differential equations which are including 

all modes of vibration. Using the orthogonality property of vibration modes, an uncoupled 

equation of motion can be obtained for each vibration mode. Following equations can be written 

by multiplying Eqs. (32) and (33) with Yi(ξ) and Θi(ξ), respectively, and integrating along the 

beam length provided that i and j denote different modes. 
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Finally, a second order differential equation that only depends on time variable t can be obtained 

as follows by combining Eqs. (34) and (35). 
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where, 
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 dtpYLtP jj 

1

0

),()()(                                                    (38) 

In Eqs.(37) and (38), Pj(t) and Mj can be named as generalized load  and mass, respectively. In the 

case of p(ξ,t) is a concentrated dynamic load function, the generalized dynamic load can be written 

as follows (Dadfarnia et al. 2005). 

)()/(),( tqLaxtp                                                     (39) 

)()/()( tqLaYtPj                                                       (40) 

Where δ and a  denote the Dirac-delta function and distance of the concentrated load from the 

reference point y=0, x=0, respectively. Thus, the solution of differential equation given in Eq. (36) 

can be obtained by using the Duhamel’s integral such as below. 
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                   (41) 

where μ0 and 


0  are the initial value of modal displacement and velocity, respectively. 

 
 
5. Calculation of coefficients of the two parameter foundation 
 

     The calculation of parameters of the elastic soil is also related with the type of the elastic soil 

model. The first parameter of the elastic soil which represents the modulus of transverse 

deformation can be evaluated by using the formulas given for Winkler foundation model. However 

the calculation of the second parameter is directly related with the type of the two-parameter 

elastic soil model. If the second parameter is taken as a shear layer with coefficient CG such as 

Vlasov model, CS and CG can be evaluated by using formulas given by Vlasov and Leont’ev for 
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rectangular beams on two parameter foundation (Vlasov and Leont’ev 1966). Formulas given by 

Vlasov and Leont’ev become as follows for semi-infinite elastic medium as suggested by Zhaohua 

and Cook for beams on two-parameter elastic foundation (Zhaohua and Cook 1983). 
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(42)   

where, b  denotes the width of the beam. The parameter of   is defined by Vlasov and Leont’ev 

as a coefficient to characterize the decrease of the deflections with depth and commonly taken as 

1  (Vallaban and Das, 1991). Parameters of 00 ,, El  are given in following equation. 
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(43)   

where EI, Es, υs and υ denotes the bending rigidity of beam, the modulus of elasticity and Poisson’s 

ratio of the soil and the beam, respectively.  

 

 

6. Numerical analyses and discussions 
 

Numerical analysis consists of two parts which were named as numerical example-1 and 

numerical example-2, respectively. In example-1, numerical results obtained by using the analysis 

method proposed in this study were compared with earlier studies, and the effect of higher modes 

to the dynamic response of the beam was highlighted. In numerical example-2, it was aimed to 

reveal the difference between the Winkler and Vlasov type foundations and effect of the shear 

deformation of the beam to the vibration. For this reason, numerical analyses were carried out for 

each case of the Timoshenko beam on the Vlasov and Winkler types of foundation, and Euler 

beam on the Vlasov and Winkler types of foundation. The solutions obtained for Euler beam 

theory and Winkler type foundation were provided by taking the shear correction parameter of the 

beam,  and shear parameter of the elastic soil as equal to zero, respectively (κ=0, CG=0). A 

computer program was prepared in MATLAB to carry out the dynamic response analysis of the 

beam. The computer program consists of two parts which are the free and forced vibration analysis 

cases. In free vibration case, there is an iterative algorithm whose input values are mass, material 

properties, boundary conditions of the beam, and the number of total modes that will be taken into 

account. After the free vibration analysis procedure, natural angular frequencies and mode shapes 

of the beam are obtained. In forced vibration analysis case, maximum values of the displacement 

and bending moment functions at the midpoint and maximum values of the angle of rotation and 

shear force functions at supports are obtained according to the dynamic external load function. 

Maximum values of the displacement, angle of rotation, bending moment and shear force 

functions are calculated cumulatively for the input value of the total mode number. In this 

procedure, due to the fact that the effect of higher modes extremely appear on shear force, if the 

cumulative value of the shear force calculated in the i
th
 mode is close enough to the cumulative 

shear force calculated in the (i-1)
th
 mode, the analysis is completed. Otherwise, the analysis 

procedure goes on until the sufficient convergence is obtained.  
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6.1 Numerical example-1 
 
In numerical example-1, the dynamic response analysis of a simply supported beam resting on 

Winkler type foundation was performed and results were compared with those of earlier studies to 

ensure the accuracy of computer program written by the authors. The proposed beam model was 

investigated for free vibration by Timoshenko et al. (1974), and Friswell et al. (2007), and 

investigated for forced vibration by Ç alım (2009), and Sapountzakis and Kampitsis (2010). 

Properties of proposed beam are; m=0.445 kN.s
2
/m

2
, I=1.439×10

-2 
m

4
, E=24.82×10

6
 kN/m

2
, κ=0,

 

υ=0.3, r=0 and L=6.096 m, and spring coefficients of the elastic soil are CS=16550 KN/m
2
 and 

CG=0. The analysis model of proposed beam and dynamic external load which was applied to this 

beam was shown in Fig. 3. 

In Table 1, natural frequencies of first five modes were obtained for the beam proposed in 

example-1 and compared with those of previous studies. In Table 2, displacement responses of the 

proposed beam obtained for the given triangular impulsive load and its comparison with the earlier 

studies carried out by Çalım (2009), and Sapountzakis and Kampitsis (2010) were presented. In 

Fig. 3, variation of the displacement and bending moment at midpoint, and angle of rotation and 

shear force at left support obtained for the increasing values of total considered mode number 

versus time were presented. 

 

 

 

Fig. 3 Simply supported beam on Winkler type foundation 

 
Table 1 Comparison of obtained natural frequencies (Hz.) with those of earlier studies 

Mode 

Number 

Timoshenko et al. 

(1974) 

Friswell et al.  

(2007) 
Çalım (2009) 

Sapountzakis and 

Kampitsis (2010) 
Present Study 

1 32.9032 32.8980 32.8633 32.7946 32.9464 

2 56.8135 56.8080 56.5972 56.5476 56.8905 

3 112.908 111.900 110.7390 110.7220 112.0615 

4 - 193.760 189.9390 189.4890 194.0449 

5 - - 222.0780 222.0770 300.9472 

                                  
Table 2 Comparison of displacement responses with those of earlier studies

 

Midpoint Displacement(m) 

 Çalım (2009) Sapountzakis and Kampitsis (2010) Present Study 

Max. 0.002630 0.002630 0.002635 

Min. -0.002500 -0.002500 -0.002482 
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Fig. 4 Variation of the displacement, angle of rotation, bending moment and shear force functions of 

simply supported beam versus time for the increasing values of total considered mode number, n. 

 

 

In analysis results of example-1, a high degree of consistency was observed between the results
 

of present study and earlier studies. Besides the consistency of analysis results, the influence of 

higher modes especially on the bending moment and shear force can be seen clearly in Fig. 6. 

Displacement, angle of rotation, bending moment and shear force functions were obtained by 

multiplying the normal coordinate function with corresponding mode shape functions. Due the fact 

that mode shape functions of angle of rotation, bending moment and shear force are derived from 

normalized displacement mode shape; an increment in the amplitude of mode shapes of those 

functions is inevitable. For this reason, higher modes of shear force and bending moment functions 

become extremely effective on the vibration as it is seen in the Fig. 4.   

 
6.2 Numerical example-2 
 
The analysis model presented in numerical example-2 consists of a simply supported reinforced 

concrete beam on a modified Vlasov type elastic foundation. The beam has distributed mass and 

elasticity, and it is subjected to a concentrated dynamic load at mid-span as shown in Fig.(7).The 

characteristics of the reinforced concrete beam are; m=2.555 kN.s
2
/m

2
, κ=0.667, I=8.333×10

-2 
m

4
,  
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Fig. 5 Simply supported beam on modified Vlasov type foundation 

 
Table 3 The coefficients of CS and CG obtained from some values α and β. 

EI

LCS
4

  2LC

C

S

G  
CS (KN/m

2
) CG (KN) 

1 

0.001 

0.010 

0.100 

233.333 

23.333 

233.333 

2333.333 

 

10 

 

0.001 

0.010 

0.100 

2333.333 

233.333 

2333.333 

23333.333 

 

100 

 

0.001 

0.010 

0.100 

23333.333 

2333.333 

23333.333 

233333.333 

 

1000 

 

0.001 

0.010 

0.100 

233333.333 

23333.333 

233333.333 

2333333.333 

 

10000 

 

0.001 

0.010 

0.100 

2333333.333 

233333.333 

2333333.333 

23333333.333 

 
Table 4 Axial compressive loads obtained from some values of Nr 

EI

NL
N r 2

2


  

N 

(KN) 

0.25 57619 

0.50 115238 

0.75 172857 

 

 

E=28×10
6
 kN/m

2
, G=13.33×10

6
 kN/m

2
,
 
υ=0.2 and L=10 m. The dynamic external load applied to 

proposed numerical analysis model is q(t)=100sin(10t) KN. 

In numerical example-2, the parameters of elastic foundation, CS and CG were calculated as 

depending on the relative stiffness α and relative shear parameter β. Axial compressive load was 

taken into account according to the relative axial load Nr which indicated the ratio of the axial 

compressive load to the Euler critical buckling load.     
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Fig. 6 Variation of maximum values of displacement, angle of rotation, bending moment and shear force 

of the simply supported beam versus α for Nr=0.25 and β=0.001 

 

 
Fig. 7 Variation of maximum values of displacement, angle of rotation, bending moment and shear force 

of the simply supported beam versus α for Nr=0.50 and β=0.001 
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Fig. 8 Variation of maximum values of displacement, angle of rotation, bending moment and shear force 

of the simply supported beam versus α for Nr=0.75 and β=0.001 

 

 

Analysis results of numerical example-2 were presented graphically in Figs.6-14 which indicate 

the variation of maximum values of displacement, angle rotation, bending moment and shear 

forces of the beam according to the relative stiffness, α. Figs. 6, 7 and 8 indicate the maximum 

dynamic responses of the beam obtained for Nr=0.25, 0.5, 0.75 and β=0.001, respectively. Figs. 9, 

10 and 11 show the maximum dynamic responses of the beam obtained for Nr=0.25, 0.5, 0.75 and 

β=0.010, respectively. Finally in Figs.12, 13 and 14, the maximum dynamic responses of the beam 

obtained for Nr=0.25, 0.5, 0.75 and β=0.100 were presented, respectively. 

Numerical analysis results of example-2 indicate the influence of shear parameter of the elastic 

soil, shear deformation of the beam and axial compressive load applied to beam on the amplitude 

of dynamic response of the beam on Vlasov type foundation, respectively. In Figs. 6-8, 9-11 and 

12-14, it was observed that a difference between the amplitude of dynamic responses of beams on 

Vlasov and Winkler type foundations and this difference was observed to be increasing 

proportionally with the relative shear parameter, β.  

As the effect of the second parameter of Vlasov type soil, the amplitudes of displacement, 

angle of rotation, bending moment and shear force functions of the Euler beam on Winkler type 

foundation were observed to be greater than that of the beam on Vlasov type foundation. The 

differences occurred in displacement, angle of rotation and bending moment functions were found 

to be increasing numerically for α values between the 1-10 due to the fact that the shear parameter 

of β was increasing with α.However it was observed to be decreasing for higher values of α. The 

difference between the amplitudes of shear forces was observed to be increasing proportionally 

with α. On the other hand, the difference between the amplitudes of displacement, angle of  
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Fig. 9 Variation of maximum values of displacement, angle of rotation, bending moment and shear force 

of the simply supported beam versus α for Nr=0.25 and β=0.010 

 

 

Fig. 10 Variation of maximum values of displacement, angle of rotation, bending moment and shear force 

of the simply supported beam versus α for Nr=0.50 and β=0.010 
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Fig. 11 Variation of maximum values of displacement, angle of rotation, bending moment and shear force 

of the simply supported beam versus α for Nr=0.75 and β=0.010 

 

 

Fig. 12 Variation of maximum values of displacement, angle of rotation, bending moment and shear force 

of the simply supported beam versus α for Nr=0.25 and β=0.100 
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Fig. 13 Variation of the maximum value of displacement, angle of rotation, bending moment and shear 

force functions of the simply supported beam due to the α for Nr=0.50 and β=0.100 

 

 
Fig. 14 Variation of maximum values of displacement, angle of rotation, bending moment and shear force 

of the simply supported beam versus α for Nr=0.75 and β=0.100 
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rotation, bending moment and shear forces of the beam on Vlasov and Winkler soil was observed 

to be increasing relatively with proportional to α because of the increasing in β. 

Amplitudes of displacement, angle of rotation, bending moment and shear force of the 

Timoshenko beam on Winkler type foundation were observed to be very close to that of the beam 

on Vlasov type foundation for α values between the 1-100 due to the fact that the effect of shear 

deformation of the beam was neutralized the effect of second parameter of the Vlasov type 

foundation for lower values of α. For the higher values of α, the amplitudes of displacement, angle 

of rotation, bending moment and shear of the Timoshenko beam on Vlasov type foundation were 

observed to be greater than that of the beam on Winkler type foundation. 

In Figs. 6-14, it was observed that the amplitudes of displacement and angle of rotation of the 

Timoshenko beam were found to be greater than the Euler beam. However the amplitude of 

bending moment of the Timoshenko beam was found to be smaller than the Euler beam due to the 

effect of shear deformation of the beam. It was observed that the difference between Timoshenko 

and Euler beams did not change so much numerically but it was increasing relatively with 

proportional to relative stiffness, α. For the minimum value of α, the maximum shear force of 

Timoshenko beam was observed to be greater than the Euler beam. For higher values of α, the 

maximum shear force of Timoshenko beam was observed to be smaller than the Euler beam and 

their difference was found to be increasing both numerically and relatively with relative stiffness, 

α. This result indicates that the shear deformation of the beam has an enhancing effect on the 

amplitude of displacement and angle of rotation function for the any value of α ; and shear force 

function has an enhancing effect for the minimum value of α. On the other hand it was observed 

the shear deformation had a reducing effect on the amplitude of bending moment function for the 

any value of α; and it was observed that shear deformation of the beam had a reducing effect on 

the amplitude of shear force function for higher values of α. 

As it seen in the analysis results of numerical example-2, axial compressive load is not 

effective on the difference between the Winkler and Vlasov type foundations, and between the 

Timoshenko and Euler beams for the higher values of α. However a remarkable difference was 

observed between the dynamic response of the beams on Vlasov and Winkler type foundations for 

the minimum value of α. Nevertheless, axial compressive load is extremely effective on the 

amplitude of the dynamic displacement, angle of rotation, bending moment and shear force 

functions. 

 
 
7. Conclusions 
 

In this study, effects of the second parameter of elastic soil and shear deformation of the beam 

on the dynamic response were investigated for beams on Vlasov type elastic foundation. 

Numerical analysis was carried out in two parts. In the first part, dynamic response of a simply 

supported beam on Winkler type foundation was analyzed and results were compared those of the 

earlier studies. In second part, an axially loaded simply supported beam resting on modified 

Vlasov type foundation was investigated, and analysis results were presented in figures which 

show the variation of the peak values of displacement and bending moment functions at the mid-

span, and angle rotation and shear force functions at supports versus the relative stiffness, α. The 

variation of  the maximum value of displacement, angle of rotation and bending moment functions 

according to the relative stiffness were obtained for the case of relative axial compressive load was 

0.25, 0.5 and 0.75 and relative shear parameter was 0.001, 0.01 and 0.1, respectively. Analysis 
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results and conclusions of the presented study can be listed as follows. 

• Higher modes of vibration are extremely effective on internal forces especially on the shear 

force. For this reason, the total number of considered mode should be determined due to the 

convergence of shear force function obtained in corresponding mode with that of previous 

mode.     

•The influence of second parameter of the Vlasov type foundation is extremely seen in the 

Euler beams, and Timoshenko beams resting on the soils having higher values of CS and CG. 

For the lower values of CS and CG, maximum dynamic response of the Timoshenko beam on 

Winkler and Vlasov type foundations are found to be very close to each other. 

• Shear deformation of the beam enhances the amplitude of displacement and angle of rotation 

function for the any value of α and shear force function for minimum values of α. Nevertheless, 

shear deformation reduces the amplitude of bending moment function for the any value of α 

and shear force function for higher values of α. 

• Axial compressive load enhances the amplitude of displacement, bending moment and shear 

force functions but it does not  have an enhancing or reducing effect on the amplitude of 

dynamic response of the Euler and Timoshenko beams on Vlasov and Winkler type 

foundations except for the lower values of α. 
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