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Abstract.  Vibration analysis of the beams on elastic foundation has gained the great interest of many
researchers. In the literature, there are many studies that focus on the free vibration analysis of the beams on
one or two parameter elastic foundations. On the other hand, there are no sufficient studies especially focus
on the comparison of dynamic response including the bending moment and shear force of the beams resting
on Winkler and two parameter foundations. In this study, dynamic response of the axially loaded
Timoshenko beams resting on modified Vlasov type elastic soil was investigated by using the separation of
variables method. Governing equations were obtained by assuming that the material had linear elastic
behaviour and mass of the beam was distributed along its length. Numerical analysis were provided and
presented in figures to find out the differences between the modified Vlasov model and conventional
Winkler type foundation. Furthermore, the effect of shear deformation of elastic soil on the dynamic
response of the beam was investigated.
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1. Introduction

The dynamic response of the beams on elastic foundation has been investigated by many
researchers mostly using Winkler Hypothesis which represents the soil with independent elastic
springs resist to transverse displacement. Most of these researchers have studied on free vibration
or static response of the beams on Winkler type foundation. C atal investigated the free vibration of
partially embedded piles in Winkler soil with bending moment, axial and shear force effects (C atal
2002, and 2006). Catal and Catal (2006) analyzed a partially embedded pile in elastic soil using
differential transform method. Yesilce and Catal (2008) obtained the natural circular frequencies
of piles embedded in the soil having different subgrade reaction. Calim and Akkurt (2010) studied
on the free vibration and static response of straight and circular beams on elastic foundation.
Yaghoobi et al. (2014) studied on post-buckling and nonlinear free vibration analysis of FG beams
resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM. On the other
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hand, many foundation models exist to estimate the soil-structure interaction whose best-
knowns are two and three parameter elastic foundations. The best-knowns and mostly used of two
parameter foundation models are Pasternak and Vlasov type foundations which suppose that
Winkler springs are interacted to each other due to the transverse displacement (Pasternak 1954,
Vlasov and Leont’ev 1963). Two-parameter foundation models define a second parameter which
represents the coefficient of an incompressible shear layer on soil surface to constitute the
interaction between the elastic Winkler springs. The first parameter of the two-parameter elastic
soil can be evaluated same as the Winkler model according to soil properties. However the second
parameter of the soil can be obtained by using different ways for each two-parameter elastic soil
model proposed by different researchers. In Pasternak model, the influence of the soil to both sides
of foundation beam is ignored differently from the Vlasov Model but despite this difference, the
second parameter can be taken as same values in both methods (Morfidis and Avramidis 2002).
Many researchers studied about the vibration of beams on two parameter foundations. Arbeloda-
Monsalve et al. (2008) analyzed a Timoshenko beam-column with generalized end conditions on
two parameter elastic foundation. Celep et al. (2010) calculated the response of a completely free
beam on a tensionless Pasternak foundation subjected to a dynamic load. Malekzadeh and Karami
(2008) analyzed free vibration of thick beams on two-parameter elastic foundations using
differential quadrature and finite element method. Ma et al. (2009) analyzed statically an infinite
beam resting on a tensionless Pasternak foundation.

Forced vibration of the beams on one or two parameter elastic foundations are commonly
analyzed by considering the effects of lower modes of vibration. Although the lower modes are
more effective especially on the displacement and angle of rotation, internal forces including
bending moment and shear forces are affected ultimately by higher modes of vibration. This point
has a great importance to obtain the maximum internal forces of beams subjected to dynamic
loads. Studies about dynamic analysis of the beams which were modeled as distributed parameter
system also contribute to solution of the forced vibration equations of beams on elastic soil. In
recent years, considerable amount of studies have been carried out by many researchers about
dynamic response of uniform, prismatic or composite beams (Attarnejad et al. 2010, Gunda et al.
2011). Dadfarnia et al. (2005) analyzed a Timoshenko beam by selecting different time function
for displacement and angle of rotation using the Galerkin method. Demirdag and Catal (2007)
studied earthquake response of semi-rigid supported single storey frames modeled as continuous
system. Demirdag (2008) investigated the free vibration of elastically supported Timoshenko
columns with attached masses by transfer matrix. Yesilce and Catal (2009) investigated the free
vibration of axially loaded Reddy-Bickford beam on elastic soil by using the differential transform
method. Calim (2009) investigated the forced vibration of the beams on viscoelastic foundations.
Sapountzakis and Kampitsis (2010) analyzed Timoshenko beam-columns partially supported on
tensionless Winkler foundation. Catal (2012) analyzed the response of a forced Euler-Bernoulli
beam using the differential transform method. Yesilce and Catal (2011) investigated the free
vibration of axially loaded and semi rigid connected Reddy-Bickford beam on elastic soil by using
the differential transform method. Yesilce (2011) analyzed the free vibration of axially loaded and
semi rigid connected Reddy-Bickford beam on elastic soil by using the differential transform
method and differential quadrature method.

In this study, the dynamic response analysis of the axially loaded beams resting on the Vlasov
type foundation was performed by considering Timoshenko beam theory and rotatory inertia of the
beam. Free vibration equation of the beam depending on transverse displacement shape function
which varies depending on the non-dimensional location coordinate was obtained by using the
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Fig. 1 Timoshenko beam resting on two-parameter elastic foundation
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Fig. 2 Free body-diagram of infinitesimal element obtained from the beam shown in Fig. 1

separation of variables method. Natural frequencies of the beam were calculated by using an
iterative computer program prepared by the authors. Forced vibration equation of the beam was
obtained by using the orthogonality properties of vibration modes and a general solution was
obtained according to concentrated dynamic loading case. In numerical examples, dynamic
response analysis of simply supported beams resting on elastic soil was analyzed by considering
both Winkler and Vlasov type foundation models.

2. Governing equations

The analytical model proposed in this paper consists of an axially loaded uniform beam on two-
parameter elastic foundation that has the elastic spring coefficient Cs, and shear layer coefficient
Cg as shown in Fig. 1. It was assumed that the beam material was linear elastic with distributed
mass m, bending rigidity EI and shear rigidity «AG. According to these assumptions, governing
equations of the beam on Vlasov type elastic foundation shown in Fig. 1 can be written as Eq. (1)
and (2) by using the equations of moment and transverse force equilibrium of infinitesimal beam
element shown in Fig. 2.

aT(x,t) 8 y(x,t)
OX ot?

Coy(x,t) + Ce a;—(“) +p(x,t)=0 )

X2
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In Egs. (1) and (2); N, 8(x,t), T(x,t), M(x,t) and r denote the angle of rotation, shear force, bending
moment functions and the radius of gyration, respectively.

M (x,1) = g1 2204 Y )
T(X,t) = y(X, 1) KAG 4
O(x,t) = %—y(x,t) ()

where E, G, I, A, x and y(x,t) denote the modulus of elasticity, shear modulus, moment of inertia,
cross-sectional area, shear correction factor and shear deformation angle of the beam, respectively.

ay(xt) T(x,t)}
oX KAG |

Eqg. (2) can be written as below by taking 6(x,t) as {

aM(x,t)_T(X’t)_Nayéi,t)mrz[a“y(x,t)_ 1 azT(x,t)}O ©

OX ot’ox?  KAG a2

The transverse displacement function, y(x,t) can be written depending on bending moment and
shear force functions by using the Eq. (4) and third order derivative of Eq. (5), as follows (C atal
2006).

64y(x,t):_i62M(x,t)+ 1 8%T(x1)

7
ox* El  ox2 KAG  ox® )

3. Free vibration analysis

The free vibration equation of motion can be written depending on transverse displacement
y(x,t) by substituting the Egs. (1) and (6) into Eqg. (7) for p(x,t)=0, as follows.

4 2 2 4 2
a'y(xt) 1 {ma YOO e iy, 2 ;(ﬁ,t) 2 8 @ y(x,t)}
X

ox* El ot? ot2ox? ox?
1 'y (x,1) %y (x,1) 'y (x,1)
- m +C -C 8
KAG{ acoxt T o ° ®
2 4 2 4
LU y(ﬁ,t) +C, 0 y(;ct) _C, 0 yz(x,zt) _
EIKAG ot ot ox2ot

The transverse displacement function, y(x,t) depends on the location and time variables x and t;
but it can be written in terms of two independent function by using the separation of variables
method such as given below(C atal 2006).
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where, Yi(x) and z;(t) denote the displacement shape and normal coordinate functions of i mode,
respectively. If the modal coordinate function is taken as u;(t)=sin(wit+¢) for free vibration case,
the equation of motion becomes an ordinary differential equation and can be written as below.

2 2.2 B 2.2
Yi’V(X)+ KAG ma,” —C, N (ma}, r+N CG)+ ma, 1°Cgq Yi”(X)
KAG +Cg KAG El ElxAG (10)
2 ( 2 )
+ G mr (ma),4 —Csa)lz)— mo -G, Y;(x) =0
KAG +Cg || EIXKAG El

where w; denotes the natural angular frequency of i"" mode. The free vibration equation of motion
becomes as follows for &=x/L.

2

2 2.2 2.2
Yo (E) + 2 KAG mae,” —C, . (ma)i r-+N —CG)I ma, " r°Cg Y ()
xKAG —Cg KAG El ElIxAG
(11)
2 2
bl MAG I (o —Cswf}ﬁ—)m“’i CJly.(#)=0
KAG + Cq || EIKAG El
where ¢ denotes the non-dimensional location variable. Eq. (11) can be written as below.

Yi"(§) +a,Y" (§) +bY; (&) =0 (12)

where
2 _ 2.2 _ 2.2
a =12 KAG me;” —C, . (ma), r'+N CG)+ me,; " r°Cq (13)
KAG -Cg KAG El EIKAG
2 2 _
=L als mr (ma)i4 —Csa)iz)—(mwi—cs) (14)
KAG +Cg || EIKAG El
Finally, the displacement shape function is obtained as follows by solving the Eq. (12).

Y, (&) =C, cos1,& +C,sinh 4,& +C,coshA4,& +C, sinh 4,& (15)
where

‘—ai—,/ai2—4bi| 5 ‘—ai+,/ai2—4bi| 16)

T |

i e

Angle of rotation, bending moment and shear force functions can be also written by using the
separation of variables method as below.

e@n=§&@mm> (17)



974 Caglayan Hizal and Hikmet Hiiseyin Catal

M(ED =2 M, (D ® (18)
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In Egs. (17), (18) and (19), ©;(¢), M, (&) and T, (£) denote shape functions of angle of rotation,

bending moment and shear force, respectively. These functions can be obtained as given in Eq.
(20) by using Egs. (1), (6) and (7).

Vi _ Cs_ma)iz _ C_G Yi' (&)
Mi(ﬁ)—El{[—%G ]Yi(ff) [ +1J—L2 }
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y(&,1) = i(c1 cos & + C, sin 4,& + C, cosh A,& + C, sinh 1, ) (t) (21)
i=1
O(Et) = i(cle sin ,& + C,K, cos & + C,K, sinh 1,& + C, K, cosh A,& ) (t) (22)
i=1
M (&,t) = i(clKl cos L, & + C,K, sin ,& + C,K, cosh A,& + C, K, sinh A,& ) (t) (23)
i=1
T(E ) = i(clK3 sin L,& —C,K; cos 4, & + C,K, sinh 1,& + C,K, cosh A,& ) (t) (24)

i=1

where
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Natural angular frequencies of the beam can be calculated by using an iterative procedure based
on determination of values of w; which give the non-trivial solution of the matrix obtained from
boundary conditions of the beam. After obtaining the natural angular frequencies, a normalization
is required for the function of Y;(¢&). After the normalization procedure, the maximum value of Y;(&)

should be equal to 1. Thus, normalized shape functions of ®;(&), M;(&) and T;(&) can be obtained
from the normalized displacement function of Y;(<).
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4. Forced vibration analysis

Forced vibration equation of the beam on two parameter elastic foundation can be written
depending on the parameters of ¢ and t as follows by using the Egs. (1) and (2).

2 2
mEXED ey - e ;gﬁf’” F e (26)
1oM(S 1) 20° o°0(&. 1) i (&) 27
Lo et s o —T(&E) =0 (27)
Egs. (26) and (27) become as follows by using the separation of variables method.
Z[mv (&) ) + (C Yi(6) -5 Co V" (€) ——T (5)}4 (t)} CIEAY (28)
i{mr °0,(&) i (0 + [% M, ()= TN (@) - T, (§)jui (t)} -0 (29)

If the ratio of — ;. (t)/ . (t) is obtained dividing Eq. (29) by mr2e,(¢), it leads to a constant value
and equals to w;? (Chopra 2007).

- ( M (&) - NY &-T («f)}
o) L — 2 (30)
(1) mr ®i &) I

Eq. (30) shows that the ratio of — . (t)/. ) has always same value for both free and forced

vibration cases due to the fact that it only depends on shape functions. Thus, the same equality can
be also obtained for Eq. (28) (Chopra, 2007).

1 1-
.e C Y —*C Y-” —*T-l
~ 1; (t) _ ( S |(é:) Lz Gli (é:) L i (5)) _ a).z (31)
(1) mY; (&) I
Thus, Egs. (28) and (29) become as follows by using the Eg. (30) and (31).

L E ORI B e (32
>mrle, (é)[ili )+ o u (t)} -0 (33)

Egs. (32) and (33) denote that the coupled ordinary differential equations which are including
all modes of vibration. Using the orthogonality property of vibration modes, an uncoupled
equation of motion can be obtained for each vibration mode. Following equations can be written
by multiplying Egs. (32) and (33) with Yi(¢) and ©;(&), respectively, and integrating along the
beam length provided that i and j denote different modes.
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o0 l (1] l
> JmLY; €)Y, (5)d§[ui )+ 4 (t)} =L[Y;(©)p(& s (34)
i=1 g 0
0 1 (1]
ijLrZGi(§)®j(§)d§|:ﬂi 0+’ (t)}:O (39)
i=1 o

Finally, a second order differential equation that only depends on time variable t can be obtained
as follows by combining Egs. (34) and (35).

. P (t
i)+ o) p ()= I\J/I() (36)
j
where,
M = mL'lf(sz(g)+ r2®j2(c§))d§ (37)
P (1) =L[Y;(&)p(& t)dg (38)
0

In Egs.(37) and (38), P;(t) and M; can be named as generalized load and mass, respectively. In the
case of p(¢&t) is a concentrated dynamic load function, the generalized dynamic load can be written
as follows (Dadfarnia et al. 2005).

P(&,t) = S(x—al L)q(t) (39)
P, (t) =Y (& =a/L)q(t) (40)

Where ¢ and @ denote the Dirac-delta function and distance of the concentrated load from the
reference point y=0, x=0, respectively. Thus, the solution of differential equation given in Eg. (36)
can be obtained by using the Duhamel’s integral such as below.

Ho

i () = py Cos(a)jt)+—sin(a)jt)+wJ.q(r)sin(a)jt—a)jr)dr (41)
w; M 1 5

] J

where uo and ;;0 are the initial value of modal displacement and velocity, respectively.

5. Calculation of coefficients of the two parameter foundation

The calculation of parameters of the elastic soil is also related with the type of the elastic soil
model. The first parameter of the elastic soil which represents the modulus of transverse
deformation can be evaluated by using the formulas given for Winkler foundation model. However
the calculation of the second parameter is directly related with the type of the two-parameter
elastic soil model. If the second parameter is taken as a shear layer with coefficient Cg such as
Vlasov model, Cs and Cg can be evaluated by using formulas given by Vlasov and Leont’ev for
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rectangular beams on two parameter foundation (Vlasov and Leont’ev 1966). Formulas given by
Vlasov and Leont’ev become as follows for semi-infinite elastic medium as suggested by Zhaohua
and Cook for beams on two-parameter elastic foundation (Zhaohua and Cook 1983).

Lbll Eo b (42)

|
e

where, b denotes the width of the beam. The parameter of » is defined by Vlasov and Leont’ev
as a coefficient to characterize the decrease of the deflections with depth and commonly taken as
y =1 (Vallaban and Das, 1991). Parameters of I, E,, v, are given in following equation.

2EI(1-v,°) E v
|:3—_ 2 O_ y E0: 3 2 ’ UOZ s 2 (43)
(1 1% )Eob 1_Us 1—US

where El, Eg, vs and v denotes the bending rigidity of beam, the modulus of elasticity and Poisson’s
ratio of the soil and the beam, respectively.

6. Numerical analyses and discussions

Numerical analysis consists of two parts which were named as numerical example-1 and
numerical example-2, respectively. In example-1, numerical results obtained by using the analysis
method proposed in this study were compared with earlier studies, and the effect of higher modes
to the dynamic response of the beam was highlighted. In numerical example-2, it was aimed to
reveal the difference between the Winkler and Vlasov type foundations and effect of the shear
deformation of the beam to the vibration. For this reason, numerical analyses were carried out for
each case of the Timoshenko beam on the Vlasov and Winkler types of foundation, and Euler
beam on the Vlasov and Winkler types of foundation. The solutions obtained for Euler beam
theory and Winkler type foundation were provided by taking the shear correction parameter of the
beam, and shear parameter of the elastic soil as equal to zero, respectively (x=0, Cg=0). A
computer program was prepared in MATLAB to carry out the dynamic response analysis of the
beam. The computer program consists of two parts which are the free and forced vibration analysis
cases. In free vibration case, there is an iterative algorithm whose input values are mass, material
properties, boundary conditions of the beam, and the number of total modes that will be taken into
account. After the free vibration analysis procedure, natural angular frequencies and mode shapes
of the beam are obtained. In forced vibration analysis case, maximum values of the displacement
and bending moment functions at the midpoint and maximum values of the angle of rotation and
shear force functions at supports are obtained according to the dynamic external load function.
Maximum values of the displacement, angle of rotation, bending moment and shear force
functions are calculated cumulatively for the input value of the total mode number. In this
procedure, due to the fact that the effect of higher modes extremely appear on shear force, if the
cumulative value of the shear force calculated in the i™ mode is close enough to the cumulative
shear force calculated in the (i-1)™ mode, the analysis is completed. Otherwise, the analysis
procedure goes on until the sufficient convergence is obtained.
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6.1 Numerical example-1

In numerical example-1, the dynamic response analysis of a simply supported beam resting on
Winkler type foundation was performed and results were compared with those of earlier studies to
ensure the accuracy of computer program written by the authors. The proposed beam model was
investigated for free vibration by Timoshenko et al. (1974), and Friswell et al. (2007), and
investigated for forced vibration by Calim (2009), and Sapountzakis and Kampitsis (2010).
Properties of proposed beam are; m=0.445 kN.s?/m?, 1=1.439x10?m*, E=24.82x10° kN/m?, k=0,
0=0.3, r=0 and L=6.096 m, and spring coefficients of the elastic soil are Cs=16550 KN/m? and
C=0. The analysis model of proposed beam and dynamic external load which was applied to this
beam was shown in Fig. 3.

In Table 1, natural frequencies of first five modes were obtained for the beam proposed in
example-1 and compared with those of previous studies. In Table 2, displacement responses of the
proposed beam obtained for the given triangular impulsive load and its comparison with the earlier
studies carried out by Calim (2009), and Sapountzakis and Kampitsis (2010) were presented. In
Fig. 3, variation of the displacement and bending moment at midpoint, and angle of rotation and
shear force at left support obtained for the increasing values of total considered mode number
versus time were presented.

q(D-(KN)
P =5(x-L/2)q(1)
— .
{ =t(sec.)
” 0.0125  0.0250
| L |
Fig. 3 Simply supported beam on Winkler type foundation
Table 1 Comparison of obtained natural frequencies (Hz.) with those of earlier studies
Mode Timoshenko et al. Friswell et al. Sapountzakis and
Number (1974) (2007) Calm (2009) |3 gitsis (2010) T reSent Study
1 32.9032 32.8980 32.8633 32.7946 32.9464
2 56.8135 56.8080 56.5972 56.5476 56.8905
3 112.908 111.900 110.7390 110.7220 112.0615
4 - 193.760 189.9390 189.4890 194.0449
5 - - 222.0780 222.0770 300.9472
Table 2 Comparison of displacement responses with those of earlier studies
Midpoint Displacement(m)
Calim (2009) Sapountzakis and Kampitsis (2010) Present Study
Max. 0.002630 0.002630 0.002635

Min. -0.002500 -0.002500 -0.002482
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Fig. 4 Variation of the displacement, angle of rotation, bending moment and shear force functions of
simply supported beam versus time for the increasing values of total considered mode number, n.

In analysis results of example-1, a high degree of consistency was observed between the results
of present study and earlier studies. Besides the consistency of analysis results, the influence of
higher modes especially on the bending moment and shear force can be seen clearly in Fig. 6.
Displacement, angle of rotation, bending moment and shear force functions were obtained by
multiplying the normal coordinate function with corresponding mode shape functions. Due the fact
that mode shape functions of angle of rotation, bending moment and shear force are derived from
normalized displacement mode shape; an increment in the amplitude of mode shapes of those
functions is inevitable. For this reason, higher modes of shear force and bending moment functions
become extremely effective on the vibration as it is seen in the Fig. 4.

6.2 Numerical example-2

The analysis model presented in numerical example-2 consists of a simply supported reinforced
concrete beam on a modified Vlasov type elastic foundation. The beam has distributed mass and
elasticity, and it is subjected to a concentrated dynamic load at mid-span as shown in Fig.(7).The
characteristics of the reinforced concrete beam are; m=2.555 kN.s?/m?, x=0.667, 1=8.333x10° m*,
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Fig. 5 Simply supported beam on modified Vlasov type foundation
Table 3 The coefficients of Cs and Cg obtained from some values « and £.
c,L* _ e 2
o= ? B C. L2 Cs (KN/m ) Cs (KN)
0.001 23.333
1 0.010 233.333 233.333
0.100 2333.333
0.001 233.333
10 0.010 2333.333 2333.333
0.100 23333.333
0.001 2333.333
100 0.010 23333.333 23333.333
0.100 233333.333
0.001 23333.333
1000 0.010 233333.333 233333.333
0.100 2333333.333
0.001 233333.333
10000 0.010 2333333.333 2333333.333
0.100 23333333.333

Table 4 Axial compressive loads obtained from some values of N,

~NL? N

" z%El (KN)
0.25 57619
0.50 115238
0.75 172857

E=28x10° kN/m?, G=13.33x10° kN/m? v=0.2 and L=10 m. The dynamic external load applied to
proposed numerical analysis model is q(t)=100sin(10t) KN.

In numerical example-2, the parameters of elastic foundation, Cs and Cg were calculated as
depending on the relative stiffness o and relative shear parameter g. Axial compressive load was
taken into account according to the relative axial load N, which indicated the ratio of the axial
compressive load to the Euler critical buckling load.
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Fig. 6 Variation of maximum values of displacement, angle of rotation, bending moment and shear force
of the simply supported beam versus « for N,=0.25 and =0.001
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Fig. 7 Variation of maximum values of displacement, angle of rotation, bending moment and shear force

of the simply supported beam versus « for N,=0.50 and 5=0.001
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of the simply supported beam versus « for N,=0.75 and 5=0.001

Analysis results of numerical example-2 were presented graphically in Figs.6-14 which indicate
the variation of maximum values of displacement, angle rotation, bending moment and shear
forces of the beam according to the relative stiffness, a. Figs. 6, 7 and 8 indicate the maximum
dynamic responses of the beam obtained for N,=0.25, 0.5, 0.75 and $=0.001, respectively. Figs. 9,
10 and 11 show the maximum dynamic responses of the beam obtained for N,=0.25, 0.5, 0.75 and
£=0.010, respectively. Finally in Figs.12, 13 and 14, the maximum dynamic responses of the beam
obtained for N,=0.25, 0.5, 0.75 and £=0.100 were presented, respectively.

Numerical analysis results of example-2 indicate the influence of shear parameter of the elastic
soil, shear deformation of the beam and axial compressive load applied to beam on the amplitude
of dynamic response of the beam on Vlasov type foundation, respectively. In Figs. 6-8, 9-11 and
12-14, it was observed that a difference between the amplitude of dynamic responses of beams on
Vlasov and Winkler type foundations and this difference was observed to be increasing
proportionally with the relative shear parameter, £.

As the effect of the second parameter of Vlasov type soil, the amplitudes of displacement,
angle of rotation, bending moment and shear force functions of the Euler beam on Winkler type
foundation were observed to be greater than that of the beam on Vlasov type foundation. The
differences occurred in displacement, angle of rotation and bending moment functions were found
to be increasing numerically for a values between the 1-10 due to the fact that the shear parameter
of f was increasing with a.However it was observed to be decreasing for higher values of «. The
difference between the amplitudes of shear forces was observed to be increasing proportionally
with a. On the other hand, the difference between the amplitudes of displacement, angle of
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rotation, bending moment and shear forces of the beam on Vlasov and Winkler soil was observed
to be increasing relatively with proportional to a because of the increasing in .

Amplitudes of displacement, angle of rotation, bending moment and shear force of the
Timoshenko beam on Winkler type foundation were observed to be very close to that of the beam
on Vlasov type foundation for a values between the 1-100 due to the fact that the effect of shear
deformation of the beam was neutralized the effect of second parameter of the Vlasov type
foundation for lower values of a. For the higher values of a, the amplitudes of displacement, angle
of rotation, bending moment and shear of the Timoshenko beam on Vlasov type foundation were
observed to be greater than that of the beam on Winkler type foundation.

In Figs. 6-14, it was observed that the amplitudes of displacement and angle of rotation of the
Timoshenko beam were found to be greater than the Euler beam. However the amplitude of
bending moment of the Timoshenko beam was found to be smaller than the Euler beam due to the
effect of shear deformation of the beam. It was observed that the difference between Timoshenko
and Euler beams did not change so much numerically but it was increasing relatively with
proportional to relative stiffness, a. For the minimum value of a, the maximum shear force of
Timoshenko beam was observed to be greater than the Euler beam. For higher values of a, the
maximum shear force of Timoshenko beam was observed to be smaller than the Euler beam and
their difference was found to be increasing both numerically and relatively with relative stiffness,
a. This result indicates that the shear deformation of the beam has an enhancing effect on the
amplitude of displacement and angle of rotation function for the any value of « ; and shear force
function has an enhancing effect for the minimum value of a. On the other hand it was observed
the shear deformation had a reducing effect on the amplitude of bending moment function for the
any value of «; and it was observed that shear deformation of the beam had a reducing effect on
the amplitude of shear force function for higher values of a.

As it seen in the analysis results of numerical example-2, axial compressive load is not
effective on the difference between the Winkler and Vlasov type foundations, and between the
Timoshenko and Euler beams for the higher values of «. However a remarkable difference was
observed between the dynamic response of the beams on Vlasov and Winkler type foundations for
the minimum value of a. Nevertheless, axial compressive load is extremely effective on the
amplitude of the dynamic displacement, angle of rotation, bending moment and shear force
functions.

7. Conclusions

In this study, effects of the second parameter of elastic soil and shear deformation of the beam
on the dynamic response were investigated for beams on Vlasov type elastic foundation.
Numerical analysis was carried out in two parts. In the first part, dynamic response of a simply
supported beam on Winkler type foundation was analyzed and results were compared those of the
earlier studies. In second part, an axially loaded simply supported beam resting on modified
Vlasov type foundation was investigated, and analysis results were presented in figures which
show the variation of the peak values of displacement and bending moment functions at the mid-
span, and angle rotation and shear force functions at supports versus the relative stiffness, a. The
variation of the maximum value of displacement, angle of rotation and bending moment functions
according to the relative stiffness were obtained for the case of relative axial compressive load was
0.25, 0.5 and 0.75 and relative shear parameter was 0.001, 0.01 and 0.1, respectively. Analysis
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results and conclusions of the presented study can be listed as follows.
+ Higher modes of vibration are extremely effective on internal forces especially on the shear
force. For this reason, the total number of considered mode should be determined due to the
convergence of shear force function obtained in corresponding mode with that of previous
mode.
*The influence of second parameter of the Vlasov type foundation is extremely seen in the
Euler beams, and Timoshenko beams resting on the soils having higher values of Cs and Cg.
For the lower values of Cs and Cg, maximum dynamic response of the Timoshenko beam on
Winkler and Vlasov type foundations are found to be very close to each other.
» Shear deformation of the beam enhances the amplitude of displacement and angle of rotation
function for the any value of a and shear force function for minimum values of a. Nevertheless,
shear deformation reduces the amplitude of bending moment function for the any value of «
and shear force function for higher values of «.
« Axial compressive load enhances the amplitude of displacement, bending moment and shear
force functions but it does not have an enhancing or reducing effect on the amplitude of
dynamic response of the Euler and Timoshenko beams on Vlasov and Winkler type
foundations except for the lower values of a.
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