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Abstract.  An efficient shear deformation theory is developed for wave propagation analysis of an infinite 

functionally graded plate in the presence of thermal environments. By dividing the transverse displacement 

into bending and shear parts, the number of unknowns and governing equations of the present theory is 

reduced, and hence, makes it simple to use. The thermal effects and temperature-dependent material 

properties are both taken into account. The temperature field is assumed to be a uniform distribution over the 

plate surface and varied in the thickness direction only. Material properties are assumed to be 

temperature-dependent, and graded in the thickness direction according to a simple power law distribution in 

terms of the volume fractions of the constituents. The governing equations of the wave propagation in the 

functionally graded plate are derived by employing the Hamilton’s principle and the physical neutral surface 

concept. There is no stretching–bending coupling effect in the neutral surface-based formulation, and 

consequently, the governing equations and boundary conditions of functionally graded plates based on 

neutral surface have the simple forms as those of isotropic plates. The analytic dispersion relation of the 

functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction 

distributions and temperature on wave propagation of functionally graded plate are discussed in detail. It can 

be concluded that the present theory is not only accurate but also simple in predicting the wave propagation 

characteristics in the functionally graded plate. The results carried out can be used in the ultrasonic 

inspection techniques and structural health monitoring. 
 

Keywords:  wave propagation; functionally graded plate; thermal effects; efficient shear deformation 

theory; neutral surface position 

 
 
1. Introduction 
 

Functionally graded materials (FGMs) are new materials which are designed to achieve a 

functional performance with gradually variable properties in one or more directions (Koizumi 
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1992). This continuity prevents the material from having disadvantages of composites such as 

delamination due to large interlaminar stresses, initiation and propagation of cracks because of 

large plastic deformation at the interfaces and so on. Typically, FGMs are made of a mixture of 

ceramics and a combination of different metals (Bennoun et al. 2016, Ebrahimi and Dashti 2015, 

Sallai et al. 2015, Meradjah et al. 2015, Kar and Panda 2015, Pradhan and Chakraverty 2015, 

Bakora and Tounsi 2015, Bouchafa et al. 2015, Arefi 2015, Akbaş 2015, Mansouri and Shariyat 

2015, Belabed et al. 2014, Khalfi et al. 2014, Mansouri and Shariyat 2014, Hadji et al. 2014, 

Fekrar et al. 2014, Tounsi et al. 2013a, Bouderba et al. 2013, Bourada et al. 2012, Benachour et 

al. 2011). So the key point is an accurate description of the variables and the material properties in 

the thickness direction, to perform a satisfactory analysis of the mechanical behavior of FGM 

plates. Many works on FGM structures have been studied in literature. For example, Reddy (2000) 

has analyzed the static behavior of FGM rectangular plates based on his third-order shear 

deformation plate theory. Reddy and Cheng (2001) have presented a three-dimensional model for 

an FGM plate subjected to mechanical and thermal loads, both applied at the top of the plate. Vel 

and Batra (2004) have proposed a three-dimensional solution for free vibration of FGM 

rectangular plates. Zenkour (2006) presented a generalized shear deformation theory in which the 

in-plane displacements are expanded as sinusoidal types across the thickness. Woo et al. (2006) 

studied the non-linear free vibration behavior of plates made of FGMs using the Von Karman 

theory for large transverse deflection. Also, Park and Kim (2006) investigated the thermal 

postbuckling and vibration analyses of FG plates. Kim (2005) discussed the temperature 

dependent vibration analysis of FGM rectangular plates. Matsunaga (2008) studied natural 

frequencies and buckling stresses of FG simply supported rectangular plates based on 2D 

higher-order approximate plate theory (2D HAPT). Shahrjerdi et al. (2011) employed the 

second-order shear deformation theory to analyze vibration of temperature-dependent solar 

functionally graded plates. Arefi and Rahimi (2011) investigated the nonlinear response of a FG 

square plate with two smart layers as a sensor and actuator under pressure. Arefi (2013) analyzed 

the nonlinear thermo-elastic behavior of thick-walled functionally graded piezoelectric cylinder. 

Sobhy (2013) studied the vibration and buckling behavior of exponentially graded material 

sandwich plate resting on elastic foundations under various boundary conditions. The first-order 

shear deformation theory (FSDT), including the effects of transverse shear deformation, was 

employed by some researches to analyze buckling behavior of moderately thick FGM plates 

(Yaghoobi and Yaghoobi 2013, Bouazza et al. 2010). By using an efficient and simple refined 

theory, Ait Amar Meziane et al. (2014) studied the buckling and free vibration of exponentially 

graded sandwich plates under various boundary conditions. Hebali et al. (2014) proposed a new 

quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of FG 

plates. Bousahla et al. (2014) presented a novel higher order shear and normal deformation theory 

based on neutral surface position for bending analysis of advanced composite plates. Zidi et al 

(2014) employed a four variable refined plate theory for bending analysis of FG plates under 

hygro-thermo-mechanical loading. Yaghoobi et al. (2014) presented an analytical study on 

post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic 

foundation under thermo-mechanical loading using VIM. Ait Yahia et al. (2015) studied the wave 

propagation in functionally graded plates with porosities using various higher-order shear 

deformation plate theories. Nguyen et al. (2015) proposed a refined higher-order shear 

deformation theory for bending, vibration and buckling analysis of FG sandwich plates. Bourada 

et al. (2015) discussed the bending and vibration responses of FG thick beams by proposing a 

novel simple shear and normal deformations theory. Mahi et al. (2015) developed a novel 
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hyperbolic shear deformation model for static and dynamic analysis of isotropic, functionally 

graded, sandwich and laminated composite plates. Ait Atmane et al. (2015) used a variationally 

consistent shear deformation theory for dynamic behavior of thick FG beams with porosities. Attia 

et al. (2015) examined the dynamic response of FG plates with temperature-dependent properties 

by employing various four variable refined plate models. Larbi Chaht et al. (2015) studied the 

bending and buckling behaviors of FG size-dependent nanoscale beams including the thickness 

stretching effect. Bouguenina et al. (2015) presented a numerical analysis of FGM plates with 

variable thickness subjected to thermal buckling. Tagrara et al. (2015) investigated the bending, 

buckling and vibration responses of functionally graded carbon nanotube-reinforced composite 

beams. Belkorissat et al. (2015) studied the dynamic properties of FG nanoscale plates using a 

novel nonlocal refined four variable theory. Bennai et al. (2015) proposed a novel higher-order 

shear and normal deformation theory for FG sandwich beams. Tebboune et al. (2015) analyzed the 

thermal buckling behavior of FG plates resting on elastic foundation based on an efficient and 

simple trigonometric shear deformation theory. Hamidi et al. (2015) presented a sinusoidal plate 

theory with 5-unknowns and stretching effect for thermomechanical bending of FG sandwich 

plates. Bennoun et al. (2016) proposed a novel five variable refined plate theory for vibration 

analysis of FG sandwich plates. Ait Atmane et al. (2016) studied the effect of thickness stretching 

and porosity on mechanical response of a FG beams resting on elastic foundations.  

The study of the wave propagation in the FGM structures has received also much attention 

from various researchers. Chen et al. (2007) studied the dispersion behavior of waves in a 

functionally graded plate with material properties varying along the thickness direction. Han and 

Liu (2002) investigated SH waves in FGM plates, where the material property variation was 

assumed to be a piecewise quadratic function in the thickness direction. Han et al. (2001) proposed 

an analytical-numerical method for analyzing the wave characteristics in FGM cylinders. Han et 

al. (2002) also proposed a numerical method to study the transient wave in FGM plates excited by 

impact loads. Sun and Luo (2011a) also studied the wave propagation and dynamic response of 

rectangular functionally graded material plates with completed clamped supports under impulsive 

load. Considering the thermal effects and temperature-dependent material properties, Sun and Luo 

(2011b) investigated the wave propagation of an infinite functionally graded plate using the 

higher-order shear deformation plate theory. 

Among the aforementioned higher-order shear deformation theories (HSDTs), the Reddy’s 

theory is the most widely used due to its high efficiency and simplicity (Reddy 2000, Sun and Luo 

2011b). Since the in-plane displacements of the Reddy’s theory are expanded as cubic function of 

the thickness coordinate, the equations of motion are more complicated than those of FSDT. 

Hence, there is a scope to develop an accurate theory, which is simple to use. 

The purpose of this study is to develop a shear deformation plate theory for the wave 

propagation of an infinite functionally graded plate which is simple to use. The theory is based on 

assumption that the in-plane and transverse displacements consist of bending and shear 

components, in which the bending components do not contribute toward shear forces and, 

likewise, the shear components do not contribute toward bending moments. The most interesting 

feature of this theory is that it accounts for a quadratic variation of the transverse shear strains 

across the thickness and satisfies the zero traction boundary conditions on the top and bottom 

surfaces of the plate without using shear correction factors. In addition, it contains four unknowns 

and has strong similarities with the CPT in some aspects such as equations of motion, boundary 

conditions, and stress resultant expressions. To simplify the governing equations for the FGM 

plate, the coordinate system is located at the physical neutral surface of the plate. This is due to the 
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fact that the stretching-bending coupling in the constitutive equations of an FGM plate does not 

exist when the physical neutral surface is considered as a coordinate system (Bellifa et al. 2016, 

Ould Larbi et al. 2013, Yahoobi and Feraidoon 2010). The governing equations of the wave 

propagation in the functionally graded plate are derived by using the Hamilton’s principle, which 

the effects of shear deformation and the inertia rotation are taken into account. The dispersion, 

phase velocity and group velocity curves of the wave propagation in the functionally graded plate 

in thermal environments are plotted. The influences of the volume fraction index and temperature 

on the dispersion, phase velocity and group velocity of the wave propagation in the functionally 

graded plate are clearly discussed.  

 

 

2. Properties of the FGM constituent materials and physical neutral surface 
 

Consider a rectangular plate made of FGMs of thickness h. Since in functionally graded plates 

the condition of mid-plane symmetry does not exist, the stretching and bending equations are 

coupled. But, if the origin of the coordinate system is suitably selected in the thickness direction of 

the FGM plate so as to be the neutral surface, the analysis of the FGM plates can easily be treated 

with the homogenous isotropic plate theories, because the stretching and bending equations of the 

plate are not coupled. In order to determine the position of neutral surface of FGM plates, two 

different datum planes are considered for the measurement of z, namely, zms and zns measured from 

the middle surface and the neutral surface of the plate, respectively, as shown in Fig. 1. The 

volume fraction of ceramic VC can be written in terms of zms and zns coordinates as  

n

ns

n

ms

C
h

Cz

h

z
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                      (1) 

Material non-homogeneous properties of a functionally graded material plate may be obtained 

by means of the Voigt rule of mixture (Suresh and Mortensen 1998). Thus, using Eq. (1), the 

material non-homogeneous properties of FG plate P, as a function of thickness coordinate, become 

n

ns

MCM
h

Cz
PPzP 











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2

1
)(  

,  MCMC PPP                  (2) 

in which PM and PC are the corresponding properties of the metal and ceramic and may be 

expressed as a function of temperature (Touloukian 1967)  

 
 

 

Fig. 1 The position of middle surface and neutral surface for a functionally graded plate 
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 3

3

2

21

1

10 1 TPTPTPTPPP  

                     (3) 

where P0, P-1, P1, P2 and P3 are the coefficients showing the temperature-dependency in material 

properties and are unique to the constituent materials, T (in K) is the environment temperature. n is 

the material parameter which takes the value greater or equal to zero. Also, the parameter C is the 

distance of neutral surface from the middle surface. It is assumed that the effective Young’s 

modulus E, Poisson’s ratio v and thermal expansion coefficient α of an FGM plate are temperature 

-dependent, whereas the mass density ρ and thermal conductivity λ of an FGM plate are 

independent of the temperature (Sun and Luo, 2011b and 2012). The position of the neutral 

surface of the FGM plate is determined to satisfy the first moment with respect to Young’s 

modulus being zero as follows (Ould Larbi et al. 2013) 

  0)(
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Consequently, the position of neutral surface can be obtained as 
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It is clear that the parameter C is zero for homogeneous isotropic plates, as expected. The 

temperature field assumed to be uniform over the plate surface but varying along the thickness 

direction due to heat conduction. In such a case, the temperature distribution along the thickness 

can be obtained by solving the steady-state heat transfer equation as 

0)( 






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

ns

ns

ns dz

dT
z

dz

d
 ,                          (6) 

with the boundary conditions T(h/2−C)=TC and T(−h/2−C)=TM. Substituting Eq. (2) into Eq. (6) 

yields a second-order differential equation in terms of temperature which can be written as 

0
1
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where 


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
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2

1

h

Cz
r ns

                             (7b) 

The differential Eq. (7a) can be easily solved by using the polynomial series. Thus, the 

temperature distribution across the plate thickness is obtained as 



 )(
)(

Cz
TTzT ns

Mns


                          (8) 
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where 
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3. Fundamental equations 
 

It is noted that a two variable refined plate theory (RPT) using only two unknown functions 

was developed by Shimpi (2002) for isotropic plates, and was extended by Shimpi and Patel 

(2006ab) for orthotropic plates, by Kim et al. (2009) for laminated composite plates and Mechab 

et al. (2010) for FG plates. In this study, RPT is extended for wave propagation analysis of an 

infinite FG plate. 

 

3.1 Basic assumptions 
 

The assumptions of the present theory are as follows: 

(i) The origin of the Cartesian coordinate system is taken at the neutral surface of the FGM 

plate. 

(ii) The displacements are small in comparison with the plate thickness and, therefore, strains 

involved are infinitesimal. 

(iii) The transverse displacement w includes two components of bending wb and shear ws. Both 

these components are functions of coordinates x, y, and time t only. 

),,(),,(),,,( tyxwtyxwtzyxw sbns                     (10) 

(iv) The displacements u in x-direction and v in y-direction consist of extension, bending, and 

shear components. 

sb uuuu  0 ,   sb vvvv  0                    (11) 

The bending components ub and vb are assumed to be similar to the displacements given by the 

classical plate theory. Therefore, the expression for ub and vb can be given as 
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The shear components us and vs give rise, in conjunction with ws, to the parabolic variations of 

shear strains γxz, γyz and hence to shear stresses ηxz, ηyz through the thickness of the plate in such a 

way that shear stresses ηxz, ηyz are zero at the top and bottom faces of the plate. Consequently, the 

expression for us and vs can be given as  
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where the shape function proposed by Shimpi (2002) is modified based on the concept of the 

physical neutral surface   
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3.2 Kinematics and constitutive equations 
 

Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (10)-(14) as 
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The kinematic relations can be obtained as follows 
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For elastic and isotropic FGMs, the constitutive relations can be written as 
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where (ζx, ζy, ηxy, ηyy, ηyx) and (εx, εy, γxy, γyz, γyx) are the stress and strain components, respectively. 

Using the material properties defined in Eq. (2), stiffness coefficients, Qij, can be expressed as 
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3.3 Governing equations 
 

Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as (Reddy 2002) 
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where δU is the variation of strain energy; and δK is the variation of kinetic energy. 

The variation of strain energy of the plate stated as 
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where the stress resultants N, M, and S are defined by 
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The variation of kinetic energy of the plate is expressed as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 

and (I0, I2) are mass inertias defined as  
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Substituting the expressions for δU and δK from Eqs. (21) and (23) into Eq. (20) and 

integrating by parts, and collecting the coefficients of δu0, δv0, δwb and δws, the following 

equations of motion of the plate are obtained 
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By substituting Eq. (16) into Eq. (18) and the subsequent results into Eq. (22), the stress 

resultants are obtained as 
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where Aij, Dij, etc., are the plate stiffness, defined by 
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(27) 

Substituting from Eq. (26) into Eq. (25), we obtain the following equation 
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The Eqs. (28) are the governing equations of the FGM plate in thermal environments in terms 

of the displacements. 

 

 

4. Dispersion relations 
 

We assume solutions for u0, v0, wb and ws representing propagating waves in the x-y plane with 

the form 
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where U; V; Wb and Ws are the coefficients of the wave amplitude, k1 and k2 are the wave numbers 

of wave propagation along x-axis and y-axis directions respectively, ω is the frequency. 

Substituting Eq. (29) into Eq. (28), we obtain 
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(31c) 

The dispersion relations of wave propagation in the functionally graded plate are given by 

    0  2  MK                               (32) 

Assuming k1=k2=k, the roots of Eq. (32) can be expressed as 

)(11 kW ,  )(22 kW ,  )(33 kW  and  )(44 kW             (33) 

They correspond with the wave modes M0, M1, M2 and M3, respectively. The wave modes M0 

and M3 correspond to the flexural wave, the wave modes M1 and M2 correspond to the extensional 

wave.  

The phase velocity of wave propagation in the functionally graded plate can be expressed as 

)4,3,2,1(   ,
)(

 i
k

kW
C i

i
                          (34) 

In Eq. (31c), the element of matrix is containing real and imaginary parts and consequently, the 

solution of characteristic equation for calculation of phase velocity yields to imaginary and real 

phase velocity. It is noted here, that the presented results are devoted to real part of phase velocity 

and the imaginary part is a measure of attenuation. 

 

 

5. Numerical results and discussion 
 

In this section, the eigenvalues problem for a Si3N4/SUS304 functionally graded material plate 

is considered. The thickness of the functionally graded plate is 0.02 m. The Young’s modulus E, 

density ρ, Poisson’s ratio v and thermal expansion coefficient α of these materials are listed in  
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Table 1 Temperature-dependent coefficients for ceramics and metals  

Materials Proprieties P-1 P0 P1 P2 P3 

Si3N4 

E (Pa) 0 348.43e+9 –3.070e–4 2.160 e–7 –8.946 e–11 

υ 0 0.24 0 0 0 

ρ (kg/m
3
) 0 2370 0 0 0 

α (1/K) 0 5.8723e–6 9.095e–4 0 0 

SUS304 

E (Pa) 0 201.04e+9 3.079e–4 –6.534 e–7 0 

υ 0 0.3262 –2.002 e–4 3.797e–7 0 

ρ (kg/m
3
) 0 8166 0 0 0 

α (1/K) 0 12.330e–6 8.086 e–4 0 0 
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Fig. 2 The dispersion curves of the different functionally graded plates for flexural wave mode M0 

(TM=TC=300 K) 

 

 

Table 1, which are taken from reference (Yang and Shen 2002, Reddy and Chin 1998).  

The accuracy of the present neutral surface-based model involving only four unknown 

displacement functions is verified by comparing the obtained results with those computed using 

Reddy’s theory (Sun and Luo 2011b). Figs. 2 and 3 show, respectively, the dispersion curves and 

the phase velocity for flexural wave mode M0 of the different functionally graded plates under 

thermal environmental condition TM=TC=300 K. It can be seen that the results of the present 

neutral surface-based model (with only four unknown displacement functions) are in excellent 

agreement with those of Reddy’s theory (with five unknown displacement functions) for all values 

of power law indexn. This indicates that the partition of the transverse displacement into the 

bending and shear parts lead not only to accurate results, but it can improve the computational cost 

due to reducing the number of unknowns as well as governing equations of the wave propagation 

in the functionally graded plate. 
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The dispersion curves of functionally graded plate (with TM=TC=300 K) are shown in Fig. 4 for 

different wave modes (M0, M1, M2 and M3) and different values of power law index n. From these 

results, it can be concluded that the dispersion curves of the functionally graded plates are 
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Fig. 3 The phase velocity curves of the different functionally graded plates for flexural wave mode 

M0 (TM=TC=300 K) 
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Fig. 4 The dispersion curves of the different functionally graded plates (TM=TC=300 K) 
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Fig. 4 Continued 

 

 

considerably influenced by the power law index. Indeed, it can be seen that for the same wave 

number k, the frequency of the wave propagation in the functionally graded plate is decreased with 

increasing the power law index n, and the frequency of the wave propagation in the homogeneous 

plate (n=0) is the maximum among those of all functionally graded plates. Consequently, the  
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Fig. 4 Continued 

 

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0,0

0,2

0,4

0,6

0,8

1,0
(a) M

0
 mode

 k (10
2
rad/m)

C
 (

10
4  m

/s
)

 n=0

 n=0.5

 n=1

 n=2

 n=4

 n=5

 

Fig. 5 The phase velocity curves of the different functionally graded plates (TM=TC=300 K) 

 

 

increase of the power law index makes a plate flexible, and hence, leads to a reduction of 

frequency. Furthermore, it is observed that the frequency of the wave propagation for the 

extensional wave modes M1 and M2 of the functionally graded plates, vary linearly with the wave 

number k.  
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Fig. 5 Continued 

 

 

The phase velocity curves of the different functionally graded plates under thermal 

environmental condition TM=TC=300 K are illustrated in Fig. 5. It is observed that the decrease of 

the power law index n leads to the decrease of the phase velocity and group velocity of the wave 

propagation in the functionally graded plate for the same wave number k. In addition, it can be  
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Fig. 5 Continued 

 

 

seen that the phase velocity for the extensional wave modes M1 and M2 of the functionally graded 

plates is almost a constant. The phase velocity of the wave propagation in the homogeneous plate 

(n=0) is the maximum among those of all FG plates. This is expected because the ceramic plate 

(n=0) is the one with the highest stiffness. So, it is clear that the heterogeneity of FGMs has great 

influence on the phase velocity of the wave propagation in the FG plate. 

 

 

6. Conclusions 
 

The wave propagation of an infinite functionally graded plate in thermal environment load is 

studied based on an efficient shear deformation theory. The proposed theory has an advantage over 

the existing higher-order shear deformation theories since they involve less unknowns as well as 

equations of motion. The computational cost can therefore be reduced. In addition, the partition of 

the transverse displacement of the proposed theory into the bending and shear parts helps one to 

see the contributions due to shear and bending to the total one. Material properties are assumed to 

be temperature-dependent, and graded in the thickness direction according to a simple power law 

distribution in terms of the volume fractions of the constituents. The analytic dispersion relation of 

the functionally graded plate is obtained by solving an eigenvalue problem. Finally, it can be said 

that the proposed higher order shear and normal deformation theory is not only accurate but also 

provides an elegant and easily implementable approach for simulating the characteristics of wave 

propagation of the functionally graded plate. The formulation lends itself particularly well to 

composite structures (Kirkland and Uy 2015, Ozturk 2015, Darılmaz 2015, Chattibi et al. 2015, 

Sadoune et al. 2014, Draiche et al. 2014), micro/nano-structures (Bounouara et al. 2016, 
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Al-Basyouni et al. 2015, Besseghier et al. 2015, Chemi et al. 2015, Zemri et al. 2015, Tounsi et al. 

2013b), finite element simulations (Curiel Sosa et al. 2013) and also other numerical methods 

employing symbolic computation for plate bending problems (Rashidi et al. 2012), which will be 

considered in the near future. 
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