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Abstract.  Using the Complementary Functions Method (CFM), a general solution for the one-dimensional 

steady-state thermal and mechanical stresses in a hollow thick sphere made of functionally graded material 

(FGM) is presented. The mechanical properties are assumed to obey the exponential variations in the radial 

direction, and the Poisson’s ratio is assumed to be constant, with general thermal and mechanical boundary 

conditions on the inside and outside surfaces of the sphere. In the present paper, a semi-analytical iterative 

technique, one of the most efficient unified method, is employed to solve the heat conduction equation and 

the Navier equation. For different values of inhomogeneity constant, distributions of radial displacement, 

radial stress, circumferential stress, and effective stress, as a function of radial direction, are obtained. 

Various material models from the literature are used and corresponding temperature distributions and stress 

distributions are computed. Verification of the proposed method is done using benchmark solutions available 

in the literature for some special cases and virtually exact results are obtained. 
 

Keywords:  complementary functions method; thick sphere; functionally graded materials (FGMs); 

exponentially varying properties 

 
 
1. Introduction 
 

The analysis of spherical structural members (shafts, pipes, tubes, etc.) is quite important 

especially in engineering design. These members are widely used in different areas of engineering 

practice. Thick sphere and thick-walled spherical shell are common components in structural 

applications and device systems involving aerospace and submarine structures, civil engineering 

structures, machines, pipes, sensors and actuators, etc. These structures are often exposed to 

temperature environment and the thermal stresses are then induced. For many cases, thermal 

stresses will significantly depress the strength and also affect the functionality of the structures. 

Thus, the exact analysis of the thermal stresses is really important. 

FGMs are being used as interfacial zone to improve the bonding strength of layered composites 

to reduce the stresses in bonded dissimilar materials and as wear resistant layers in machine and 

engine components. They are used in modern technologies as advanced structures. Mechanical and 
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thermal stresses for FGM thick hollow spheres are the subject in the theory of elasticity and 

thermoelasticity. Lutz and Zimmerman (1996) solved the problem of an isotropic sphere under 

thermal stresses; in this problem the material properties of the sphere vary linearly with radius. 

Obata and Noda (1994) studied the steady thermal stresses in a hollow circular cylinder and a 

hollow sphere made of FGMs. The aim of this research was to understand the effect of 

composition on stresses and to design the optimum FGM hollow circular cylinder and hollow 

sphere. Eslami et al. (2005) presented the analytical solution for thermal and mechanical behavior 

in a functionally graded thick hollow sphere under one-dimensional steady-state temperature 

distribution with thermal and mechanical boundary conditions. They assumed the material 

properties are expressed as power functions of radius direction. In addition, Poultangari et al. 

(2008) studied the thermal and mechanical stresses in a FGM sphere under non-axisymmetric 

thermo-mechanical loads. An alternate analytical method to carry out the elastic analysis of thick-

walled spherical pressure vessels subjected to internal pressure was presented by You et al. (2004). 

Güven and Baykara (2001) studied functionally graded isotropic spheres subjected to internal 

pressure. The objective of the study is to understand the acceptable stress distributions in a hollow 

sphere under internal pressure for ductile and brittle material behaviors. It is stated that in a 

functionally graded isotropic hollow sphere designed according to the maximum shear stress 

failure theory, the material usage can be improved efficiently. Uncoupled steady-state thermo-

elasticity problem of an FGM hollow sphere was investigated numerically by Alavi et al. (2008). 

Atefi and Moghimi (2006) obtained a closed-form solution for the two dimensional temperature 

distribution in a hollow sphere subjected to periodic boundary conditions. Bagri and Eslami (2007) 

proposed a new unified formulation for the generalized theories of the coupled thermo-elasticity 

on the basis of the Lord-Shulman, Green-Lindsay and Green-Naghdi models. Using Laplace 

transform, the governing equations have been analytically solved in the Laplace space domain for 

a hollow sphere and cylinder. Jabbari et al. (2010) solved the classical coupled thermo-elasticity 

problem for hollow and solid spheres. Their approach was based on resolving the coupled 

equations into two groups: coupled equations with homogeneous and nonhomogeneous boundary 

conditions. Ding et al. (2002) formulated the spherically dynamic thermoelastic problem for a 

special non-homogeneous transversely isotropic hollow sphere by introduction of a dependent 

variable and separation of variables technique. The transient thermal stress problem in a hollow 

sphere was studied by Tanigawa and Takeuti (1982). Wang et al. (2003) presented numerical 

results to show the dynamic stress responses in the uniformly heated hollow spheres. They 

resolved radial displacement into two functions, one of which satisfies inhomogeneous mechanical 

boundary conditions while the other one fulfills homogeneous mechanical boundary conditions. 

Bayat et al. (2012), assuming a power-law based variation in material properties, presented 

analytical results for a FG hollow sphere under spherically symmetric steady-state thermo-

mechanical loadings and compared them with numerical results obtained from finite element 

simulations. Nejad et al. (2012) performed an analytical solution for FGM thick-walled spherical 

shells subjected to internal and/or external pressure, assuming an exponential law variation in 

material properties. Dai and Rao (2011) conducted research on electromagnetothermoelastic 

behaviors of a hollow sphere composed of functionally graded piezoelectric material. Boroujerdy 

and Eslami (2013) studied thermal instability of shallow spherical shells made of FGM and 

surface-bonded piezoelectric actuators. They assumed that the property of the FGM varies 

continuously through the thickness of the shell according to a power law distribution of the 

volume fraction of the constituent materials. They obtained the equilibrium equations based on the 

first-order theory of shells and the Sanders nonlinear kinematics equation. 
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A unified method for stresses in FGM sphere with exponentially-varying properties 

The conventional approach of modeling FGM structural elements includes shell theories or 

dividing the material into homogeneous sub elements of different properties emulating the graded 

behavior. Series expansion methods and finite element analysis are first solution methods used in 

the literature. Mechanical and thermal stresses for FGMs in axisymmetric cylindrical coordinates 

are of interesting subjects in the theory of elasticity and thermoelasticity. The classical method of 

analysis is to combine the equilibrium equations with the stress-strain and strain-displacement 

relations to arrive at the governing equations in term of the displacement components, called the 

Navier equations. The material is assumed to be functionally graded in the radial direction with the 

grading function, in the most general sense, being an arbitrary continuous function of the radial 

coordinate. Forcing functions applied on the inner or outer boundaries are internal pressures. These 

assumptions yield governing differential equations with variable coefficients. Under these 

conditions analytical solutions cannot be obtained except for certain simple grading functions and 

pressures. The present paper uses a novel and efficient method CFM is employed in the analysis of 

axisymmetric elastic responses of functionally graded sphere subject to internal pressures applied 

on the inner boundary. It is also used for FGM cylinders with simple power-law properties which 

is easily analyzed by a simple direct method (Eslami et al. 2005). Governing differential equations 

thus obtained in spatial coordinates, in general, have variable coefficients. They form a two-point 

boundary value problem. CFM allows treating such problems as a system of initial-value problems 

which can readily be solved by any one of the standard methods available in the literature. The 

fifth-order Runga-Kutta method is employed in the present study. The theoretical background for 

the method is available in the literature (Aktas 1972, Roberts and Shipman 1979, Agarwal 1982). 

The method is also successfully applied in other structural mechanics problems such as those 

involving curved bars (Yildirim 1997) and beams (Calim 2009, Calim and Akkurt 2011). In 

addition, the CFM procedure has been applied to FGM cylinders, spheres and disks under static 

pressure and steady-state thermal loads by Tutuncu and Temel (2009, 2013). Finally, Temel et al. 

(2014) showed that the CFM is well suited for problems in which the graded mechanical 

properties and applied pressures are supplied point by point in a discretized manner. The present 

paper uses a novel and efficient method which combines CFM is employed a thick hollow sphere 

of FGM under a one-dimensional steady- state temperature distribution with general types of 

thermal and mechanical boundary conditions. Two material models will be used:  (a) simple power 

law with constant Poisson’s ratio (Eslami et al. 2005) for which case analytical benchmark 

solutions are available, (b) exponentially-varying properties. It should be emphasized once again 

that the solution procedure is not confined to any particular choice of material model; it is equally 

suitable for arbitrary functions defining the gradient variation of material properties.  

 

 

2. Solutions by the complementary functions method 
 

The CFM transforms two-point boundary-value problems to system of initial-value problems. It 

reduces to a particularly simple solution scheme when applied to the present class of problems. For 

an annular sphere of inner radius    and outer radius   . As it will be shown in the proceeding 

sections, under axisymmetric conditions, the governing differential equation of the dependent 

variable u(r) in its most general form is 

     ( )    ( )   ( ) (1) 

subject to boundary conditions on the inner (r= ri) and outer (r= ro) surfaces. Here ()  denotes the 
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derivative with respect to r. General closed-form solution of the above equation cannot be 

obtained. The complete solution of Eq. (1) is  

                             (2) 

where    and    are, respectively, homogenous and particular solutions. The coefficients    are 

determined via the boundary conditions. CFM begins by assuming      
( )

and   
    

( )
, which 

means 

(  
( )

)    
( )

 (3a) 

Here, the index i=1,2 refers to homogeneous solutions and i=p will mean the particular solution. 

To determine the homogeneous solutions, the right-hand side of Eq. (1) is set equal to zero and the 

following is obtained 

(  
( )

)    ( )  
( )

  ( )  
( )

 (3b) 

The system of Eqs. (3a) and (3b) can be solved numerically for each homogeneous solution. 

Kronecker delta initial conditions given below will be used to assure the linear independence of 

the solutions (Roberts and Shipman 1979) 

  
( )

             j,i = 1,2 (4) 

To obtain the particular solution, Eq. (3b) is modified as 

(  
( )

)    ( )  
( )

  ( )  
( )

  ( ) (5) 

A particular solution needs only to satisfy the differential equation and homogeneous initial 

conditions 

  
( )

                    (6) 

are to be imposed. Eqs. (3a), (5), (6) constitute the system of equations for the particular solution 

along with the initial conditions. The fifth-order Runge-Kutta method (RK5) will be used for all 

cases considered. Note that by this procedure not only the solution u(r) itself but also its first 

derivative are readily calculated. Applying the boundary conditions prescribed for the particular 

problem on hand results in the following system of algebraic equations for the coefficients b1 and 

b2 

[
      

       
] {

  

  
}  {

    
    

} (7) 

Here, Aij includes the values of the homogeneous solutions at the boundary points. RHS1 and RHS2 

contain values of the particular solutions. If the sphere is subjected to internal and external 

pressures, they will also be included in the right hand-side terms. On the other hand, implementing 

CFM in the heat conduction problem will yield RHS1 and RHS2 as the prescribed temperatures 

along the boundaries. These points will be illustrated in the following sections.  

 
 
3. Heat conduction in radial direction 

826



 

 

 

 

 

 

A unified method for stresses in FGM sphere with exponentially-varying properties 

The heat conduction equation in the steady-state condition for the one-dimensional problem in 

polar coordinates and thermal boundary conditions for a FGM hollow sphere are given, 

respectively, as 

 

  (   ( )  ( ))
 
                  

    (  )      
 (  )        

    (  )      
 (  )     

(8) 

where k=k(r) is the thermal conduction coefficient,    and    are the inner and outer radii of the 

hollow sphere Cij are the constant thermal parameters related to the conduction and convection 

coefficients. The constants f1 and f2 are known constants on inside and outside radii. 

It is assumed that the nonhomogeneous thermal conduction coefficient k(r) is exponential 

function of r as 

 ( )     
   (9) 

where k0 and  are the material parameters. Using Eq.(9), the heat conduction equation becomes 

 

  
(       ( ))    (10) 

Steady-state axisymmetric heat conduction without heat generation will be considered. The heat 

balance equation in the radial direction for a non-uniform disk yields 

     ( )     (11) 

where  ( )  (
 

 
  )  with   being the thermal conduction coefficient and it is varying as a 

function of the radial coordinate r. The boundary conductions are temperatures prescribed on the 

inner and outer surfaces as 

 (  )     and   (  )     (12) 

The complete solution is the homogeneous solution 

              j=1,2 (13a) 

with 

       
        j=1,2 (13b) 

Following the steps outlined in previous section, the temperature change distribution is 

obtained at the collocation points. The constants bj can now be found by imposing the boundary 

conditions. This process results in the system given by Eq. (7) were  

A11 = T1(  )   A12 = T2(  ), 
     A21 = T1(  )   A22 = T2(  ), 

   RHS1 = Ti   RHS2 = To 

 
 
4. Governing equation 
 

Consider a thick walled sphere of inside radius    and outside radius    made of FGM            
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Fig. 1 Schematic diagram of a thick-walled sphere 

 

 

(see Fig. 1). The material is graded through the r-direction. Let u be displacement component in 

the radial direction. Then the strain-displacement relations are  

    
  

  
               

 

 
 (14) 

The stress-strain relations are  

         (    )          (     )  ( ) 

     (   )         (     )  ( ) 
(15) 

where     and    (i,j=r,) are stress and strain tensors, T(r) is the temperature distribution 

determined from the heat conduction equation,  is the coefficient of thermal expansion, and   and 

  are Lame coefficients related to the modulus of elasticity   and Poisson’s ratio   as 

  
   ( )

(   )(    )
             

 ( )

 (   )
 (16) 

The equilibrium equation in the radial direction, disregarding the body force and inertia term, is 

    

  
 

  (       )

 
   (17) 

To obtain the equilibrium equation in terms of the displacement component for the FGM cylinder, 

the functional relationship of the material properties must be known. To ascertain the effect of the 

inhomogeneity, the properties are considered to vary exponentially across the thickness 

 ( )     
   ,   ( )     

   (18) 

where    and    are material constants and  is the inhomogeneity parameter. We may further 

assume that Poisson’s ratio is constant. 
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A unified method for stresses in FGM sphere with exponentially-varying properties 

Table 1 Comparison of CFM with Eslami et al. (2005) results for homogenous sphere (m=0 and =0) 

r/ri 

T/T(ri) u/ri rr/Pi /Pi 

CFM Eslami CFM Eslami CFM Eslami CFM Eslami 

1 1 1 0.000528 0.000528 -1 -1 2.522017 2.522017 

1.01 0.940594 0.940594 0.000522 0.000522 -0.93091 -0.93091 2.491538 2.491538 

1.02 0.882353 0.882353 0.000516 0.000516 -0.86441 -0.86441 2.462292 2.462292 

1.03 0.825243 0.825243 0.000511 0.000511 -0.8004 -0.8004 2.434198 2.434198 

1.04 0.769231 0.769231 0.000505 0.000505 -0.73876 -0.73876 2.407214 2.407214 

1.05 0.714286 0.714286 0.0005 0.0005 -0.67937 -0.67937 2.381289 2.381289 

1.06 0.660377 0.660377 0.000495 0.000495 -0.62213 -0.62213 2.356368 2.356368 

1.07 0.607477 0.607477 0.00049 0.00049 -0.56694 -0.56694 2.332403 2.332403 

1.08 0.555556 0.555556 0.000485 0.000485 -0.51371 -0.51371 2.309347 2.309347 

1.09 0.504587 0.504587 0.000481 0.000481 -0.46236 -0.46236 2.287161 2.287161 

1.1 0.454545 0.454545 0.000476 0.000476 -0.41278 -0.41278 2.265813 2.265813 

1.11 0.405405 0.405405 0.000472 0.000472 -0.36493 -0.36493 2.245248 2.245248 

1.12 0.357143 0.357143 0.000468 0.000468 -0.3187 -0.3187 2.225446 2.225446 

1.13 0.309735 0.309735 0.000464 0.000464 -0.27404 -0.27404 2.206369 2.206369 

1.14 0.263158 0.263158 0.00046 0.00046 -0.23088 -0.23088 2.187978 2.187978 

1.15 0.217391 0.217391 0.000456 0.000456 -0.18915 -0.18915 2.170254 2.170254 

1.16 0.172414 0.172414 0.000452 0.000452 -0.14879 -0.14879 2.153161 2.153161 

1.17 0.128205 0.128205 0.000449 0.000449 -0.10975 -0.10975 2.136668 2.136668 

1.18 0.084746 0.084746 0.000446 0.000446 -0.07198 -0.07198 2.120758 2.120758 

1.19 0.042017 0.042017 0.000442 0.000442 -0.03541 -0.03541 2.105405 2.105405 

1.2 0 0 0.000439 0.000439 3.7E-06 3.7E-06 2.090585 2.090585 

 

 

Using relations (14)-(18), Navier equation in term of the displacement is 

     ( )    ( )   ( ) (19) 

 ( )  (    )
 

 
      ( )  (

 ( (    )   

   
)

 

  
      

 ( )  
  (   )

   
(            ) 

(20) 

Following the steps outlined in solutions by the CFM section, the complete displacement is 

obtained at the collocation points as 

                 (21) 

with 

       
      

    
  (22) 

The coefficients b1, b2 will be determined using the stress free conditions on inner (   (  )     )  
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Table 2 Comparison of FGM results with Eslami et al. (2005) results for FGM spheres with constant 

Poisson’s ratio and elastic modulus obeying a simple power law (m=-2 and =-2) 

r/ri 

T/T(ri) u/ri rr/Pi /Pi 

CFM Eslami CFM Eslami CFM Eslami CFM Eslami 

1 1 1 0.000625 0.000625 -1 -1 3.07393 3.07393 

1.01 0.95 0.95 0.000618 0.000618 -0.92076 -0.92076 2.970641 2.970641 

1.02 0.9 0.9 0.000611 0.000611 -0.8458 -0.8458 2.872551 2.872551 

1.03 0.85 0.85 0.000605 0.000605 -0.77485 -0.77485 2.779339 2.779339 

1.04 0.8 0.8 0.000599 0.000599 -0.70768 -0.70768 2.690724 2.690724 

1.05 0.75 0.75 0.000593 0.000593 -0.64407 -0.64407 2.606408 2.606408 

1.06 0.7 0.7 0.000587 0.000587 -0.58379 -0.58379 2.526168 2.526168 

1.07 0.65 0.65 0.000581 0.000581 -0.52666 -0.52666 2.449749 2.449749 

1.08 0.6 0.6 0.000575 0.000575 -0.47246 -0.47246 2.376949 2.376949 

1.09 0.55 0.55 0.00057 0.00057 -0.42106 -0.42106 2.307546 2.307546 

1.1 0.5 0.5 0.000565 0.000565 -0.37228 -0.37228 2.241353 2.241353 

1.11 0.45 0.45 0.00056 0.00056 -0.32598 -0.32598 2.178194 2.178194 

1.12 0.4 0.4 0.000555 0.000555 -0.282 -0.282 2.117902 2.117902 

1.13 0.35 0.35 0.00055 0.00055 -0.24022 -0.24022 2.060317 2.060317 

1.14 0.3 0.3 0.000545 0.000545 -0.20052 -0.20052 2.005291 2.005291 

1.15 0.25 0.25 0.000541 0.000541 -0.16278 -0.16278 1.952685 1.952685 

1.16 0.2 0.2 0.000537 0.000537 -0.12691 -0.12691 1.902372 1.902372 

1.17 0.15 0.15 0.000532 0.000532 -0.09278 -0.09278 1.85423 1.85423 

1.18 0.1 0.1 0.000528 0.000528 -0.06031 -0.06031 1.80815 1.80815 

1.19 0.05 0.05 0.000524 0.000524 -0.02941 -0.02941 1.764018 1.764018 

1.2 0 0 0.000521 0.000521 1.07E-06 1.07E-06 1.721733 1.721733 

 

 

and outer (   (  )     ) boundaries. This step is particularly simple since during the solution 

process the first derivative of the radial displacement has already been calculated.  

 

 

5. Results and discussions 
 

Consider a thick hollow sphere of inner radius ri=1 m and outer radius ro=1.2 m. Poisson’s ratio 

is taken to be 0.3, and the modulus of elasticity and the thermal coefficient of expansion at the 

inner radius are Eo=200 GPa and o=1.2×10
-6

/
o
C, respectively. The properties are considered to 

vary exponentially across the thickness. The boundary conditions for temperature are taken as 

T(ri)=10 
o
C and T(ro)=0 

o
C. The hollow sphere has pressure on its inner surface so the boundary 

conditions for stresses are assumed as    (  )      MPa and    (  )    MPa. 

The accuracy of the present method is first compared to analytical results presented for a 

simple power-law material model and a step-type inside pressure (Eslami et al. 2005). The 

comparing will be illustrated in the Tables 1-3. It can be observed from the Tables, the results are 

in good agreement with the same results from Eslami et al. (2005). The numerical results have  
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A unified method for stresses in FGM sphere with exponentially-varying properties 

Table 3 Comparison of FGM results with Eslami et al. (2005) results for FGM spheres with constant 

Poisson’s ratio and elastic modulus obeying a simple power law (m=2 and =2) 

r/ri 

T/T(ri) u/ri rr/Pi /Pi 

CFM Eslami CFM Eslami CFM Eslami CFM Eslami 

1 1 1 0.000442 0.000442 -1 -1 2.030027 2.030027 

1.01 0.930192 0.930192 0.000437 0.000437 -0.94007 -0.94007 2.052493 2.052493 

1.02 0.863095 0.863095 0.000432 0.000432 -0.88147 -0.88147 2.075142 2.075142 

1.03 0.798578 0.798578 0.000427 0.000427 -0.82411 -0.82411 2.097975 2.097975 

1.04 0.736519 0.736519 0.000422 0.000422 -0.76797 -0.76797 2.12097 2.12097 

1.05 0.676801 0.676801 0.000418 0.000418 -0.71298 -0.71298 2.144144 2.144144 

1.06 0.619316 0.619316 0.000413 0.000413 -0.65911 -0.65911 2.167485 2.167485 

1.07 0.56396 0.56396 0.000409 0.000409 -0.6063 -0.6063 2.191004 2.191004 

1.08 0.510635 0.510635 0.000405 0.000405 -0.55452 -0.55452 2.21469 2.21469 

1.09 0.459249 0.459249 0.000401 0.000401 -0.50373 -0.50373 2.238545 2.238545 

1.1 0.409714 0.409714 0.000397 0.000397 -0.45388 -0.45388 2.262578 2.262578 

1.11 0.361949 0.361949 0.000394 0.000394 -0.40493 -0.40493 2.286778 2.286778 

1.12 0.315874 0.315874 0.00039 0.00039 -0.35687 -0.35687 2.31114 2.31114 

1.13 0.271416 0.271416 0.000387 0.000387 -0.30964 -0.30964 2.335689 2.335689 

1.14 0.228504 0.228504 0.000384 0.000384 -0.26322 -0.26322 2.360397 2.360397 

1.15 0.187071 0.187071 0.000381 0.000381 -0.21758 -0.21758 2.385274 2.385274 

1.16 0.147056 0.147056 0.000378 0.000378 -0.17267 -0.17267 2.41033 2.41033 

1.17 0.108396 0.108396 0.000375 0.000375 -0.12849 -0.12849 2.435548 2.435548 

1.18 0.071036 0.071036 0.000372 0.000372 -0.08501 -0.08501 2.460937 2.460937 

1.19 0.034921 0.034921 0.000369 0.000369 -0.04219 -0.04219 2.486489 2.486489 

1.2 0 0 0.000366 0.000366 3.49E-06 3.49E-06 2.512222 2.512222 
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Fig. 2 Radial distribution of temperature for sphere 
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Fig. 3 Radial distribution of radial displacement for sphere 
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Fig. 4 Radial distribution of radial stress for sphere 

 

 

been obtained to six-digit accuracy by picking only 11 collocation points. 

Fig. 2 shows the variations of the temperature along the radial direction for different values 

inhomogeneity parameter (). The figure shows that as the inhomogeneity parameter  increases, 

the temperature decreased. Fig. 3 shows the plot of the radial displacement along the radius. The 

magnitude of the radial displacement is decreased as the inhomogeneity parameter   is increased. 

The radial and circumferential stresses are plotted along the radial direction and shown in Figs. 4 

and 5. The magnitude of the radial stress is decreased as   is increased. It is seen that for < 1 the  
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Fig. 5 Radial distribution of hoop stress for sphere 
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Fig. 6 Effective stress distribution for ro/ri=1.2 for sphere 

 

 

circumferential stress decreases along the radial direction. For >1, the circumferential stress 

increases as the radius increases, since the modulus of elasticity is an increasing function of the 

radius, see Eq. (18). Physically, this means that the outer layers of the sphere are biased to 

maintain the stress due to their higher stiffness. There is a limiting value for , where the 

circumferential stress remains almost constant along the radius. The curve associated with  =1 

shows that the variation of circumferential stress along the radial direction is minor, and is almost 

uniform across the radius. To investigate the pattern of the stress distribution along the sphere 
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radius, the effective stress    √ |     | is plotted along the radial direction for different 

values of ro /ri and the inhomogeneity parameter . Figure 6 is plotted for ro /ri=1.2. It is 

interesting to note from Fig. 6 that for  =1 the effective stress is almost uniform along the radius 

of sphere.  

It should be pointed out once again that the purpose of the present work has been the 

introduction of CFM to the solution procedure of the class of problems on hand. Converting the 

two-point boundary value problem to a system of initial-value problem gave way to the 

implementation of well-established numerical schemes. Runge-Kutta method of fifth-order (RK5) 

has been used to solve the system of equations. The procedure is simple, efficiently implemented 

and accurate to the extent that exact numerical results have been obtained to six-digit accuracy by 

picking only 11 collocation points in RK5. 

 

 
6. Conclusions 
 

This paper presents a numerical solution for the calculation of the axisymmetric thermal and 

mechanical stresses in a thick hollow sphere made of FGM. The material properties through the 

graded direction are assumed to be nonlinear with a power law distribution and exponentially-

varying properties. The mechanical and thermal stresses are obtained through the CFM of solution 

of the Navier equation. The comparisons of temperature distributions and stress distributions are 

presented in the form of tables. The numerical results for all cases are shown to exactly match this 

reported in Eslami et al. (2005). At the result, we can say that: 

• With the unified approach presented in the present study, one would not have to compromise 

on the functional continuity of the material properties. Analysis of any material model in the 

form of an arbitrary function subject to an internal pressure has been analyzed efficiently and 

accurately by employing CFM.  

• The unified method used is simple, accurate and efficiently implemented. 

• The method employed in this study allows solutions of continuous functions. 

• The CFM of solving the differential equation provides a complete solution, yielding both 

thermal stresses and temperature distributions. 
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