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Abstract.  Concentric-tube continuum robots have formed an active field of research in robotics because 

of their manipulative exquisiteness essential to facilitate delicate surgical procedures. A set of concentric 

tubes with designed initial curvatures comprises a robot whose workspace can be controlled by relative 

translations and rotations of the tubes. Kinematic models have been widely used to predict the movement of 

the robot, but they are incapable of describing its time-dependent hysteretic behaviors accurately particularly 

when snapping occurs. To overcome this limitation, here we present a finite element modeling approach to 

investigating the dynamics of concentric-tube continuum robots. In our model, each tube is discretized using 

MITC shell elements and its transient responses are computed implicitly using the Bathe time integration 

method. Inter-tube contacts, the key actuation mechanism of this robot, are modeled using the constraint 

function method with contact damping to capture the hysteresis in robot trajectories. Performance of the 

proposed method is demonstrated by analyzing three specifications of two-tube robots including the one 

exhibiting snapping phenomena while the method can be applied to multiple-tube robots as well. 
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1. Introduction 
 

Several research groups have recently proposed novel continuum robot designs (Fig. 1) 

consisting of several concentric tubes (Dupont et al. 2009, Dupont et al. 2010, Rucker et al. 2010, 

Webster et al. 2006, Webster et al. 2009, Sears and Dupont 2006). Unlike conventional robots 

composed of discrete joints and links, these robots produce various motions using the flexibility of 

continuous structures and only a small number of actuators attached to its base. Manipulating its 

basal end leading to successive translations and rotations of comprising tubes can control the distal 

end of the robot, which is usually equipped with an end-effector such as a gripper, a surgical knife, 

or a needle. This simple actuating mechanism miniaturizes the structure of the robot with typical 

tube diameters of several millimeters, which renders its potential usage effective in medical 

applications, mainly in minimally invasive surgery, such as tumor removal (Burgner et al. 2011), 

intracerebral hemorrhage evacuation (Burgner et al. 2013), and transnasal surgery (Burgner et al. 

2014). 
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Fig. 1 Concentric-tube continuum robot 

 

 

Analysis and design of these tube robots have been mostly done using the kinematics-based 

modeling approaches so far. Dupont et al. and Webster et al. concurrently and independently 

derived the second order nonlinear differential equations with consideration for the flexural and 

torsional energies of the tubes using the Cosserat rod theory and provided the analytic solution for 

two-tube continuum robots (Dupont et al. 2009, Dupont et al. 2010, Rucker et al. 2010, Webster et 

al. 2009). Due to the simplicity of the kinematic model, it provides quickly the trajectory of the 

robot as a function of base inputs for a given tube specification. In particular, it can predict a 

snapping phenomenon that occurs when the highly curved tubes overlapped over a long region are 

used. At the moment of snapping, the distal end of the robot rotates abruptly and considerably with 

respect to the input at its base, which would be extremely dangerous in surgical operations. 

However, the kinematic model neglects several important geometric and mechanical factors 

including the gap, surface friction and contact damping between the tubes. For example, the 

kinematic model assumes zero clearance between the tubes suggesting that every tube has the 

same curvature over the entire region of overlap in equilibrium, which is not valid in reality. It has 

been reported that the experimental trajectories deviate from the trajectories obtained using the 

kinematic model although it is not clear which factors excluded from the model are responsible for 

the observed errors (Dupont et al. 2010). In particular, the kinematic model is unable to predict the 

time-dependent hysteretic motion of the robot at all. Tube robots can have multiple states of 

configuration depending on the input sequence at the basal end, but the kinematic model can 

predict a single state only regardless of input history (Dupont et al. 2009, Dupont et al. 2010). 

To overcome this limitation, we present in this paper a finite element analysis framework for 

concentric-tube continuum robots. Dynamic motions of the robot in response to the applied base 

inputs are calculated implicitly using the Bathe time integration method (Bathe and Baig 2005, 

Bathe 2007, Bathe and Noh 2012, Noh et al. 2013) where the tubes are triangulated using the 

MITC shell elements (Kim and Bathe 2008, Kim and Bathe 2009, Lee and Bathe 2004, Lee et al. 

2012). Contact-based interactions between the tubes are modeled using the constraint function 

method (Bathe and Bouzinov 1997). Here we incorporate the isotropic viscous damping effect into 

the interaction model assuming energy dissipation while the tubes are in contact with each other, 

which is essential to capture the time-dependent hysteretic behaviors of the robot. 
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Finite element modeling of concentric-tube continuum robots 

This paper is organized as follows. First, a brief introduction to the kinematic model is given in 

section 2 and then the proposed finite element modeling approach is discussed in section 3. 

Section 4 demonstrates the performance of the proposed model for concentric-tube continuum 

robots by analyzing two-tube robots with three types of tube specifications including the one 

shows the unstable snapping phenomenon. Finally, we conclude with summary in section 5. 

 

 

2. Kinematic model 
 

In this section, we briefly review the kinematic model for concentric-tube continuum robots 

developed concurrently but independently by Dupont et al. and Webster et al. using the Cosserat 

rod theory (Dupont et al. 2010, Rucker et al. 2010). For simplicity, we focus on the kinematics of 

two-tube robots with the following conditions: (1) each tube has a piecewise constant curvature, 

(2) two tubes are aligned initially on a plane and (3) only rotational base inputs are applied. 

We first define the time-dependent curvature vectors of each tube as a function of the arc length 

(s) measured from the base position of the outer tube as 

     ])()()([)( sususus
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and their initial curvature before applying base inputs 
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where i represents the tube index (i=1 for the outer tube and i=2 for the inner tube) and x, y and z 

denote the axes of each tube’s material frame (Fig. 1). Then, the three-dimensional motion of the 

two-tube robot can be described by a set of differential equations 
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rotation matrix corresponding to rotation by α about z -axis and the dot represents the derivative 

with respect to s . i
K  is the stiffness matrix of tube i  defined as  
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where Ei is the Young’s modulus, Ii is the area moment of inertia, Ji is the polar moment of inertia 

and Gi is the shear modulus with z -axis tangential to the resultant centerline of the robot. We can 

obtain ui(s) and α(s) by solving Eqs. (3)-(5) simultaneously using conventional numerical 

algorithms for ordinary differential equations. 

Alternatively, if we assume that tube curvatures are piecewise constant, we can derive a single 

second-order differential equation for α(s) 
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Fig. 2 Relative twist angle curves calculated using the kinematic models 
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where υ is Poisson’s ratio, and κ1(s) and κ2(s) are piecewise constant curvatures and L is the arc 

length of the overlapped region. When c(s) is constant, Eq. (7) reduces to the governing equation 

of the inverted pendulum whose analytic solution is available (Dupont et al. 2010, Rucker et al. 

2010). Hence, we can calculate α(s) first by solving Eq. (7) and then obtain ui(s) by simply 

substituting α(s) into Eqs. (3)-(4). Once we obtain the curvature vectors of the tubes at every point 

along the tube, we can easily trace back the centerline positions of the robot using conventional 

operations of matrix exponents (Rucker et al. 2010). 

In order to solve Eq. (7), two boundary conditions are necessary. The first boundary condition 

comes from the input twist angles at the basal end, θ1(0) and θ2(0), that can be controlled manually 

or automatically by a motor system leading to 

     )0()0()0( 12    (8) 

Moment-free condition at the distal end provides the second boundary condition that can be 

written as 

     0)( L  (9) 

In general, the relative twist angle at the distal end, α(L), can be measured experimentally and 

plotted with respect to the basal input angle α(0)∈[0,2π]. This twist angle curve is then used to 

evaluate the accuracy of the kinematic models, which is closely related to the tube curvatures and 

consequently to the robot trajectories (Dupont et al. 2009, Dupont et al. 2010). If the tubes were 

rigid in torsion, the twist angle curve would be a straight line regardless of tube specification, 

however, the real curves are S-shaped due to the torsional compliance of tubes (Fig. 2). It is 

noteworthy that unstable snapping phenomena of the robot occur when the tubes are highly curved 

initially and their overlapped region is long, which has been reported and verified both 
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Finite element modeling of concentric-tube continuum robots 

theoretically and experimentally (Dupont et al. 2009, Dupont et al. 2010, Rucker et al. 2010, 

Webster et al. 2009). The kinematic model can predict these features of the twist angle curve 

successfully. 

One major drawback of the kinematic model is the fact that it provides a single curve only for 

the relative twist angle at the distal end although it has been observed experimentally that the robot 

can have two different output angles for the same input angle depending on the direction of 

rotation (Dupont et al. 2009, Dupont et al. 2010). As a result, there exist two curves corresponding 

to the clockwise (CW) and counterclockwise (CCW) rotations that form a closed, hysteresis loop. 

It has been pointed out that the error in the tip position predicted by the kinematic model can be up 

to ten percent of the total length of the robot because of this hysteretic behavior of the robot (Lock 

and Dupont 2011), which amounts to a few centimeters for a typical surgical robot that can be 

critical in delicate surgical procedures. 

 

 

3. Finite element model 
 

To overcome the limitation of the kinematic model, we develop a finite element model for 

concentric-tube continuum robots. Robust numerical methods for highly nonlinear dynamic 

analysis of thin shell structures must be employed to obtain a reliable solution for the robot 

because it consists of multiple thin-walled tubes with initial curvature, utilizes the contact force 

between the tubes to transmit actuating basal input to the distal end and undergoes large 

displacements with hysteresis. Here, we establish a systematic analysis procedure to predict robot 

trajectories using a commercial finite element analysis program ADINA (ADINA R&D 2013) that 

provides the necessary modeling capabilities. Transient responses of the robot are computed 

implicitly using the Bathe method (Bathe and Baig 2005, Bathe 2007, Bathe and Noh 2012, Noh et 

al. 2013) where the tubes are modeled using the MITC shell elements (Lee and Bathe 2004, Kim 

and Bathe 2008, Kim and Bathe 2009, Lee et al. 2012) and contact conditions between them are 

imposed via the constraint function method (Bathe and Bouzinov 1997) assuming isotropic contact 

damping. The procedure largely consists of two consecutive analysis steps: (1) tube assembly step 

where the finite element models of individual tubes with various curvatures are constructed and 

assembled into the equilibrium configuration and (2) robot actuation step where the tube 

trajectories are computed dynamically in response to actuation inputs at the base position. To 

illustrate, we consider two-tube robots only in this study while the proposed procedure can be 

applied to robots consisting of multiple tubes as well. 

 

3.1 Tube assembly 
 

First of all, we need to construct a computational model for the robot comprising initially 

curved tubes. A naive approach to generating the tube assembly would be to build individual tube 

models first and then integrate them successively by inserting a smaller tube into a larger one from 

one end to the other end. However, this approach usually suffers from an issue of slow or no 

convergence particularly when assembling tubes with different curvature. This difficulty stems 

mainly from the fact that multiple contacts occur between the tubes and their locations keep 

changing during analysis making contactor nodes oscillate between several target nodes without 

convergence in certain cases. To resolve this problem, we develop another approach that can 

assemble the tubes quickly where the change of contact points is reduced during analysis as  
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Fig. 3 Geometry and the finite element model of (a) the inner tube and (b) the outer tube 

 

 

Fig. 4 Tube assembly procedure 

 

 

described below. 

Tube assembly begins with creating the finite element model for each tube individually. For 

two-tube robots, the inner and outer tubes that usually have different curvatures are constructed 

independently and discretized using the MITC shell elements (Fig. 3). In this initial configuration, 

the tubes overlap but do not interact with each other as contact conditions are not imposed yet 

(Fig. 4(a)). Unlike the outer tube, the inner tube has a straight region whose end is connected to a 

motor for actuation in a real robot system. While the tubes are made of biocompatible nitinol 

alloys that exhibit unique properties such as shape memory and superelasticity (Auricchio and 

Sacco 1999), isotropic linear elastic material model is used for the tubes because the robot operates 

in the range of linear elasticity. 

Next, we apply the displacements to the tubes so that they become straight and concentric in 

the aligned configuration (Fig. 4(b)). During this process, the tubes can penetrate each other 
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Finite element modeling of concentric-tube continuum robots 

because contact conditions are still inactive. Finally, we turn on the tube-tube contact condition 

and then release gradually the applied forces required to maintain the tubes straight in the aligned 

configuration until the tube assembly finds its bent, equilibrium configuration (Fig. 4(c)). Both 

tubes become stressed in this final configuration unless they have the same initial curvature. The 

proposed alignment-relaxation approach to assembling multiple tubes is significantly more reliable 

and efficient than the naive, plug-in approach. 

 
3.2 Robot actuation 
 

Once the finite element model for tube assembly is constructed, we perform nonlinear dynamic 

analysis to obtain the robot trajectories in response to actuation inputs. It is natural to adopt the 

implicit time integration method here because tube robots are manipulated slowly in practice. In 

the total Lagrangian framework, the incremental equilibrium equations to be solved for the robot 

dynamics are 

     FRUKUCUM
tttttttt

00
    (10) 

where M  is the mass matrix, C  is the damping matrix, U is the incremental displacements 

from time t  to time tt  , Utt   and Utt   are the velocities and accelerations at time 

tt  , respectively, R
tt   represents the externally applied forces at time tt  , F

t

0
 is the 

internal forces at time t  and K
t

0
 is the tangent stiffness matrix at time t . 

To solve Eq. (10) accurately, the Bathe method is employed which is one of the recent implicit 

time integration schemes demonstrating its reliability and efficiency for the solution of various 

nonlinear problems in structural dynamics (Bathe and Baig 2005, Bathe 2007, Bathe and Noh 

2012, Noh et al. 2013). In principle, this method divides the complete time step Δt into two sub-

steps and uses the trapezoidal rule for the first sub-step and the 3-point Euler backward method for 

the second one. More specifically, the following approximations are used for the first sub-step 
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and for the second sub-step 
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where t+γΔt is a sub-step between t and t+Δt with γ∈(0,1) which is set to be 0.5 in this work. 

Substituting Eqs. (11)-(12) into Eq. (10) results in the following time-stepping equations 
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22

ˆˆ RUK  tt  (13b) 

where 
1

K̂  and 
2

K̂  are effective stiffness matrices, and 
1

R̂  and 
2

R̂  are effective nodal load 

vectors. More detailed descriptions about the method are well illustrated in Refs (Bathe and Baig 

2005, Bathe 2007, Bathe and Noh 2012, Noh et al. 2013). 

During this actuation process, it is important to apply proper contact conditions between the 

tubes efficiently. We assume frictionless contacts in our analysis, imposed using the constraint 

function method (Bathe and Bouzinov 1997), because it has been shown that frictions do not affect 

the robot trajectories (Lock and Dupont 2011). In order to capture the hysteretic behaviors of the 

robot observed experimentally, we include the damping force in contact as 

     
TTNNdamp

uCuCF    (14) 

where CN and CT are the damping coefficients in the normal and tangential directions, respectively, 

while 
N

u  and 
T

u  are the relative normal and tangential velocities, respectively, between the 

nodes in contact. In practice, isotropic damping (CN=CT) is used for dynamic analysis of the robot 

as explained in the next section. 

 

 

4. Results 
 

Here, we construct three two-tube continuum robots whose behaviors were tested and 

characterized experimentally (Dupont et al. 2010). The inner tube consists of the straight part 

whose length is ls=18 mm and the curved part whose radius of curvature is ρ1 while the outer tube 

has the curved part only whose radius of curvature is ρ2. The inner tube and the outer tube have the 

diameters of d1=2.19 mm and d2=2.66 mm, the thicknesses of t1=0.44 mm and t2=0.22 mm, and 

the arc lengths of l1=150 mm and l2=150 mm, respectively. Three robots simulated here differ only 

in curvatures of the inner and outer tubes (Table 1). The inner and outer tubes are discretized using 

1,912 and 2,386 MITC6 shell elements, respectively, resulting in the finite element models with 

51,984 DOFs in total. We use the linear elastic material properties of nitinol corresponding to 

Young’s modulus of E=48.87 N/mm
2
 and Poisson’s ratio of υ=0.3. Note that there may exist 

unpredictable variations of these properties in real robot systems due to heat treatment during 

annealing process for making pre-curved tubes. 

To actuate the finite element robot model, we apply a clockwise or counterclockwise  

rotational input to the base of the inner tube that is actuated by a motor in a real system while 

fixing the base position of the outer tube. The relative twist angles at the distal end, α(L), are 

calculated as a function of the applied motor input, αm, and compared with the experimental  

 

 
Table 1 Specification of two-tube robots 

Tube robot 
Radius of Curvature (mm) 

Outer tube Inner tube 

A 242 260 

B 154 154 

C 93 93 
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Fig. 5 Effect of frictions on the relative twisting angle curve of tube robot B 

 

 

measurements. We also calculate them using the kinematic model by solving Eqs. (7)-(9) 

simultaneously for comparison. Since only curved parts of the tube are modeled in the kinematic  

approach, we calculate α(s) and )(s  in the curved region first by applying rotational inputs at  

the end of the curved region of the inner tube near its base corresponding to the motor input related 

by 

     
)(

)0()0(
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where Lext=ls is the length of the extended part of the inner tube (Dupont et al. 2010). 

First, we investigate the effect of contact parameters used to model tube-tube interactions. 

Finite element analysis with various friction coefficients (Fig. 5) verifies that the frictional force 

does not affect the robot trajectories as observed in analysis with the kinematic model (Lock and 

Dupont 2011). While the result for tube robot B is only given in Fig. 5, the same results are 

observed in the other tube robots as well. On the other hand, the damping force in contact 

influences the dynamics of the tube robot significantly, particularly its hysteretic behavior. In 

general, different damping coefficients need to be defined in the normal and tangential directions, 

which makes it difficult to identify proper values in practice. However, similar to frictions, we can 

choose any set of values for these coefficients, CN and CT in Eq. (14), as long as the total amount 

of contact damping remains the same because the resultant force governs the robot behavior not its 

components (Fig. 6). While the result for tube robot B is only given in Fig. 6, the same results are 

observed in the other tube robots as well. Hence, for simplicity, we assume the isotropic damping, 

CN=CT=Ccont, in this study. 

It is important to note that our finite element analysis reproduces the kinematic modeling 

solutions without hysteresis when the effect of contact damping is not included. There exist slight 

differences between these solutions, which might be attributable to certain factors that are not 

considered in the kinematic model but modeled in the finite element analysis including the gap 

between the tubes and the extension and shear of the tubes. As the damping coefficient increases,  
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Fig. 6 Effect of contact damping forces on the relative twisting angle curve of tube robot C 

 

 

Fig. 7 Relative twisting angle curve of tube robot A 

 

 

however, the finite element solutions become more deviated from the kinematic solutions forming 

a complete hysteresis loop. 

Tube robot A consists of two low-curvature tubes whose radius of curvature when assembled is 

250 mm. Its relative twist angle curve (Fig. 7) is similar to that of the concentric straight tubes 

where the relative twist angle at the distal end coincides simply with the applied motor input. In 

this case, both kinematic and finite element models reproduce experimentally obtained results 

fairly well except that the kinematic model cannot capture the hysteretic behavior. This 

incapability of the kinematic model deteriorates its solution accuracy more when analyzing more 

highly curved tube robots. 

The relative twist angle curves of tube robot B whose radius of curvature is 154 mm clearly  
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Fig. 8 Relative twisting angle curve of tube robot B 

 

 

Fig. 9 Relative twisting angle curve of tube robot C 

 

 

show the discrepancy between the experimental measurements and the kinematic solutions that 

amounts to 37.4 degree at maximum (Fig. 8). In contrast, the proposed finite element model not 

only provides the solutions that are much closer to the experimental measurement but also 

reproduces the hysteretic behavior of the robot successfully. 

Tube robot C consisting of the tubes with the smallest radius of curvature suffers from the 

snapping problem. It is important to predict not only whether but also when this snapping 

phenomenon occurs accurately because this would be quite perilous in robot-aided surgeries. 

Experiments reveal that the snapping occurs when αm=230° and αm=120° for clockwise and 

counterclockwise inputs, respectively (Fig. 9). The kinematic model predicts, however, that the 

snapping takes place much earlier than experiments (αm=194° and αm=165° for clockwise and 
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counterclockwise inputs, respectively). The motor inputs when the snapping occur predicted using 

the finite element model are quite close to the experimentally observed values (αm=227° and 

αm=132° for clockwise and counterclockwise inputs, respectively). Note that the finite element 

solutions converge to the kinematic solutions when contact damping is not considered. 

Nevertheless, there exist a marked discrepancy between the relative twist angle curves near the 

snapping point, which might be due to unmodeled features including the slipping of the tube with 

respect to the attached motor and the phase transition of tube properties at local positions during 

annealing process. 

 

 

5. Conclusions 
 

We present the finite element modeling approach to investigating the dynamics of concentric-

tube continuum robots. Analysis consists of two steps: (1) tube assembly step where the assembled 

configuration of the precurved tubes is calculated and (2) robot actuation step where the actuating 

inputs are applied to compute the tube trajectories. MITC shell elements are employed to model 

the tubes and their dynamic responses are predicted implicitly using the Bathe time integration 

scheme. Damping forces between the tubes in contact are included to capture the hysteretic 

behavior of the robot that is experimentally observed. Results for three two-tube robots are shown 

to demonstrate the performance of the proposed method. Our finite element model provides more 

accurate solutions than the more commonly used kinematic model particularly for the hysteresis in 

the relative twist angle curves and the actuating input when the snapping occurs. 
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