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Abstract.  Based on a reduced displacement field, a layer-wise (LW) formulation is developed for analysis 

of thick shell panels which is subjected to axial tension. Employing the principle of minimum total potential 

energy, the local governing equations of thick panel which is subjected to axial extension are obtained. An 

analytical method is developed for solution of the governing equations for various edge conditions. The 

governing equations are solved for free and simply supported edge conditions. The interlaminar stresses in 

the panel are investigated by means of Hooke's law and also by means of integration of the equilibrium 

equations of elasticity. Dependency of the result upon the number of numerical layers in the layerwise theory 

(LWT) is studied. The accuracy of the numerical results is validated by comparison with the results of the 

finite element method and with other available results in the open literature and good agreement is seen 

between the results. Numerical results are then presented for the distribution of interlaminar normal and 

shear stresses within the symmetric and un-symmetric cross-ply thick panels with free and simply supported 

boundaries. The effects of the geometrical parameters such as radius to thickness and width to thickness ratio 

are investigated on the distribution of the interlaminar stresses in thick panels. 
 

Keywords:  thick shell panel; interlaminar stresses; layerwise theory; cross-ply laminate; free edge; simply 

supported edge 

 
 
1. Introduction 
 

In the composite structures, the interlaminar stresses arise in regions near the edges due to 

material discontinuity and mismatch in the elastic properties of adjacent layers. These stresses can 

lead to delamination and failure of laminated composites at loads that are much lower than the 

failure loads predicted by the classical lamination theories. Accurate determination of three-

dimensional stress state in the boundary-layer regions of laminated plates and shells is therefore 

crucial in order to correctly describe the laminates behavior and to prevent their early failure. The 

interlaminar stress distribution in the composite laminates has been investigated by different 

researchers and analytical and numerical methods are used for prediction of the interlaminar 

stresses in composite plates and shells. The survey paper of Kant and Swaminathan (2000) reviews 

the appropriate papers and different methods on the interlaminar stresses in laminated composite 
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plates and shells until 2000. For completeness, however, the pertinent references on the subject are 
discussed here. Pipes and Pagano (1970, 1974) employed the finite difference method to generate 
numerical results for interlaminar stresses in symmetric balanced laminates using the reduced form 
of the elasticity equations. Pipe and Daniel (1971) verified that in laminated plates the free-edge 
effect is confined to a boundary-layer region approximately equal to the laminate thickness. Tang 
and Levy (1975) used the boundary-layer theory to study the interlaminar stresses in symmetric 
laminated composite plates in extension. Later Hsu and Herakovich (1977) studied edge effects in 
symmetric angle-ply composite laminates by using a perturbation technique. Wang and Choi (1982 
a, b) studied the boundary-layer effects in symmetric balanced laminate by means of 
Lekhnistskii’s stress potentials. Wang and Crossman (1977 a, b) studied the edge-effect problem 
of a symmetric balanced composite laminate under uniaxial extension and thermal effects by finite 
element method. Whitcomb et al. (1982) investigated the discrepancies in the results obtained by 
various authors and the reliability of the finite element approach. Murthy and Chamis (1989) 
determined interlaminar stresses in composite laminates under various loadings such as in-plane 
and out-of-plane shear/bending by using a three dimensional finite element method.  

Cho and Kim (2000) proposed an iterative method and determined the stresses in composite 
laminates subjected to extension, bending, twisting and thermal loads by using the complementary 
virtual work and the extended Kantorovich method. Tahani and Nosier (2003) studied the free-
edge stresses in general cross-ply composite laminates under extensional and thermal loadings by 
using the layerwise laminated plate theory (LWT). Tong et al. (2001), Wu (2005), Ding et al. 
(2010) studied the interlaminar stresses in composite laminates using the finite element method. 
Shim and Lagace (2005) present an analytical method to determine the interlaminar stresses in 
laminates with ply drop-offs. Wu and Chen (2010) introduced a local global higher order theory 
including interlaminar stress continuity for cross-ply composite and sandwich plate. 

Kapoor et al. (2013) studied the interlaminar stresses in composite and sandwich plate using 
the non-uniform rational B-spline Isogeometric finite element method. They used the first order 
shear deformation theory to derive the governing equation.  

Sarvestani and Sarvestani (2011) studied the interlaminar stress in general laminated composite 
plate subjected to extension and bending. Ahn and Woo (2014) studied the interlaminar stresses at 
free edge in laminated composite in extension and flexure using the mixed global local approach 
and a mixed dimensional transition element. Huang and Kim (2015) used the extended 
Kantorovich method to study the interlaminar stress in free edge of piezo-bonded composite 
laminates.  

In the field of the analysis of the interlaminar stresses in composite shells and panels Franklin 
and Kicher (1968) used a shear deformation shell theory to analyze stresses in a laminated 
composite circular cylinder. Walts and Winson (1976) determined the interlaminar stresses in a 
laminated cylindrical shell subjected to symmetric loadings using a simplified discrete-layer shell 
theory. Li et al. (1985) obtained an analytical solution for the interlaminar stresses in a fiber-
reinforced double-layer cylindrical shell. Ren (1987) presented an exact elastic solution for 
laminated cylindrical shells in cylindrical bending. Chaudhuri (1990) presented a semi-analytical 
approach for the prediction of interlaminar shear stress distribution in a thick laminated general 
shell. He assumed transverse inextensibility for the shell and used a layer-wise constant shear 
angle theory. Varadan and Bhaskar (1991) presented a 3-D elasticity solution for cross-ply simply-
supported cylindrical shells subjected to a sinusoidal load. Kant and Menon (1991) used a C0 finite 
element formulation and a finite difference scheme to determine interlaminar stresses in fiber-
reinforced cylindrical shells under normal loads. They have used a nine-node quadrilateral shell 
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element with nine degrees of freedom per node. Wang and Li (1992) presented an analytical 
elasticity solution for interlaminar stresses in cross-ply cylindrical shells with various edge 
supports which subjected to a radial pressure and thermal loading. Bhaskar and Varadan (1993) 
used the first-order shear deformation shell theory (FSDT) to determine interlaminar stresses in 
laminated composite cylindrical shells under a dynamic transverse loading. They used the Navier 
approach and Laplace transforms technique to solve the appropriate governing equations of 
motion. Ramalingeswara and Ganesan (1996) compared the interlaminar stresses in cross-ply 
spherical shells subjected to uniform external pressure as obtained within FSDT, higher-order 
shear deformation shell theory with thickness stretch (HSDT7), higher order shear deformation 
shell theory with higher-order inplane displacement terms (HSDT9), and a three-dimensional finite 
element model. Later, they presented a comparative study on the interlaminar stresses in a cross-
ply spherical shell subjected to a uniform external pressure using FSDT, HSDT7, HSDT9 and the 
3-D finite element model (Ramalingeswara and Ganesan, 1997). Wang et al. (2002) derived an 
analytical solution based on series solution for determining the interlaminar stresses in cross-ply 
cylindrical shell subjected to radial pressure with simply supported ends. Kim et al. (2002) studied 
the interlaminar stresses in a shell panel with piezoelectric patch including the thermal loading 
using the finite element method. Faghiano et al. (2010) studied the calculation and recovery of the 
interlaminar stresses in the composite shell in the three dimensional finite element modeling of the 
structures. Nosier and Miri (2011) developed a layerwise formulation for analysis of the 
interlaminar stress in angle-ply thin cylindrical panels with free edge subjected to mechanical 
loading conditions. More recently Most et al. (2015) studied the error between the simple closed 
form analytical formulae and the full scale finite element analysis in prediction of the interlaminar 
stresses in curved laminates. Isavand et al. (2015) studied the dynamic response and of 
functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings. 
Also, recently Kar et al. (2015) studied nonlinear flexural response of laminated composite flat 
panel under hygro-thermo-mechanical loading conditions. 

To the knowledge of the author, no paper in the literature seems to be devoted to development 
of the layerwise theory for analysis of the stresses in thick composite cylindrical panels. In this 
study the LWT is formulated for thick shell panels to determine the interlaminar stresses 
distribution in the interior and boundary-layer regions of thick shell panels under axial extension 
force or displacement for various edge conditions. Starting from a reduced displacement field for 
cross-ply shell panels under tension, for the first time a layerwise displacement formulation is 
developed for thick composite shell panels. The governing equation of the panel is obtained using 
the principle of minimum total potential energy. An analytical method is presented for solving the 
governing equation of the problem for various edge conditions. An integration method is 
introduced for obtaining the interlaminar stresses in thick panels in the LWT by integrating the 
equilibrium equation of elasticity. For the first time the interlaminar stresses in the panel are 
obtained by two methods: by means of Hooke’s law (stress-strain relations) and also by means of 
integrating the equilibrium equation of elasticity. The numerical results of these two methods in 
prediction of the interlaminar stresses from the displacement field are investigated. For validation 
of the results, a finite element (FE) analysis is done and the results of the LWT by Hooke’s law 
and integration method are compared by the results of the FE analysis in the prediction of the 
interlaminar stresses in thick panels. The interlamianr stresses at the interfaces and in the vicinity 
of edges of symmetric and un-symmetric panels for free and simply supported boundary 
conditions are studied and the results presented for thick and thin panels and compared by the 
results of the thick plate. 
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Eq. (2) represent the most general form of the displacement field within the kth layer of 
symmetric and un-symmetric cross-ply shell panels which is subjected to pure extension. The 
strain components in the plies of the panel can be obtained by substituting Eq. (2) into the strain-
displacement relations as 

( ) ( ) ( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( ) ( ) ( )

1 1
, , , ,

1 1
, - , , 0

k k k k k k
x z z

k k k k k k
z z xz x

C v w w
r r

w v v
r r

 

  

   

  

    

   
                              (3) 

where in Eq. (3) and what follows, a comma followed by a coordinate indicates partial 
differentiation with respect to that coordinate. Relation (3) indicates that the constant C is the 
uniform axial strain 0 of the laminated shell in the x-direction. Denoting the axial displacement of 
the line AB by U and that of DE by -U , it is then concluded that C=0=U /a. 

 
2.1 Layerwise Theory of Reddy (LWT) 
 
The displacement-based technical plate and shell theories can, in general, be classified as either 

equivalent single-layer (ESL) theories or layer-wise theories (see Reddy 2003). The ESL theories 
provide acceptable results for the global responses of thin to relatively thick laminated plates and 
shells but fail to give accurate results for the stresses within the boundary-layer regions of such 
structures. The layer-wise theories, on the other hand, are developed to provide approximately the 
same modeling capabilities as the full three-dimensional elasticity model. Therefore, a layer-wise 
theory (LWT) that possesses the capability of predicting the localized three-dimensional effects is 
used here to analytically study the interlaminar stresses in symmetric and un-symmetric cross-ply 
thick circular cylindrical shell panels.  

It should to be noted that in the LWT each actual (physical) ply can be imagined to be made of 
p numerical (mathematical) layers with same material properties, so in the layer-wise theory, the 
panel is supposed to be made of N numerical layers and N+1 numerical surfaces (see Fig. 2). In the 
LWT, the displacements of a point in the panel are written based on the displacements of N+1 
numerical surface. In order to formulate the problem by the LWT, based on the displacement field 
of the panel in Eq. (2), the appropriate displacement field within LWT for such panels can be 
written as follow 

1 0

2

3

( , , )

( , , ) ( ) ( ) 1,..., 1

( , , ) ( ) ( )
k k

k k

u x z x

u x z V z k N

u x z W z

 
 
 



   
 

                                   (4) 

where as noted u1, u2 and u3 are the displacement components of a material point located at (x,, z) 
in the un-deformed laminated shell panel in the x-, - and z- directions, respectively and Vk() and 
Wk() represent the displacement components of all points located on the kth numerical surface 
within the un-deformed shell panel in - and z- directions, and k(z) in Eq. (4) is the global 
Lagrangian linear interpolation function. In the present study a repeated index indicates summation 
form 1 to N+1 with N being the total number of numerical layers assumed to exist within the 
panel. The accuracy of LWT can be improved by increasing the number of numerical (or 
mathematical) layers within the laminates. By increasing the number of numerical layers, as a  
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In the analysis of thin shells in which the ratio of the thickness to the mean radius of the shell is 
very small i.e., h/R<<1, the term z/R can be neglected in comparison with 1 and the radial distance 
r (see Fig. 1) can be replaced by r=R(1+z/R)≈R in which R is the mean radius of the thin shell. 
Replacement of r by R simplifies the formulation and analysis of the problem. In the thick shells, 
however, the thickness of the panel, h, is comparable with the mean radius of the panel, R, and 
thickness to mean radius ratio of shell (h/R) cannot be neglected in comparison with 1. So in the 
analysis of thick shells, 1+z/R can not be approximated by 1 and r coordinate is usually written as 
R(1+z/R). In order to formulate the governing equation of thick panel in the LWT, according to 
Eqs. (3) and (4), the strain-deformation relations for thick panel can be written as 

0
1

 ,   ( ) ,    
(1 / )

1
( ) ,    0

(1 / )

x k k k z k k

z k k k k k x xz

V W W
R z R

W V V
R z R



 

   

  

      


       


                          (7) 

where in Eq. (7) and the rest of the present study kW   and kV   indicate the ordinary differentiation 
of Wk and Vk with respect to  coordinate and k  indicates the ordinary differentiation of Фk 
with respect to z coordinate.  

Here, the principle of minimum total potential energy (Fung 2001) is used to obtain the 
equilibrium equations of the thick panel with N numerical layers within LWT. Using the principle 
of total potential energy, the results are 2(N+1) local equilibrium equations corresponding to 
2(N+1) unknowns Vk and Wk of cross-ply panel and one global equilibrium equation corresponding 
to C which can be written as follow 

0

0

/2

/2

1 1
:        , 0

1 1
:        , 0

:        (1 )

k k k
k

k k k
k z

h

x xh

V M Q R
R R

W R N M
R R

z
C F R dzd

R

   

  









  


  

  

  



                                          (8) 

in which the generalized stress resultants for thick panel are defined as 

/2

/2

/2

/2

/2

/2

/2

/2

(1 )

(1 )

hk
kh

hk
z kh

hk
z z kh

hk
z kh

M dz

R dz

z
N dz

R
z

Q dz
R

 

 

 

















 

 

  

  













                                                     (9) 

Also the boundary conditions at the edges of the panel at =±0 involve the specification of 
either Vk or M

k and either Wk or R
k. For example, in the free edges of the panel the boundary 

conditions involve specification of the generalized stress resultants M
k=R

k=0 which include 
2(N+1) equations and for simply supported edges the boundary conditions involves M

k=Wk =0. 
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In order to obtain the governing equations of the panel in terms of the displacement 
components, the stress resultants in Eq. (9) must be expressed in terms of the displacement 
components. As seen in Eq. (7) , the shear strain x and xz vanishes in the panel and so, the stress–
strain relation within the kth layer of the cross-ply panel with respect to the global x--z coordinate 
system can be written as (see, e.g., Herakovich 1998) 

( )( ) ( )
11 12 13

12 22 23

13 23 33

44

0

0

0

0 0 0

kk k
x x

z z

z z

C C C

C C C

C C C

C

 

 

 
 
 
 

    
    

        
    
        

                                   (10) 

where in above equation ij ijC C  for 0°- layers and for 90°- layers 11 22C C , 22 11C C , 12 12C C ,

13 23 C C , 23 13C C , 33 33C C , and 44 55C C  with Cij’s being the three-dimensional stiffness of  
an orthotropic lamina. Using the stress-strain relation in Eq. (10) and the strain-displacement 
relation in Eq. (7), the generalized stress resultants of thick panel can be obtained in terms of the 
displacement components as 

12 0 22 22 23

44 44 44

13 0 23 23 33

44 44 44

1 1
( )

1 1
( )

1 1
( )

1 1
( )

k k kj kj kj
j j

k kj kj kj
j j

k k jk jk kj
z j j

k kj jk jk
j j

M B D V D B W
R R

R B D V D W
R R

N A B V B A W
R R

Q A B V B W
R R











   

  

   

  

  

  

 

 

                                 (11) 

in which the laminate rigidities in Eq. (11) are defined as follow 

1

1

1

( )

1

( )

1

( ) 1

1

( , ) ( , )(1 ) ,

( , ) ( , )

( )(1 ) ,

i

i

i

i

i

i

N zk kj i
pq pq pq k k jz

i

N zk kj i
pq pq pq k k jz

i

N zkj i
pq pq k jz

i

z
A A C dz

R

B B C dz

z
D C dz

R















      

   

   







 



                                 (12) 

The integrations in Eq. (12) are carried out and the final expressions for the rigidities for 
convenience are presented in Appendix A.  

By substituting Eq. (11) into Eqs. (8a) and (8b), the local equilibrium equations of the panel are 
expressed in terms of Vj and Wj as 

22 44 44 44 442 2

22 44 23 44

1 1 1 1
: ( )

1 1 1
( - ) 0

kj kj jk kj kj
k j j

k j kj k j jk
j

V D V B B D A V
R RR R

D D B B W
R R R

     

   

   

  

                           (13a) 
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22 44 23 44 442

22 23 23 33 13 12 02

1 1 1 1
: ( - )

1 1 1 1
( ) ( )

kj kj jk kj kj
k j j

kj kj jk kj k k
j

W D D B B V D W
R R R R

D B B A W A B
R R RR





    

     

    

  
                (13b) 

and by substituting stress-strain relation into Eq. (8c), the global equilibrium equation is expressed 
as 

0

0
11 0 12 13

1
[ ( ) ]j j

x j j jF R A B V W A W d
R




 


                                           (14) 

where the axial rigidity Ã11 of the panel is defined as 

( ) ( ) 1
11 11 11

1 1

(1 ) ( )(1 )
2i

N Nz i i i i
iz

i i

z zz
A C dz C t

R R


 


                                  (15) 

In general Eqs. (13a), (13b) and (14) involve 2N+3 differential equations which are the local 
and global equilibrium equations of the panel. 

 
 

3. Solution of the equations 
 
The equilibrium equations of the panel in Eqs. (13) and (14) can be solved analytically by 

defining the state space variable. For solving of the equations, the new state variables are defined 
as 

1 2

3 4

{ } { }, { } { },

{ } { }, { } { },

X V X V

X W X W

 
 

                                                 (16) 

in which 

1 2, 1

1 2, 1

{ } { , ..., }

{ } { , ..., }

T
N

T
N

V V V V

W W W W








                                                 (17) 

and {X} is defined as; 

1 2 3 3{ } {{ } ,{ } ,{ } ,{ } }T T T T TX X X X X                                          (18) 

Substitution of Eq. (16) into Eq. (13) and Eq. (14) yield the local equilibrium equations in Eq. 
(13) in the standard form as 

0{ } [ ]{ } { }X A X F                                                      (19) 

and the global equilibrium equation in Eq. (14) can be written as 

0

0
0 11 0{ }{ } (2 )xF M X d R A




  


                                                 (20) 

in which [A] and {F} is defined in Appendix B and { }M  is defined as 
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 12 12 13{ } {0} ,{ } , { } { } ,{0}T T T T TM B B R A                                     (21) 

in which {0}T is the zero vector with (N+1) rows and {B12} and 13{ }A is define in appendix A.  
 
3.1 Loading conditions 
 
For a panel which is subjected to axial extension, two kinds of extension load can be 

considered as shown in Fig. 1. 
1. Extension displacement as  U  at x=±a which causes axial strain as 0=U /a.  
2. Tension force as ±Fx at x=±a in which the axial strain must be obtained by simultaneously 

solution of Eqs. (19) and (20). 
If the axial strain 0=U /a is supposed to be a known loading parameter during the solution i. e. 

U  is determined in loading, then the unknowns include 2N+2 functions Vk and Wk which can be 
obtained by solving Eq. (19) and then the applied force Fx can be obtained by Eq. (20).  

On the other hand, if axial force Fx is supposed to be the known extension force in the loading, 
then the axial strain 0 is unknown, and (2N+1) unknowns of the problem should be obtained by 
simultaneously solution of Eqs. (19) and (20). In this kind of loading some researchers such as 
Tahani and Nosier (2003) used the equivalent single layer (ESL) to obtain the axial stress 0 and 
used this strain as the known solution parameter in the LWT. Although the ESL theories have 
adequate accuracy in prediction of the global response of composite laminates, but this approach 
reduces the accuracy of the predicted results especially for thick panels. In this study, full 
layerwise method formulation is used for solution of the problem in the case of axial extension 
displacement and axial tension Force. 

 
3.1.1 Panel subjected to axial extension Ū 
If the axial extension displacement Ū of the panel is known, then the axial strain 0 is known as 

0=U /a. In this case, Eq. (19) can be solved independently. For this aim the new variable {S} is 
defined as 

{ } [ ]{ }X U S                                                             (22) 

in which [U] is the modal matrix (i.e., matrix of eigenvectors) of [A] so that 

[ ][ ] [ ][ ]A U U                                                           (23) 

and , ,...,  are the eigenvalues of the matrix [A] in which 

1 2 4( 1)( , ,..., )Ndiag    [Λ]                                                (24) 

Substitution of Eq. (22) into Eq. (19) and multiplying by [U]-1 from the left yields 

1
0{ } [ ]{ } [ ] { }S S U F                                                     (25) 

It is clear that [] is a diagonal matrix and so, Eq. (25) can be solved analytically. By solving 
Eq. (25) and substituting the subsequent result in Eq. (22), {X} can be obtained as 

1
0{ } [ ][exp( )]{ } [ ] { }X U K A F                                          (26) 
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which  

1 2 4( 1)[exp( )] (exp( ),exp( ),..., exp( ))Ndiag                              (27) 

and {K} being 4(N+1) unknown integration constants and must be obtained by imposing the 
boundary conditions at =±0. 

  
3.1.2 Panel subjected to axial force Fx 
In this kind of loading the panel is subjected to an axial force Fx instead of axial extension 

displacement Ū, and so the axial strain 0 is unknown parameter during the solution. In this case, 
Eqs. (19) and (20) should be solved simultaneously. For this purpose, Eq. (26) is substituted in Eq. 
(20) and the result is written as 

1 1
0 0 0 11 0{ }[ ][ ] ([exp( )] [exp( )]){ } 2 ( { }[ ] { } )xF M U K RA M A F                     (28) 

Now the axial strain 0 can be obtained using Eq. (28) as 

0 { }{ } xF
K

E
                                                            (29) 

in which E and { }  are defined as 

1
0 112 ( { }[ ] { })E RA M A F                                                (30) 

1
0 0

1
{ } { }[ ][ ] ([exp( )] [exp( )])M U

E
                                  (31) 

Now, the general solution of {X} can be obtained by substituting Eq. (29) into Eq. (26) as 

1 11
{ } ([ ][exp( )] [ ] { } { }){ } ( [ ] { }) xX U A F K A F F

E
                         (32) 

Same as Eq. (26), Eq. (32) contains 4(N+1) unknown constant {K} and can be obtained by 
imposing the boundary conditions at =±0. 

 
3.2 Boundary conditions 

 
The boundary conditions of the panel include determining either Vk or M

k and either Wk or R
k 

at the edges of the panel at =0 and =-0. The boundary conditions at the free edges of the panel 
include determining M

k and R
k as 

0

0

k

k

M

R








 at 0                                                         (33) 

and the simply supported edge of the panel can be considered by imposing the following 
conditions at the edges of the panel. 

0

0

k

k

M

W

 


 at 0                                                      (34) 
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The boundary conditions of the panel in Eq. (33) or Eq. (34) include 4(N+1) equations, and the 
integration constants {K} in Eq. (26) or Eq. (32) can be obtained by imposing the boundary 
conditions to the equations. 

 
3.3 Evaluation of the stresses 

 
After solving of the governing equations, the stresses in the panel can be obtained by the 

Hooke’s law (stress-strain relation). The interlaminar strains which are obtained from the LWT are 
not continuous at the numerical surfaces. So the values of interlaminar stresses at the numerical 
surfaces predicted by Hooke’s law are not continuous. On the other hand, the alternative method 
for prediction of interlaminar stresses in the panel is integration of the equilibrium equations of the 
panel. The equilibrium equations of the theory of elasticity in  and r direction in the cylindrical 
co-ordinate can be written as 

2( )
0

( )
0

r

rr

r
r

r
r

r

 




 

 


 
 

 


  
 

                                                  (35) 

The interlaminar stresses, r=z and r=z can be obtained by integration of Eq. (35). In the 
LWT, the interlaminar shear stress z and normal stress z at the nth numerical surface i.e., z=zn, 1

≤n ≤N+1 can be obtained by integration of Eq. (35). For this aim, by substituting  from Eq. (10) 
and Eq. (7) in the first equation of Eq. (35) and integrating from z1 to zn, the interlaminar shear 
stress r can be obtained as 

1
22 232

22 232
1

1
( ) [ ( ) ]

1
( ( )) )

nz

r n k k k k kz

n
k k

k k k
kn

z C V W C rW dz
r

B V W RB W
r





        

     



 

                             (36) 

Also by substituting from Eq. (10) and Eq. (7) for  and r in the second equation of Eq. 
(35), the interlaminar normal stress r can be obtained as 

1
22 23 44

22 23 44 44 12 0
1

1
( ) [ ( ) (( ) )]

1 1 1
( ( ) ( )

nz
k k k k

r n k k k k k kz
n

n
k k k k

k k k k k k
kn

V W W V
z C C W C V dz

r r r

B V W A W B W V A V A
r R R






          

       



   

         (37) 

in which the coefficients matrix is defined as below and are obtained in appendix A. 

1

1

1

1

1

1

1
( )

1

1
( )

1

1
1 ( ) 1

1

(1 / ) (1 / )

(1 / ) (1 / )

n i

i

n i

i

n i

i

nz zk i
pq pq k pq kz z

i

nz zk i
pq pq k pq kz z

i

nz zk i
pq pq k pq kz z

i

A C z R dz C z R dz

B C dz C dz

B C z R dz C z R dz















 



      

   

     

 

 

 





                     (38) 
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Table 1 Mechanical properties of T300/5052 Graphite/Epoxy lamina (Herakovich 1998 ) 

E1 (GPa) E2=E3 (GPa) G12=G13 (GPa) G23 (GPa) 12=13 23

132 10.8 5.65 3.35 0.24 0.59

 
 

4. Numerical results and discussions 
 
In order to investigate the interlaminar stresses in the thick composite panel, the numerical 

results for several thick shell panels which are subjected to axial extension force are presented. 
The mean radius, thickness and width of the panel are shown by R, h and 2b, respectively. 
Laminated Graphite/Epoxy panel with symmetric and un-symmetric cross-ply layer stacking are 
investigated in the analysis. The typical elastic properties of the Graphite/Epoxy ply are given in 
Table (1). It is supposed that the thickness of all plies of the Graphite/Epoxy in the panel is the 
same and equals to hk and the physical layers of the laminated panel are fully banded at the 
interfaces.  

 
4.1 Convergence study 
 
As said before, in the LWT each physical layer is assumed to be made of several imagined 

layer with the same fiber directions with the actual layers. These imagined layers are called the 
numerical (mathematical) layers. The number of subdivision of each physical layer can be 
different from layer to layer. In this study, all physical layers are divided into same mathematical 
layer. If the number of subdivisions of each physical layers be same and equal to p, then the total 
numerical layers of the panel will be equal to N=pÑ in which Ñ  is the number of physical layers in 
the laminate and the total number of numerical surfaces will be equal to N+1. The accuracy of the 
LWT depends on the number of numerical layers in the panel and in order to increase the accuracy 
of the numerical results, the number of subdivision of each layer p, and the number of total 
numerical layers N must be increased.  

In what follows, first the convergence of the stresses in the panel with free edge and simply 
supported edge with the increasing of the numerical layers is studied and then several numerical 
examples are presented for cross-ply thick shell panels subjected to extension. In this study the 
dimensionless stresses are defined as *=/  in which   is the average axial stress in the panel 
due to the extension force Fx and defined as  =Fx/(2bh) in which 2b=2R0 is the average width of 
the panel (the width on the mean radius) of the panel. The convergence of the interlaminar normal 
stress, z at the edge =0, of the panel with free edge and simply supported edge is shown in Fig. 
3 and Fig. 4, respectively. In these figures the interlaminar stress z is obtained by integrating the 
equilibrium equations in (38). In the figures, hk is the thickness of the physical layers. The 
numerical and physical surfaces and layers of the panel are numbered from the inner surface of the 
panel to the outer surface. According to the coordinate, z/hk=0 indicates the middle surface of the 
panel. For the laminates with 4 physical layers, z/hk=-1 indicates the interface of first layer 
(interior layer) and second layer and z/hk=1 shows the interface of third and fourth layer and z/hk=-
2 and z/hk=2 indicate the inner and outer surface of the panel, respectively. 

Fig. 3 shows the value of the interlaminar normal stress z exactly at the free edge of the thick 
panel with R/h=5 and 2b/h=3 in [0°/90°]s, [90°/0°]s and [0°/90°/0°/90°] lamination stacking for 
various number of subdivision p. At the free edge, it is seen that in the 0°/0° and 90°/90° interface  
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Fig. 3 Convergence study of interlaminar normal stress z at the free edge in thick panel versus p, 
R/h=5, 2b/h=3 
 

 
Fig. 4 Convergence study of interlaminar normal stress z at simply supported edge in thick panel 
versus p, R/h=5, 2b/h=3 
 
 

which the two adjacent layer have the same fiber orientation, the z is converged with increasing 
of the numerical subdivision p and for p>5 the value of z remains constant. At the 0°/90° and 
90°/0° interfaces, the value of z is increased monotonically by increasing the number of 
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subdivisions. So, it seems to be no stress singularity in the free edge at 0°/0° and 90°/90° interfaces 
which adjacent layers have same material properties. In the free edge at the interface of the layers 
which have different elastic properties i.e., 0°/90° and 90°/0° interfaces, it is seen that the value of 
z grows monotonically as p increases which suggest that stress singularity may exist at 0°/90° and 
90°/0° interfaces, but such a conclusion can not be proven by the approximate theories.  

The convergence study of panel with simply supported edges, of the interlaminar normal stress 
at the edge (=0) in [90°/0°]s and [0°/90°/0°/90°] panel is studied in Fig. 4. It is seen that at the 
simply supported edges, the interlaminar normal stress z converged to a constant value for 0°/0°, 
0°/90° and 90°/0° interfaces by increasing of the numerical subdivision p and monotonically 
increasing is not seen in simply supported edges. In the analysis of the interlaminar stresses in 
order to have a good accuracy the number of subdivision of physical layer is chosen to be p=10 for 
free edge and simply supported edge. 

 
4.2 Investigation of interlaminar stresses 
 
The distribution of the interlaminar stresses in [0°/90°]s, [90°/0°]s and [0°/90°/0°/90°] 

Graphite/Epoxy thick panels subjected to axial extension force as Fx is studied in this section. In 
order to obtain the results with adequate accuracy, the number of subdivision of each physical 
layer is taken p=10 and so, the total number of numerical surfaces in the panel is 41 surfaces. As 
mentioned before, after solving the governing equations of the system, the interlaminar stresses 
can be obtained by two methods: 1- By using the Hooke’s law in Eq. (10), 2- By integrating the 
equilibrium equations in Eq. (37) and Eq. (38) as an alternative method. In the LWT with C0 
Lagrangian interpolation function, the continuity of the interlaminar strains z and z is not 
guaranteed at the interface of two adjacent numerical layers. For example, the interlaminar strains 
at the kth numerical surface (z=zk) can be obtained by the upper numerical layer of that surface i.e., 
displacements of (k+1)th and kth surface, also the interlaminar strains at the kth surface can be 
obtained by the numerical layer that located under the kth layer i.e., (k-1)th and kth surfaces. The 
strain at kth surface which is obtained from the upper layer is denoted by k+, and the strain which is 
obtained from the under layer is denoted by k. So, in prediction of the interlaminar stresses at kth 
surface by the Hooke’s law, two values can be obtained for the interlaminar stress z and z. The 
interlaminar stresses at kth surface which is obtained by the elastic properties of the upper 
numerical layer, and the strains obtained by the upper layer, k+ are shown by k The interlaminar 
stresses at kth surface can also be obtained by the elastic properties of the (k-1)th numerical layer, 
and the strains obtained by the under numerical layer of that surface, k and are denoted by k. So 
in the predictions of Hooke’s law, the interlaminar stresses are not continuous at the interface of 
the layers i.e., k may not equal to k. In this study the Hooke’s law stress is obtained as the 
average of two value as k=0.5(k+k). On the other hand, the integration method which is 
introduced in Eq. (37) and Eq. (38) gives a unique value for the interlaminar normal and shear 
stresses at the interfaces. In what follows, the distribution of the interlaminar stresses in 
Graphite/Epoxy thick panel with free edges and simply supported edges are studied and the effects 
of radius to thickness R/h and width to thickness 2b/h on the interlaminiar stresses are investigated. 

 
4.2.1 Verification of the results 
The Finite Element method (FEM) is used for verification of the results of the presented 

method. The results of the finite element model are obtained by a 3D model in the commercial 

747



 
 
 
 
 
 

Isa Ahmadi 

 
Fig. 5 Comparison of the predictions of LWT and FEM for interlaminar normal and shear stress at 
z=hk in the [0/90]s panel, (R/h=5, 2b/h=4) 

 
 

finite element code Ansys using solid46 element. In the model the thickness, width and length of 
the panel are divided into 48, 200 and 5 element respectively and the 0° and 90° plies are modeled 
as two separate materials with different material properties. The model is subjected to axial 
extension force. In order to compare the results of the FEM and LWT the distribution of the 
interlaminar stresses through some paths in the circumferential and thickness direction of [0/90]s 
thick panel (R/h=5) is investigated in Fig. 5 to Fig. 7. In order to study the distribution of the 
interlaminar stress at the interface of the adjacent layer with different fiber orientation, Fig. 5 
compares the results of the LWT and the FEM at the interface of third and forth physical layer 
(z=hk) of [0/90]s panel. The prediction of LWT by Hooke’s law, the prediction of LWT by 
integration of equilibrium equations, and the prediction of the FEM are shown in Fig. 5. It is seen 
that the prediction of the LWT by integration method and the prediction of FEM for interlaminar 
normal stress z are in close agreement. Also it is seen that the prediction of the FEM and the 
LWT for z is in close agreement unless just near the free edge. For more investigation on the 
prediction of LWT and FEM, the distribution of the interlaminar normal stress z and shear stress 
z through the thickness of the panel are shown in Fig. 6 and Fig. 7. Fig. 6 shows the normal 
stress through the thickness of the panel at the free edge (=0) and in the vicinity of the edge at 
=0, =0, =0, =0, and at =0 which is predicted by the LWT and FEM. 
Solid lines show the prediction of the LWT with equilibrium equation and dashed lines show the 
prediction of FEM. In Fig. 6 very good agreement is seen between the predictions of FEM and 
prediction of the LWT by integration method for z unless slight difference is seen in the interface 
of the layers with different fiber orientation at z=±zk near the free edge. The distribution of the 
interlaminar shear stress z through the thickness of the panel is shown in Fig. 7. It is clear that at 
the free edge, the shear stress z must be vanished, but it is seen that at the interface of the 
adjacent layers with different material properties (z=±zk), the shear stress z which is predicted by  
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Fig. 6 Comparison of the predictions of LWT and FEM for interlaminar normal stress z in the [0/90]s 
panel, (Solid lines: LWT, Dashed lines: FEM, R/h=5, 2b/h=4) 

 

 
Fig. 7 Comparison of the predictions of LWT and FEM for interlaminar shear stress z in the [0/90]s 
panel, (R/h=5, 2b/h=4) 

 
 
the LWT and FEM is not zero. At the free edge z which is predicted by the LWT has sharp 
disturbance near z=±hk. It is seen that the interlaminar shear stress decreases far from the free 
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edges (=0) and increases rapidly in the vicinity of the free edge. It is seen that except at the 
free edge (=0) that the predictions of the methods are not in agreements, at =0.980, =0.940 
and =0.80 the prediction of the LWT and FEM are in close agreement.  

In Fig. 6 and Fig. 7, it is seen that at z/hk=±2 which is the free outer and inner surface of the 
panel, the interlaminar normal and shear stresses vanished. The interlaminar normal stress near the 
points (=0, z/hk=±1) increased rapidly and has a peak. As seen in Fig. 3, the value of z at this 
point increased monotonically by increasing the number of numerical layer in the LWT. From the 
predicted results which are shown in Fig. 5 to Fig. 7, it is concluded that the prediction of 
presented LW formulation and FEM for interlaminar stresses are in close agreement and the 
accuracy of the LW Formulation for prediction of interlaminar stresses in thick panel is examined.  

 
4.2.2 Free edge conditions 
The distribution of the interlaminar stresses in the thick panels with free edges is studied in this 

section. The distribution of the interlaminar stresses in the panel with lamination sequence as 
[90°/0°]s and the same geometry as previous example (R/h=5 and 2b/h=4) are shown in Fig. 8 and 
Fig. 9. The distribution of the interlaminar normal and shear stress in [90°/0°]s panel at z=-hk and 
z=0 are shown in Fig. 8. As said before, the prediction of Hooke’s law is not continuous at the 
interfaces and two values are presented for predictions of Hooke’s law: prediction by upper layer 
(z

+) and lower layer (z
). This figure shows the predictions of integral method (equilibrium 

equations) and also the predictions of Hooke’s law by upper numerical layer i.e., z
+ and under 

numerical layer i.e., z
. As seen, there is considerable difference between z

+, z
- and prediction 

by the integral method. It must be noted that in this panel b=2h and so it can be concluded from 
Fig. 8 that the thickness of the boundary layer is approximately about the thickness of the panel 
and the interlaminar stresses almost vanished for <0.50. 

 
 

 
Fig. 8 Distribution of z and z in the [90°/0]s panel at z/hk=-1, (R/h=5, 2b/h=4) 
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Fig. 9 Distribution of z through the thickness of the [90°/0]s panel, (Solid lines: equilibrium equation, 
Dashed lines: Hook’s law) (R/h=5, 2b/h=4) 
 
 
Physically, for example when [90°/0°/0°/90°] panel is subjected to extension in the axial 

direction as 0, 0° laminas and 90° laminas tend to contract in the transverse direction ( direction) 
as 120 and 210, respectively. It is clear that 12 is very bigger than 21 and so 120>210. So in 
the extension, the contract of 90° layers is less than the contract of 0° layers. The lamina in the 
laminate are banded in the interfaces and so this mismatch in the transverse contraction of the 
layers induces shear stress z in the interface of layers near the edges. This shear stress is so that it 
tries to match the contraction of 0° and 90° layers. For example in the [90°/0°/0°/90°] panel, 0° 
layers insert shear stress in the interface to the inner and outer 90° layers in order to increase their 
contraction and vice versa, 90° layers insert shear stress to 0° layers in the interfaces in the 
opposite direction to decrease the contraction of 0° layers. It is clear that shear stress in the 
surfaces on 90° layers is toward the free edge and on the 0° layers is in the opposite side. So in the 
right half of the panel which >0°, the induced shear stress z in the layer interface on 0° layers is 
toward the edge in order to decrease the contraction of 0° layers and vice versa on 90° layers this 
shear stress is in opposite direction in order to increase the contraction of 90° layers to match with 
the contraction of 0° layers. So in [90°/0°/0°/90°] panel in the right half of the panel which >0°, 
at the interface of first and second layer at z/hk=-1, i.e., 90°/0° interface the shear stress z is 
negative and at the interface of third and forth layers at z/hk=1, i.e., 0°/90° interface the shear stress 
is positive. It is seen in Fig. 8 that for >0° the model predicts negative z at z/hk=-1. Same 
interpretation could be presenter for other laminate sequence. The existence of the interlaminar 
normal stress near the edge can be explained by considering the free body diagram of a piece of 
the lamina in the laminate near the edges. For example z on the interface must be self equilibrium 
and so z is positive in free edge and negative in some other zone near so that its integration on the 
interface must vanish for free edge. 

 For more study on the distribution of the interlaminar normal stress in the vicinity of the free  
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Fig. 10 Distribution of z through the thickness of the [0/90°/0/90°] panel, (Solid lines: Equilibrium 
Equation, Dashed lines: Hook’s law) (R/h=5, 2b/h=4) 
 
 

edge of the composite panel, the distribution of the interlaminar normal stress z through the 
thickness of symmetric [90°/0°]s and un-symmetric [0°/90°/0°/90°] thick panel are shown in Fig. 
10. These Figure shows the average value of prediction of Hooke’s law, i.e., z=0.5(z

+z
) 

(dashed lines) and the prediction of the LWT by equilibrium equation (solid lines). It is seen that 
except at the interfaces of layers with different fiber orientation, the prediction of the Hooke’s law 
(average value) is in very close agreement with predictions of equilibrium equations. A slight 
difference is seen near the free edge near z=±hk. It is observed that the interlaminar normal stress 
in the 90° plies of the [90°/0°]s is positive and sharply changed at the interfaces to the negative 
value at 0° plies. It is seen that the pattern of the distribution of the interlaminar normal stress is 
different in [90°/0°]s and [0°/90°/0°/90°] panel. 

 
4.2.3 Parametric study (R/h and 2b/h effect)  
The effect of the radius to thickness ratio, R/h, on the distribution of the interlaminar stress in 

[90°/0°]s panel with 2b/h=4 is studied in Fig. 11 and Fig. 12. Fig. 11 shows the distribution of the 
z on z/hk=-1 of the [90°/0°]s panel for various radius to thickness ratio (R/h) ratio. This figure also 
contains the prediction of the [90°/0°]s plate with the same geometry by (Tahani and Nosier 2003). 
It is seen that by increasing the R/h ratio the distribution of the interlaminar stresses at the panel 
tends to the distribution for the stresses in the plate and for R/h=50 the distribution of z in panel 
and plate in coincides. It can be seen that for large R/h (thin panel), far from the free edge, z 
vanishes at the interior zone of the panel and for small R/h ratio, z is compressive at z=-hk. The 
effect of R/h ratio on the distribution of z in [90°/0°]s panel with 2b/h=4 are studied in Fig. 12. It 
is seen that R/h ratio has slight effect on the distribution of the interlaminar shear stress in the 
vicinity of the free edge. For R/h=50, the distribution of the z at the panel is same as the plate. It 
can be concluded that for large R/h the interlaminar stresses at panel and plate is very close and for 
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R/h>20 plate theories can be used for prediction of the interlaminar stresses in the panel with 
adequate accuracy. In Fig. 12, it is seen that the thickness of the boundary layer is about the 
thickness of the panel. 

The distribution of the interlaminar normal stress z and shear stress z in [90°/0°]s panel with 
R/h=5 and for various width to thickness ratio 2b/h are shown in Fig. 13 and Fig. 14, respectively. 

 
 

 
Fig. 11 Effect of R/h ratio on the distribution of z at z/hk=-1 of [90°/0]s panel, (2b/h=4) 

 

 
Fig. 12 The effect of R/h ratio on the distribution of z at z/hk=-1 of [90°/0]s, (2b/h=4) 
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Fig. 13 Effect of 2b/h ratio on the distribution of z at z/hk=1 of [90°/0]s, (R/h=5) 

 

 
Fig. 14 Effect of 2b/h ratio on the distribution of z at z/hk=1of [90°/0]s, (R/h=5) 

 
 

It is seen that by decreasing the width to thickness ratio of the panel, the distribution of the z and 
especially z developed to the interior zone of the panel. For large 2b/h the interlaminar stresses is 
confined in a small layer near the edge. 

In other to study the predictions of LWT in prediction of the inplane stresses, the distribution of 
 through the thickness of the [90°/0°]s panel in the vicinity of the free edge is shown in Fig. 15.  
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Fig. 15 Distribution of the in-plane stress  through the thickness of [90°/0]s panel, (R/h=2, 2b/h=2) 
 

 
Fig. 16 Distribution of z at z/hk=1 of [90°/0]s panel with simply supported B.C. (2b/h=4) 

 
 

It is seen that the  is tensile in 0° layers and is compressive in 90°layers. It is seen that  
vanished at the free edge unless near the interface of 0° and 90° layers. 

 
4.2.4 Simply supported boundary conditions 
The distribution of the interlaminar normal and shear stress in the panel which is subjected to 

simply supported boundary conditions at =±0 are investigated in this section. The distribution of  
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Fig. 17 Distribution of z at z/hk=1 of [90°/0]s panel with simply supported B.C. (R/h=2) 

 

 
Fig. 18 Distribution of z at z/hk=1 of [90°/0]s panel with simply supported B.C. (R/h=2) 

 
 

z at z/hk=1 of thick [90°/0°]s panel with simply supported B.C with 2b/h=4 and for various R/h 
ratio are shown in Fig. 16. As seen in the Figure, in the panel with simply boundary conditions, 
R/h has slight effect on the distribution of the interlaminar normal stress in the interior region and 
the value of z at the edge (=0) does not depend on the R/h.  

The distribution of the interlaminar normal and shear stress at z/hk=1 of [90°/0°]s panel with  
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Edge stresses analysis in thick composite panels subjected to axial loading... 

 
Fig. 19 Distribution of z at z/hk=1 of thick panels for free and simple B.C. (R/h=5, 2b/h=4) 

 

 
Fig. 20 Distribution of z at z/hk=-1 of thick panels for free and simple B.C. (R/h=5, 2b/h=4) 

 
 

simply supported B.C for R/h=2 and various 2b/h are shown in Fig. 17 and Fig. 18, respectively. It 
is seen that for simply supported edges, the interlaminar stresses exactly at the simply supported 
edge do not depend on the R/h and 2b/h ratio.  

The distribution of the interlaminar stresses in the panel with free edge and simply supported 
edge for [0°/90°]s and [90°/0°]s panel with R/h=5 and 2b/h=4 are shown and compared in Fig. 19 
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and Fig. 20. Fig. 19 shows the distribution of the interlaminar normal stress z at z=hk and Fig. 20 
shows the shear stress z at z=-hk of the panels with free edges and with simply supported edges. 
It is seen that z at simply supported edge is bigger than the free edge. The pattern of the 
distribution of the stresses is different in simply supported and free edge.  

 
 

5. Conclusions 
 
A displacement based LWT formulation is derived for analysis of thick laminated panel 

subjected to axial extension force or displacement. The governing equations and appropriate 
boundary conditions for cross-ply thick panel in the LWT are derived based on the principle of the 
minimum total potential energy. An analytical method is presented for solution of the governing 
equation of the panel for extension force and extension displacement and the governing equations 
are solved for free and for simply supported boundaries at the edges of the panel. The interlaminar 
stresses at the interfaces and in the vicinity of free and simply supported edges of panels are 
studied. An integration method is introduced for obtaining the interlaminar stresses and the 
interlaminar stresses in the panel are obtained by two methods: by employing the Hooke's law 
(stress-strain relations) and by integrating the elasticity equilibrium equation of the panel as an 
alternative method. The effect of the number of numerical layer on the convergence of the 
interlaminar stresses is investigated. The prediction of the Hooke’s law and prediction of 
Equilibrium equations are presented and compared in the numerical results by the results of the FE 
analysis and the results of thick plate. In the numerical results, the interlaminar stresses in the 
vicinity of the edges of the laminated symmetric and un-symmetric cross-ply composite panel are 
studied and the effects of R/h and 2b/h on the distribution of the stresses are investigated. It is seen 
that if the Hooke's law is used for evaluation of the interlaminar stresses the average value which 
is obtained from the upper and lower numerical layer has sufficient accuracy. It is concluded that 
for R/h>20, the plate theory can be used for prediction of the interlaminar stresses in the panel with 
adequate accuracy. 
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Edge stresses analysis in thick composite panels subjected to axial loading... 

Appendix A 
 
In the LWT, the rigidity of thick shell can be obtained by carrying out the integrations in (12). 

Considering the Lagrangian interpolation function (5), the rigidity vectors k
pqA and k

pqB  are 

obtained as 
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where in (A-1), rk=R+zk is radius of kth numerical surface. The rigidity matrix of the thick shell can 
be obtained by carrying out the integration in (12) as 
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and kj
pqD can be obtained as 
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 (A-3) 

and in (38) 
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Appendix B 
 

The square matrices [A] and the vector {F} appearing in (19) are given as follows 
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{ } {{0} , {0} , {0} ,{ } }T T T T TF c                                         (B-2) 

where the square matrices [0] and [I] are (N+1)×(N+1) zero and identity matrices, respectively and 
{0} is the zero vector with (N+1) rows and 
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It is to be noted that [ ]  is an (N+1)×(N+1) matrix whose elements are given by 
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where  is a very small number compared to rigidities 44 44 44 442

1 1 1kj kj jk kjA B B D
R R R
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22 23 23 332

1 1 1kj kj jk kjD B B A
R RR

    . The small artificial terms kj
jV  and kj

jW  are added to the 

right-hand side of (13), respectively, so that the eigenvalues in (23) will all be distinct (see 
(Ahmadi 2005) for more discussions on this subject).    
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