
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 57, No. 4 (2016) 703-716 

DOI: http://dx.doi.org/10.12989/sem.2016.57.4.703                                                                                       703 

Copyright ©  2016 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8               ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Influence of microstructure, heterogeneity and internal friction 
on SH waves propagation in a viscoelastic layer 

overlying a couple stress substrate 
 

Vikas Sharma
1 and Satish Kumar2a 

 
1
Department of Mathematics, Lovely Professional University, Phagwara, Punjab, 144411, India 

2
School of Mathematics, Thapar University, Patiala, Punjab, 147004, India 

 
(Received March 25, 2015, Revised January 8, 2016, Accepted January 15, 2016) 

 
Abstract.  In this paper, we have investigated shear horizontal wave propagation in a layered structure, 

consisting of granular macromorphic rock (Dionysos Marble) substrate underlying a viscoelastic layer of 

finite thickness. SH waves characteristics are affected by the material properties of both substrate and the 

coating. The effects of microstructural parameter “characteristic length” of the substrate, along with 

heterogeneity, internal friction and thickness of viscoelastic layer are studied on the dispersion curves. 

Dispersion equation for SH wave is derived. Real and damping phase velocities of SH waves are studied 

against dimensionless wave number, for different combinations of various parameters involved in the 

problem. 
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1. Introduction 
 

In the traditional approach, theory of seismic wave propagation was developed within the frame 

work of linear elasticity, but later developments showed that earth should be more correctly 

regarded as a dissipative medium. To encounter dissipation of energy considerations and to 

overcome the shortcomings of linear elasticity the near sub surface of earth is modelled as linearly 

viscoelastic material. The geological evidence of heterogeneity within the earth are provided by 

the wide variations of rocks erupted from volcanoes. The scattering of high frequency seismic 

waves also support the existence of small scale heterogeneity in the earth lithosphere. Hence, for 

characterising the internal microstructure of solid earth, heterogeneity and viscoelasticity of the 

material composition of the earth subsurface has to be taken into account.  
The study of guided SH waves has received much attention in the areas of non-destructive 

testing, exploration geophysics and in the field of seismology for estimating the damage 
capabilities of seismic waves. SH waves are horizontally polarised shear waves, where a single 
displacement component is involved. The particle motions are polarised in a single direction. SH 
waves are studied by many researchers under different conditions. Bhattacharya (1970) pointed out 
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some possible exact solution of SH-wave equation for inhomogeneous media. Schoenberg (1971) 
studied the transmission and reflection of plane waves at an elastic-viscoelastic interface. He 
concluded that some properties of these waves depend on the frequency of incident wave and the 
angle of incidence of impinging wave. Kaushik and Chopra (1984) studied the transmission and 
reflection of inhomogeneous plane SH waves at an interface between two horizontally and 
vertically heterogeneous viscoelastic solids. Chakraborty (1985) studied reflection and 
transmission of SH waves from an inhomogeneous half space. He showed effects of 
inhomogeneity on the reflection and transmission coefficients, graphically. Yang et al. (2008) 
investigated the transient response of SH waves in a layered half space with sub-surface and 
interface cracks. Borcherdt (2009) has studied the propagation of SH waves in viscoelastic media.  

Chattopadhyay et al. (2010) studied the propagation of SH waves in an irregular non 

homogeneous monoclinic crustal layer over a semi-infinite monoclinic medium. They studied the 

influence of depth of irregularity and non-homogeneity parameters on phase velocity. Chaudhary 

et al. (2010) studied the transmission of plane SH waves through a monoclinic layer embedded 

between two different self-reinforced elastic solid half spaces. Sahu et al. (2014) studied SH waves 

in viscoelastic heterogeneous layer over half space with self-weight. They studied the effect of 

gravity, heterogeneity and internal friction on propagation of SH waves in viscoelastic layer over a 

half space. They observed that heterogeneity of the medium affects the velocity profile of SH 

wave significantly. Kakar (2015) studied propagation of SH waves in heterogeneous layer laying 

over an inhomogeneous isotropic elastic half-space and observed that SH wave velocity increases 

with increases of inhomogeneity parameter.  

Inner microstructure of the material plays a dominant role in deciding the properties of the 

materials, but these microstructures were neglected in classical theory of elasticity. Classical 

theory works on the assumption that matter is continuously distributed without any defects. 

Experimental results have shown that the materials having inner atomic structure or 

microstructures, behave differently at micro level as compared to macroscale. So, there was a need 

for modifications in classical theory of elasticity or to come up with an alternate size dependent 

continuum mechanics, which accounts for the microstructure of the material and can reduce to 

classical theory for macroscale problems. 

Voigt (1887) was the first who generated the idea of couple stresses in the materials by 

assuming that infinitesimal surface element transmit both Cauchy stresses and couple stresses. 

Cosserat and Cosserat (1909) gave the mathematical model to analyse materials with couple 

stresses, by considering that the deformation of the medium is described by displacement vector 

and an independent rotation vector but the theory was not recognised at that time and later on 

many researchers like Toupin (1962), Mindlin and Tiersten (1962), Koiter (1964), Eringen (1968), 

Nowacki (1974) worked on this idea to explore microstructural effects in the material. Many 

problems of wave propagation in an elastic medium with microstructures under different 

conditions have been studied by applying couple stress theory. Sengupta and Ghosh (1974) studied 

the effects of couple stresses on wave propagation in elastic layer and they observed that couple 

stresses affect the velocity of propagation of waves in an elastic layer. Das et al. (1991) studied 

thermo viscoelastic Rayleigh waves under the influence of couple stress and gravity. They derived 

general equations of phase velocity for these waves and shown that it reduces to classical elastic 

Rayleigh waves in the absence of couple stresses, viscosity and gravity. Ottosen et al. (2000) 

studied Rayleigh waves by applying the indeterminate couple stress theory. Georgiadis and 

Velgaki (2003) showed the dispersive nature of Rayleigh waves propagating along the surface of a 

half space at high frequencies using couple stress theory and also tried to estimate the values of 
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microstructural parameters in couple stress theory. Akgoz and Civalek (2013) did the modelling 

and analysis of micro-sized plates resting on elastic medium using the modified couple stress 

theory. Chen and Li (2014) proposed a new modified couple stress theory for anisotropic elasticity 

containing three length scale parameters and developed composite laminated Kirchhoff plate 

models under this theory. Among various studies of SH waves, one of the prominent study is to 

study SH waves in the context of size dependent microcontinuum theory. One such attempt was 

made by Vardoulakis and Georgiadis (1997), they studied SH surface waves in a homogeneous 

gradient-elastic half space with surface energy. They showed the existence of SH waves in a 

homogeneous gradient-elastic half space. They concluded that SH surface waves may exist in a 

homogeneous half space if the problem is analysed by a continuum theory with appropriate 

microstructure. 
Hadjesfandiari and Dargush (2011), developed a size dependent couple stress theory for 

isotropic material involving two Lamé parameters (λ and μ) and one length scale parameter (η) 

called couple stress coefficient, which accounts for couple stress effects in the material. These 

three parameters can completely characterise the behaviour of an isotropic material. Here, in this 

theory the ratio 


  defines square of characteristic length l. One of the major problems in these 

size dependent elastic theories (Toupin 1962, Mindlin and Tiersten 1962, Koiter 1964, 

Hadjesfandiari and Dargush 2011) is the determination of these length scale parameters. Lakes 

(1991) observed that characteristic length would be undetectable for macroscopic mechanical 

experiment, but is relevant for studies involving composite and cellular solids. It may be 

comparable to the average cell size of the material in cellular solids or is of the order of spacing 

between fibres for the fibrous composites.  

Dionysos Marble is a white fine-grained metamorphic marble with a saccharoidal 

microstructure. Here, from the application point of view of this model, SH waves propagation is 

studied in the heterogeneous viscoelastic layer overlying a granular macromorphic rock (Dionysos 

Marble). The study is carried out by applying couple stress theory proposed by Hadjesfandiari and 

Dargush (2011), for observing the effects of microstructures of the substrate in terms of 

characteristic length along with other parameters of viscoelastic layer on the propagation of SH 

waves. 

 
 

2. Formulation and solution of the problem 
 

Consider a layer of viscoelastic medium of thickness H, lying over a couple stress half space 

with microstructures, characterised by an additional material parameter l, called characteristic 

length. The origin of the coordinate system O (x,y,z)  lies on the interfacial surface joining half 

space and layer of viscoelastic medium. Here, z axis is pointing vertically downwards into the half 

space, the interface between layer and half space is given by z=0 and the free surface of layer is 

z=−H. For SH waves, displacement components and body forces are independent of y co-ordinate, 

so if (u,v,w) are the displacement co-ordinates of a point, then u=w=0 and v is function of 

parameters x, z and t. 
 

2.1 Couple stress half space 
 
The basic governing equation of motion and constitutive relations of couple stress theory for  
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Fig. 1 Geometry of the problem 

 

 

isotropic material in the absence of body forces (Hadjesfandiari and Dargush 2011) are given by   
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Let    ( )   (      ) be the solution, where   is the wave number,      is the angular 

frequency and   is the phase velocity. Eq. (2) reduces to 
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Since in the couple stress elastic half space amplitude of waves decreases with increase in 

depth, so solution of above differential equation becomes 
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The constitutive relations in elastic half space are given by (Hadjesfandiari and Dargush 2011) 

Viscoelastic layer 𝐻 
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Here,    are the displacement components,     is the non-symmetric force-stress tensor,     is 

skew symmetric couple-stress tensor,     is Kronecker’s delta and      is permutation tensor and 
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Using Eq. (5) in Eq. (8), we get 
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2.2 Heterogeneous viscoelastic layer 
 
For the heterogeneity of the layer, we have assumed that properties of the medium change only 

in z-direction. For SH waves propagation in the x-direction and causing displacement in y-

direction only, we shall assume that   ⃗   (      ) and 
 

  
   

Equation of motion in the absence of body forces and under the above mentioned assumptions 

(Ravindra 1968) is given by 

    

  
 
    

  
   

    

   
                                          (11) 

where     .     
 

  
/
   

  
 and     .     

 

  
/
   

  
   

In the upper viscoelastic layer   ,    and    are assumed to be function of depth only and are 

given by 
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where   ,   ,    are the constant values of   ,    and    at the interface of layer and half space 

and   is an arbitrary constant having dimensions of inverse of length. 

For heterogeneous viscoelastic layer, Eq. (11) becomes 
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Now, assuming the solution      ( ) 
  (      ), equation of motion becomes 
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Solving this equation further, gives us  
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Solution to above differential equation is  

Y1=Acos(mz)+Bsin(mz), where A and B are the arbitrary constants and 
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2.3 Boundary conditions 
 
Boundary conditions to be satisfied at the free surface of the viscoelastic layer and at the 

interfacial surface between viscoelastic layer and couple stress half space are 
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Using above mentioned boundary conditions we get following four equations 
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Eqs. (18)-(21) will have a non-trivial solution, if determinant of coefficients of unknowns  ,  , 

  ,    vanishes. After applying this condition to the above system of equations, we obtain the 

following secular equations for the SH waves in an heterogeneous viscoelastic layer over a couple 

stress half space with microstructures 
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3. Numerical results and discussion 

 

For viscoelastic layer the various material parameters (Gubbins 1990), are             ⁄ ,  

            
      ⁄ , 

  

  
         ,   

  
  

  
. The material properties for couple stress half 

space made of dionysos Marble (Vardoulakis and Georgiadis 1997), are              ⁄ , 

Density =   = 2717 kg/  , the value of shear velocity comes out to be,    = 3350 m/s. To find the 

impact of characteristic length, different cases of characteristic length ( ), comparable with the 

internal cell size of granular macromorphic rock ( (    )) such as   = 0.0001 m,   = 0.0004 m,   
= 0.0008 m are considered.   

 
3.1 Effects of heterogeneity parameter 
 
To study the role of heterogeneity parameter on the characteristics of SH waves in the 

viscoelastic layer, dispersion curves are provided for three different values of heterogeneity  

709



 

 

 

 

 

 

Vikas Sharma and Satish Kumar 

 

Fig. 2 Variation of normalized real phase velocity (c/β1) of SH waves against normalized wave number 

(kH) for different values of heterogeneity parameter (αH) 

 

 
Fig. 3 Variation of normalized damping phase velocity (c/β1) of SH waves against normalized wave 

number (kH) for different values of heterogeneity parameter (αH) 

 

 

parameter (  =0.18, 0.54 and 0.72 for the curves R1, R2 and R3 respectively), by keeping fixed 

values of        , characteristic length parameter            and friction parameter 
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From Fig. 2, it can be observed that normalized real phase velocity decreases with the increase 

in normalized wave number before becoming asymptotically closer to 1, for all the considered 

values of heterogeneity parameter. It can be further seen that with the increase in heterogeneity 

parameter, real phase velocity decreases. Similar kind of trends, as seen for real phase velocity are 

also observed for normalized damping phase velocity of SH waves (Fig. 3). A closed survey of the 

demonstrated results shows that damping phase velocity is more sensitive to heterogeneity 

parameter (  ). 

 
3.2 Effects of friction parameter 

 
Dispersion curves, to demonstrate the role of friction parameter on SH waves in the viscoelastic 

layer are provided for three different values of friction parameter      ⁄              
                  , by keeping fixed value of heterogeneity parameter         and 

characteristic length parameter           .  

It is observed from Figs. 4-5 that normalized real phase velocity tends to decrease with the 

increase in friction parameter, but has an inverse impact on the normalized damping phase velocity 

and in both the cases effects are seen for the normalized wave number greater than 1.5.   
 

3.3 Effects of thickness of viscoelastic layer 
 
The influence of thickness( ), of viscoelastic layer on normalized real and damping phase 

velocities of propagation of SH waves are shown in Figs. 6-7. Fig. 6, shows the variation in 

normalized real phase velocity (   ⁄ ), against the normalized wave number (  ), for three  
 

 

 

Fig. 4 Variation of normalized real phase velocity (c/β1) of SH waves against normalized wave number 

(kH) for different values of internal friction parameter (μ1/η1) 
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Fig. 5 Variation of normalized damping phase velocity (c/β1) of SH waves against normalized wave 

number (kH) for different values of internal friction parameter (μ1/η1) 

 

 

Fig. 6 Variation of normalized real phase velocity (c/β1) of SH waves against normalized wave number 

(kH) for varying thickness of viscoelastic layer (H) 

 

 

different values of thickness,  =0.04m, 0.06m and 0.09m keeping fixed value of heterogeneity 

parameter        , friction parameter     ⁄      and characteristic length parameter 

        . It is observed that with the increase in thickness parameter  , normalized real phase 

velocity decreases. Normalized damping velocity of SH waves increases with increase in this  

0.5 1 1.5 2 2.5 3
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

kH

c
/ 

1

 

 


1
/

1
=7x105


1
/

1
=10x105


1
/

1
=80x105

DF2

DF3

DF1

DF2

DF3

DF1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

kH

c
/ 

1

 

 

H=0.04m

H=0.06m

H=0.09m

RH1

RH1

RH2

RH3

RH2
RH3

712



 

 

 

 

 

 

Influence of microstructure, heterogeneity and internal friction on SH waves propagation... 

 

Fig. 7 Variation of normalized damping phase velocity (c/β1) of SH waves against normalized wave 

number (kH) for varying thickness of viscoelastic layer (H) 

 

 

Fig. 8 Variation of normalized real phase velocity (c/β1) of SH waves against normalized wave number 

(kH) for different values of characteristic length parameter (l) 

 

 

parameter (Fig. 7) and again in both the cases, results are more prominent for wave number (  ) 
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Fig. 9 Variation of normalized damping phase velocity (c/β1) of SH waves against normalized wave 

number (kH) for different values of characteristic length parameter (l) 

 
 

3.4 Effects of internal microstructure of the substrate 

  
For observing the effects of internal microstructure of the underlying substrate, the variation in 

normalized real and damping phase velocities (   ⁄ ), against the normalized wave number (  ), 
are provided in Figs. 8-9, for three different values of characteristic length parameter l = 0.0001m, 

0.0004m 0.0008m, keeping fixed values of heterogeneity parameter        , thickness of 

viscoelastic layer         and friction parameter     ⁄     . It can be observed that both 

real (Fig. 8) and damping (Fig. 9) phase velocity of SH waves, increases with the increase in 

characteristic length ( ) of the material.  
 

 

4. Conclusions 
 

The propagation of SH waves is studied in viscoelastic layer overlying a couple stress elastic 

half space. It is observed that the microstructural parameter characteristic length, heterogeneity, 

internal friction and thickness of layer have significant effects on the propagation of SH waves. 

The numerical results are represented graphically for various combinations of parameters involved 

in the problem. Following conclusions can be drawn from the present analysis 

• Increase in characteristic length parameter involved in couple stress theory results in increase 

of phase velocity of the SH waves. The study has been made for both real and damping phase 

velocity.  

• Heterogeneity parameter involved in viscoelastic layer has prominent effects on the phase 

velocity profiles of SH waves. Both real and damped phase velocities decrease with the 

increase in this parameter.  
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• Real phase velocity is observed to be decreasing with the increase in both internal friction 

parameter and thickness of the viscoelastic layer for the wave number greater than 1.5. On the 

other side, these two parameters have an inverse effect on damping phase velocity for the same 

range.  

The theoretical consideration of study concerning microstructural effects of the substrate and 

effects of other parameters of viscoelastic layer on propagation of SH waves, may find possible 

applications in seismology, exploration geophysics, non destructive testing and in designing 

chemical and biochemical sensors coated with surface bound receptive layers, possessing 

viscoelastic properties which are used to detect compounds in the liquid or gases. 
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