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Abstract.  Under the interaction between dam body, dam foundation and external environment, the dam 

structural behavior presents the time-varying nonlinear characteristics. According to the prototypical 

observations, the correct identification on above nonlinear characteristics is very important for dam safety 

control. It is difficult to implement the description, analysis and diagnosis for dam structural behavior by use 

of any linear method. Based on the rescaled range analysis approach, the algorithm is proposed to identify 

and extract the fractal feature on observed dam structural behavior. The displacement behavior of one actual 

dam is taken as an example. The fractal long-range correlation for observed displacement behavior is 

analyzed and revealed. The feasibility and validity of the proposed method is verified. It is indicated that the 

mechanism evidence can be provided for the prediction and diagnosis of dam structural behavior by using 

the fractal identification method. The proposed approach has a high potential for other similar applications. 
 

Keywords:  dam safety; observed structural behavior; fractal feature; identification method; rescaled range 

analysis 

 
 
1. Introduction 
 

Dam body and dam foundation make up a complex dynamic system. Under the comprehensive 

influence of material and loads, the dam structural behavior presents the time-varying nonlinear 

characteristics (Su et al. 2007). It is very important for dam safety control to identify accurately 

dam structural behavior. According to the prototypical observations on deformation, seepage, 

stress, water level, temperature, rainfall, etc., some mathematical methods are usually adopted to 

analyze and identify the data characteristics in prototypical observations, and the statistical models 

are built to fit and forecast dam structural behavior. It can be regarded as an effective alternative 

tool for monitoring dam safety (Ranković et al. 2014). 

The conventional approaches, which are used to fit and forecast dam structural behavior, focus 

on the random characteristics in prototypical observations of dam structural behavior (Kao and 

Loh 2013, Karimi et al. 2010). Under the assumption that the observed data series obeys the 

normal distribution, some standard statistical methods are adopted to analyze the prototypical 
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observations of dam structural behavior. In fact, the observed data series does not obey strictly the 

normal distribution. Some nonparametric statistical methods need to be introduced to implement 

the data characteristics identification. Their analysis results are not affected whether the observed 

data series accords with normal distribution or not. 

With the development of nonlinear science since the 1990s, more and more research results 

show that the scale invariance widely exists in natural systems. Traditional deterministic and 

random research methods have shortcomings in identifying the long-term service behavior 

characteristics of the nonlinear systems such as dam engineering. The independence test methods, 

which are used to identify the short-term correlation of observed data, cannot always identify 

correctly the long-term correlate behavior characteristics (Huang et al. 2010). The fractal theory, 

which is adopted to analyze the nonlinear law of dam structural behavior, can have a better 

discovery for the ordered and inherent law contained in observed data series of dam structural 

behavior and reveal more comprehensively the complex time-varying characteristics of dam 

system. In the time respect, the fractal time series shows the self-similarity. The statistical self-

similarity can be scored with the similarity between different scale density functions, which has a 

unique advantage in describing the nonlinear systems such as dam engineering. Therefore, it is 

necessary to understand the dynamic characteristics in prototypical observations of dam structural 

behavior so that the reasonable data resources can be provided for analyzing and evaluating dam 

structural behavior based on the prototypical observations. 

So far the research on the fractal theory application of hydraulic structure engineering is 

insufficient (Su et al. 2012). The research interests are mainly focused on fractal dimension and 

fractal correlation dimension combining the fractal dimension with the chaos theory. Considering 

the field feature monitoring dam safety, the rescaled range (R/S) analysis method is introduced to 

analyze the data characteristics in prototypical observation series of dam structural behavior. This 

paper studies the identification algorithm and corresponding criterion on the fractal characteristics 

of prototypical observations of dam structural behavior. The proposed method is used to reveal the 

time-varying fractal characteristic rule in prototypical observations of dam structural behavior. The 

formation mechanism on fractal characteristics of observed dam structural behavior is analyzed 

preliminarily so that the evidence can be provided for forecasting and diagnosing the dam 

structural behavior with the methods in fractal theory. 

 

 

2. Key fractal characteristics 
 

2.1 Long-range correlation 
 

The long-range correlation of measured time series fluctuation is used to describe the 

continuous effects of the current conditional variances of measured values on the conditional 

variances in all forecast periods. 

A wide-sense stationary random process, X={Xt: t=0, 1, …}, is taken. r(k) represents the 

autocorrelation function, which is only related to k. r(k)=E[(Xi-μ)(Xi+k-μ)]/σ2, k=0, 1, 2, …, where μ 

and σ are the mean value and the variance of random process, respectively. Assume that the 

autocorrelation function of X can be described as follows. 
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where 0<β<1; L1 is the slowly varying function, namely the equation, 1)(/)(lim 11 


tLtxL
t

, is true  

for all x>0. Then X has the long-range correlation characteristics. 

 

2.2 Self-correlation 
 

The self-correlation of one system means that the characteristics of some structures or 

processes from different spatial scale or time scale are similar, or the local property or local 

structure of one system or structure is similar with the whole. 

For a wide-sense stationary random process, X={Xt: t=0, 1, …}, its autocorrelation function is 

r(k) and the autocorrelation function of its smoothing process, X(m)(k), is γ(m)(k). If the 

autocorrelation function of X can be described as follows 
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then X={Xt : t=1, 2, …} can be called the progressive second order self-similar process, namely, 

when m→∞, X={Xt : t=1, 2, …} is similar to the second-order statistics of X(m)(k) and is not 

relevant to the scale. The parameter H is also called the Hurst exponent. 

It can be seen from Eq. (2) that when k→∞ 

10  ,1])12(/[)(lim 22  


HkHHk H

m
                     (3) 

When H is taken as different values, there are the following cases. 

1) If 1/2<H<1, the progressive second order self-similar process is equivalent to the long-range 

correlation process, namely, the second order progressive self-similar process has the long-range 

correlation characteristics and is the special case of long-range dependence. The follows can be 

seen easily from Eq. (2). 

 
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k)(                                (4) 

That is, the sum of autocorrelation functions of random process with long-range correlation 

tends to infinity and the autocorrelation functions decrease slowly. For a series with persistence or 

enhancing trend, if the series is going up (down) in the former period, then it will continue to go 

up (down) in the next one. The long memory of time sequence does not change with time scale. 

The same statistical law exists between the time sequences for different time increments (days, 

weeks, months, years, etc. ), that is, the daily changes have the effects on the ones in the future and 

the weekly changes also have the effects on any week in the future. The time sequences have the 

key characteristics of fractal time series. The strength or persistence of enhancing trend behavior 

increases with H close to 1. 

2) If H=1/2, the random process is not the autocorrelation one, that is, the present situation does 

not affect the future. The familiar white noise series is so. In this case, the follows need be 

satisfied. 





k

k 0)(                                  (5) 

3) If 0<H<1/2, the random process, X={Xt: t=1, 2, …}, only has the short-range correlation 
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characteristics. In this case, the follows need be satisfied. 

 



k

k)(                                 (6) 

It is an anti-permanent sequence, that is, if the trend of one sequence goes up during one period, it 

will go down during next period. 

The interval, 1/2<H<1, namely that the long-range correlation of observed sequence is 

considered, is discussed emphatically in this paper. It can be seen from above analysis that the 

parameter H can reflect the fractal feature of one random process, namely the strength of self-

similar process. So the parameter H obtained with different methods has different effects on the 

identification result on fractal characteristics of time series. 

 

2.3 Scale invariance 
 

The scale invariance means that, for a local area chosen arbitrarily in fractal, its enlarged graph 

can still display the morphological characteristics of original graph. Namely, no matter the fractal 

is amplified or reduced, its properties, such as morphological characteristics, irregularity, complex 

degree, will not change. So the scale invariance is also called the expansion symmetry. The self-

similarity and the scale invariance are closely related. The structure with self-similarity must 

satisfy the scale invariance. The scale invariance of observed data series on dam structural 

behavior, such as deformation, stress and strain, shows that the development of dam structural 

behavior is a process under the interaction between internal and external factors. The past 

structural behavior has the influence on current and future status, which can be regarded as a 

biased random walk. 

 

 

3. Fractal characteristics identification method for observed data series on dam 
structural behavior 
 

It has been known that many natural systems have the typical scale invariance characteristics. 

The existence of scale invariance shows that the system development is a process under the 

comprehensive influence of internal and external factors. The influence of system events which 

have happened in the past will last to the future. It is a biased random walk. To describe and 

forecast reasonably the dam structural behavior, the long-range correlation of observed 

prototypical data series needs to be analyzed and identified deeply. To analyze the long-range 

correlation of time series, the Fourier transform for time series is usually implemented and the 

logarithmic relationship between energy and frequency is calculated. However, the Fourier method 

is not a good method for parameter estimation in the sense of statistical stability, because its 

parameter estimation is lack of robustness. At present, the long-range correlation of time series can 

be analyzed with the following methods such as the rescaled range (R/S) analysis method, the 

periodic chart method, the detrended fluctuation analysis (DFA) method, the absolute value 

smoothing method, the Higuchi method, the estimation maximization (EM) analysis method of 

wavelet domain (Chamoli et al. 2007, Chang et al. 2006, Shi et al. 2008, Weng et al. 2008). The 

analysis for observed data series on dam deformation is taken as an example in this paper. The 

rescaled range (R/S) analysis method is introduced to identify the long-range correlation of dam 

deformation behavior. 
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3.1 R/S analysis 
 

For a system with the random characteristics and normal distribution, it can be analyzed with 

some standard methods. However, for a nonlinear system with the characteristics between 

randomness and certainty, some nonparametric statistical methods need to be used. When the R/S 

analysis method is adopted to implement the characteristics analysis for observed data series on 

dam deformation, it is not necessary to assume the distribution feature of R/S measured time 

series, that is, the stability of R/S analysis results are not affected by the time series with normal 

distribution or non-normal distribution. It has important theoretical significance for revealing the 

long-range effect of dam deformation and exploring the law and persistent measurement of dam 

deformation. 

When Hinstein builds the random walk model on Brownian movement, it is known that the 

distance of random molecules is proportional to the square root of interval time. 

     
0.5R T=  (7) 

where R represents the covered distance; T is the time parameter. 

Because it is assumed in Eq. (7) that the mean value and variance for potential sequence are 0 

and 1, respectively, for a time series, Hurst rescales the local range R according to the local 

standard deviation and mean value of the subsequence. Above operation implemented can 

eliminate the possible influences of different measurement scales and guarantee the range 

comparability during different periods. The core idea in the R/S analysis method is as follows. The 

time scale of researched object is changed. The statistical changing law within the range of 

different scales is analyzed. So the law obtained from the small scale can be applied to the large 

scale, or the law obtained from the large scale can also be applied to the small scale (Couillard and 

Davison 2005, Wang et al. 2006, Rehman 2009, Yin et al. 2009, Ienco et al. 2013, Oldrich et al. 

2013, Vlastimil 2013). This method can distinguish the random sequence and non random 

sequence from fractal time series. Its general expression can be described as follows. 

      
( )

H
R S K n=  (8) 

where R/S represents the rescaled range value of time series studied; n is the interval length of time 

increment; K is a constant; H is the Hurst exponent. 

The calculation problem on Hurst exponent for time series of observed dam deformation is 

solved as follows. When a positive integer τ is given, the mean value of observed dam deformation 

time series, {ξ(t)}, t=0, 1, …, can be calculated as follows. 
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At the moment τ, the accumulation deviation of observed variable, X(t, τ), can be calculated as 

follows. 

  TtkTtX
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Its range, R(τ), can be obtained as follows. 
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Its standard deviation, S(τ), can be calculated as follows. 
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Then the rescaled range of every subsequence, namely R/S, can be calculated. For the different 

values of n, the different subsequences will be generated and the corresponding rescaled ranges 

will be different. 

The following result can be obtained by using the logarithm function on both sides of Eq. (8). 

( )
( )

( ) ( )log log log
R

K H n
S

t

t
= +

                      

(13) 

log (n) and log R(t)/S(t) can be regarded as the independent variable and the dependent 

variable, respectively. A line fitting the scattered points can be obtained by the least square 

estimation. H is the slope of above line. 

The follows can be known from the H exponent explanation under different cases in Section 2. 

The Hurst exponent can reveal the trend components of time series, namely the long-range 

correlation of time series. And the degree of above trend can be judged according to the value of 

H. Some research work has showed that the relationship between the Hausdorff dimension D and 

the Hurst exponent H can be expressed as follows. 

2D H= -
                                

(14) 

Namely the relationship between the scale transformation factor H and the fractal dimension for 

time series can be determined above. The fractal dimension is a quantitative parameter which can 

be used to describe the self-similarity of one fractal structure. And its value can reflect the 

complexity degree of one system. Eq. (14) also reveals that the Hurst exponent can be adopted to 

measure the jaggy degree of a time series to some extent. 

 
3.2 V statistic 
 

V statistic, which is proposed by Hurst, is a variable testing the series period. It can be 

expressed as follows. 

( ) 1/2

N
V R S N=

                            
(15) 

V statistic is originally used to test the stability of R/S analysis. It is later applied to the length 

estimation of long-term memory, which means that the system memory for initial conditions will 

disappear after one point. 

If the R/S statistic undergoes a uniform change with the time root (N1/2), H=0.5, the displayed 

graph of V statistic is level. If the process is sustained, namely the R/S statistic changes faster than 

the ratio of the time root (N1/2), H>0.5, the displayed graph of V statistic is upward-sloping. The 

time series is a long-term changing process. The corresponding result of Hurst exponent depends 

on the order of data arrangement. The exponent of the time series with changed order is less than 

that of the original series. If the process is unsustainable, the displayed graph of V statistic is 
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downward-sloping.  

Some inflection points, which represent the critical points on periodic cycle of time series, will 

appear in the V statistic graph. N corresponding to the critical point is the average cycle length of 

time series. 

 
3.3 Significance test of R/S analysis 
 

For the hypothesis of random walk, H=0.5 represents a gradual process. When the analyzed 

sample number is finite, the H value of random series always deviates 0.5. The H value of time 

series with random walk can be calculated as follows. 






 
1

1

5.0 /)()2/](/)5.0[(])/[(
n

r

n rrnnnnSRE                  (16) 

E(H) can be obtained using of the regression analysis for logE[(R/S)n]~logn. 

(R/S)n represents a random variable with normal distribution. So E(H) also obeys the normal 

distribution. The expected variance is Var(H)n=1/T, where T represents the total number of 

analyzed sample. 

For a significance test, its null hypothesis H0 is H=E(H), namely the series is a Gaussian 

process with random walk. Its alternative hypothesis H1 is H≠E(H), namely the series is a biased 

random walk with the characteristics such as persistence and memory effect. The hypothesis 

testing statistic t is 

( )E

1

H H
t

T

-
=

                               

(17) 

 
3.4 R/S analysis-based fractal characteristics identification process for observed data 

series on dam structural behavior 
 

According to the principle introduced above, a R/S analysis-based process identifying the 

fractal characteristics for observed data series on dam structural behavior needs to be implemented 

as Fig. 1. 

 

 

4. Case study 
 

One roller compacted concrete gravity dam is taken as an example. The maximum dam height 

is 113.0 m, the length of dam crest is 308.5 m, and the elevation of dam crest is 179.0 m. This dam 

as Fig. 2 consists of 6 dam sections which are numbered 1~6 from left bank to right bank. The 

normal storage water level and the check flood level are 173.00 m and 177.80 m respectively. The 

dam construction officially began in April 1998, and the first unit was put into operation on April 

29, 2001. The pendulum measurements as Fig. 2 were installed to measure the horizontal 

displacement of dam crest and dam body. The monitoring system was put into operation in 

October, 2002.  

In this paper, the fractal characteristics for observed horizontal displacement along the river of 

No. 4 dam section crest is analyzed with the proposed method. The sign (+) indicates the  
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Fig. 1 Fractal characteristics identification flowchart 
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Fig. 2 Layout of pendulum measurements observing horizontal displacement 

 

 

displacements downstream and the sign (-) indicates the displacements upstream. The 2105 

observations, which are obtained from January 1, 2003 to December 31, 2008, are taken as the 

analyzed samples. The 72 monthly mean values are used to implement the comparison. Fig. 3 

shows the time curve of horizontal displacement measured from January 1, 2003 to December 31, 

2008. Fig. 4 shows the time curve of monthly mean value. 
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Fig. 3 Time curve on observed horizontal displacement of No. 4 dam section crest 
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Fig. 4 Time curve on monthly mean value of observed horizontal displacement of No. 4 dam section crest 

 

 

The Hurst exponent is calculated. The V statistic graphs, which are shown in Fig. 5 and Fig. 6, 

are drawn with log(N) as X axis and log(R/S)n as Y axis, or with log(N) as X and the statistic log(V) 

as Y axis. The latter is same with the former in essence. It can be seen from Fig. 5 that the V 

statistic of daily measured value is divided into three sections obviously. According to above 

analysis in Section 3, the inflection points in the V statistic graph can be regarded as the critical 

points of periodic cycle. However, it can be seen from Fig. 6 that the V statistic of monthly mean 

value cannot reflect the second inflection point. The length of periodic cycle can be determined if 

enough displacement observations can be obtained and are relatively stable in the subsequent 

analysis. A detailed analysis is given as follows. 

(1) The first critical point in the V statistic graph on observed horizontal displacement of No. 4 

dam section crest, which is shown in Fig. 5, occurs on January 19, 2001 and its value is 0.6887 

mm. It can be seen from the V statistic graph that the V statistic decreases continuously before this 

point but increases gradually after that. The corresponding observed displacement also decreases  
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Fig. 5 V statistic graph on observed horizontal displacement of No. 4 dam section crest 
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Fig. 6 V statistic graph on monthly mean value of observed horizontal displacement 

 

 

gradually after this point. The general trend of dam deformation leads to the upstream until July 3, 

2004. The increasing trend of transitory deformation appears. The main cause resulting in the first 

critical point is that the measured values are unstable in the early installation of automatic 

instrument. The dam displacement increases gradually and has the cycle characteristics of 

upstream and downstream deformation after July 2004. However, the second critical point reflects 

the changing process of dam displacement from negative value to positive value. It can be known 

from above analysis for long range dependence in Section 3 that the dam deformation before or 

after the critical point is long-range correlated. And the trend of dam deformation can be judged 

with the preceding monitored results. However the data of this cycle has no relationship with next 

cycle. The V statistic graph can reflect well the dam deformation trend. 

(2) The V statistic value at the critical point in the V statistic graph on monthly mean value of 

observed horizontal displacement of No. 4 dam section crest, which is shown in Fig. 6, is -0.3166 

mm. The corresponding monthly mean value of observed horizontal displacement in September 

2005 is 0.4917 mm. It can be seen from the time curve on monthly mean value of observed 

horizontal displacement of No. 4 dam section crest, which is shown in Fig. 4, the monthly mean  
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Table 1 Hurst exponent of observed displacement for whole process 

Time series Hurst exponent Confidence interval Fitting variance Hausdorff dimension 

Daily observation 0.6927 [0.6629,0.7226] 0.5060 1.3073 

Monthly mean value 0.5920 [0.4122,0.7177] 0.3848 1.4080 

 
Table 2 Hurst exponent for trend segment 

Time series Hurst exponent Confidence interval Fitting variance Hausdorff dimension 

Daily observation 0.6824 [0.6478,0.7169] 0.6319 1.3176 

Monthly mean value 0.9608 [0.9018,1.0199] 0.9839 1.0392 

 
Table 3 Significance test results for Hurst exponent of observed displacement 

 
Daily observation Monthly mean value 

R/S E (R/S) R/S E (R/S) 

Estimated value 0.6927 0.5439 0.5920 0.7229 

Significance test 6.8254 -1.1107 

 

 

value of observed horizontal displacement in August 2005 is -0.1311 mm, while all observed 

horizontal displacement before that are less than 0 and there are the observations of horizontal 

displacement greater than 0 after that. That is, the observed horizontal displacement along the river 

of No. 4 dam section crest before the critical point is negative and the dam deformation is 

upstream. The observed horizontal displacement along the river of No. 4 dam section crest after 

the critical point is positive and the dam deformation is downstream. Finally the observations of 

horizontal displacement are possibly positive and negative and the general changing trend is 

stationary. 

(3) It can be seen from the comparative analysis between daily observations and their monthly 

mean values, that the dam deformation process can be depicted finely with the daily observations, 

however the slight hysteresis quality exists. The direction of continuous dam deformation can be 

determined precisely with the monthly mean values of observed displacements. Although the 

reaction on small circular in a cycle is not obvious, the monthly mean values can reflect well the 

general trend of dam deformation. 

(4) The follows can be seen from Fig. 5. The change rates for some V statistics are faster than 

the change rate of N, namely the graph is upward-sloping and the process is sustainable. The 

change rates for some V statistics are slower than the change rate of N, namely the graph is 

downward-sloping and the process is unsustainable. The graph is upward-sloping after that and 

tends to be stable finally with little change. Therefore, the long-range correlations of displacement 

time series at different times are different. Hereby, the R/S models can be built according to the 

data before and after the critical point respectively. Then the models are substituted into Eq. (13) to 

calculate the corresponding Hurst exponents which can be used to reveal the trend of dam 

deformation. 

The least square method is adopted to calculate the Hurst exponent for the whole process and 

the significance test of R/S analysis is implemented. The trend segments are selected to make a 

comparative calculation. The calculated results are listed in Tables 1-3. In Table 2, which lists the 

calculated results on Hurst exponent for the trend segments, the trend segment for the daily 
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observation consists of 876 data selected between the first critical point and the second critical 

point, and the trend segment for the monthly mean value consists of the 22 months data selected 

before the critical point. 

It can be seen from Table 1 and Table 2 that the Hurst exponents of daily observation are rather 

closed and without big difference, but the Hurst exponents of monthly mean value change greatly. 

It indicates that the selected trend segments of monthly mean value are not representative and 

cannot reflect the characteristics on whole time series. The Hurst exponents of daily observation 

and monthly mean value are both larger than 0.5. Above phenomenon illustrates that the dam 

displacement series has the significant long range dependence, namely it is a sequence with the 

persistent and term trend enhanced. 

The follows can be seen from Table 3. The statistic t receives the hypothesis test in the interval 

[-1.645, 1.645], namely the sequence is regarded as a random walk. So the daily observation with 

long series can be a biased random walk with the persistence and memory effect. The monthly 

mean value with short series is in an interval, so the results of H are characterized by no 

significance and bigger fluctuation and indistinctive long memory. 

 

 

5. Conclusions 
 

Under the interaction of dam body, dam foundation and external environment, the dam 

structural behavior presents the obvious nonlinear space-time characteristics. It is difficult to 

describe and diagnose the dam structural behavior only using the methods of linear science. The 

rescaled range analysis method is introduced to analyze the fractal feature on the prototypical 

observation series of dam structural behavior in this study. The approach identifying the fractal 

feature on observed dam structural behavior is presented. The formation mechanism on fractal 

characteristics of observed dam structural behavior is analyzed preliminarily. 

• It is indicated in this study that the prototypical observation series of dam structural behavior 

has obvious fractal features and typical long-range correlations. 

• When the rescaled range analysis method is used to analyze the fractal feature on the 

prototypical observation series of dam structural behavior, it is not necessary to assume the 

distribution characteristics of R/S measured time series. The stability of R/S analysis results is 

not affected by the distribution characteristics of time series. It has important significance for 

analyzing the long-range effect of observed dam structural behavior, revealing the changing 

law and determining the persistent measurement of dam structural behavior. 

• The application example illustrates that the long-range correlation exists in the prototypical 

observation series of dam structural behavior. However some problems need to be studied in 

the future with the more perfect fractal methods. For example, it needs be determined how long 

the long-range correlation can keep in the long observation time. It needs be revealed what the 

characteristics of observed data are in each cycle period. The more reasonable evidence can be 

provided for evaluating the dam structural behavior by solving above problems. 
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