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Abstract.  A new first-order shear deformation theory is developed for dynamic behavior of functionally 

graded beams. The equations governing the axial and transverse deformations of functionally graded plates 

are derived based on the present first-order shear deformation plate theory. The governing equations and 

boundary conditions of functionally graded beams have the simple forms as those of isotropic plates. The 

influences of the volume fraction index and thickness-to-length ratio on the fundamental frequencies are 

discussed.The accuracy of the present solutions is verified by comparing the obtained results with the 

existing solutions. 
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1. Introduction 
 

In material sciences, a functionally graded material (FGM) is a type of material whose 

composition is designed to change continuously within the solid. The concept is to make a 

composite material by varying the microstructure from one material to another material with a 

specific gradient. This enables the material to have good specifications of both materials. If it is for 

thermal or corrosive resistance or malleability and toughness, both strengths of the material may 

be used to avoid corrosion, fatigue, fracture and stress corrosion cracking. The transition between 

the two materials can usually be approximated by means of a power series. The aircraft and 

aerospace industry and the computer circuit industry are very interested in the possibility of 

materials that can withstand very high thermal gradients. This is normally achieved by using a 

ceramic layer connected with a metallic layer. The concept of FGM was first considered in Japan 

in 1984 during a space plane project. The FGM materials can be designed for specific applications. 

For example, thermal barrier coatings for turbine blades (electricity production), armor protection 

for military applications, fusion energy devices, space/aerospace industries, automotive 

applications, etc. 

Dynamic analyses of FGM structures have attracted increasing research effort in the last decade 
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because of the wide application areas of FGMs. For instance, Sankar et al. (2001) gave an 

elasticity solution based on the Euler-Bernoulli beam theory for functionally graded beam 

subjected to static transverse loads by assuming that Young’s modulus of the beam vary 

exponentially through the thickness. Aydogdu and Taskin (2007) investigated the free vibration 

behavior of a simply supported FG beam by using Euler-Bernoulli beam theory, parabolic shear 

deformation theory and exponential shear deformation theory. Zhong and Yu (2007) presented an 

analytical solution of a cantilever FG beam with arbitrary graded variations of material property 

distribution based on two-dimensional elasticity theory. Taj et al. (2013) conducted static analysis 

of FG plates using higher order shear deformation theory. Recently, Tounsi and his co-workers 

(Hadji et al. 2011, Houari et al. 2011, El Meiche et al. 2011, Bourada et al. 2012, Bachir Bouiadjra 

et al. 2012, Fekrar et al. 2012, Klouche Djedid et al. 2014, Ait Yahia et al. 2015) developed new 

shear deformation plates theories involving only four unknown functions. Bourada et al. (2015) 

study a new simple shear and normal deformations theory for functionally graded beams. Belabed 

et al. (2014) presented an efficient and simple higher order shear and normal deformation theory 

for functionally graded material (FGM) plates. Hebali et al. (2014) studied the static and free 

vibration analysis of functionally graded plates using a new quasi-3D hyperbolic shear 

deformation theory. Mahi et al. (2015) studied the bending and free vibration analysis of isotropic, 

functionally graded, sandwich and laminated composite plates using a new hyperbolic shear 

deformation theory. Tounsi et al. (2013) use a refined trigonometric shear deformation theory for 

thermoelastic bending of functionally graded sandwich plates. Ait Amar Meziane et al. (2014) 

proposed an efficient and simple refined theory for buckling and free vibration of exponentially 

graded sandwich plates under various boundary conditions. Zidi et al. (2014) study hygro-thermo-

mechanical loading for the Bending of FGM plates using a four variable refined plate theory. 

Bouderba et al. (2013) studied the thermomechanical bending response of FGM thick plates 

resting on Winkler-Pasternak elastic foundations. Hamidi et al. (2015) investigated a sinusoidal 

plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally 

graded sandwich plates. Bousahla et al. 2014 used a novel higher order shear and normal 

deformation theory based on neutral surface position for bending analysis of advanced composite 

plates. Bennoun et al. (2016) analyzed the vibration of functionally graded sandwich plates using a 

novel five variable refined plate theory. Ait atmane et al. (2016) studied the effect of thickness 

stretching and porosity on mechanical response of a functionally graded beams resting on elastic 

foundations 

In the present study, free vibration of simply supported FG beams was investigated by using 

new first shear deformation beam theory. This theory enforces traction free Boundary conditions at 

beams surfaces using shear correction factors. Then, the equations governing the axial and 

transverse deformations of functionally graded plates are derived based on the present first-order 

shear deformation plate theory. Analytical solutions for free vibration are obtained. Numerical 

examples are presented to verify the accuracy of the present theory. 

 

 
2. Theoretical formulations 
 

Consider a functionally graded beam with length L and rectangular cross section b×h, with b 

being the width and h being the height as shown in Fig. 1. The beam is made of isotropic material 

with material properties varying smoothly in the thickness direction. 
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Fig. 1 Geometry and coordinate of a FG beam 

 

 
2.1 Material properties 

 
The properties of FGM vary continuously due to the gradually changing volume fraction of the 

constituent materials (ceramic and metal), usually in the thickness direction only. The power-law 

function is commonly used to describe these variations of materials properties. The expression 

given below represents the profile for the volume fraction. 
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                              (1a) 

k is a parameter that dictates material variation profile through the thickness. The value of k equal 

to zero represents a fully ceramic beam, whereas infinite k indicates a fully metallic beam, and for 

different values of k one can obtain different volume fractions of metal.  

The material properties of FG beams are assumed to vary continuously through the depth of the 

beam by the rule of mixture (Marur. 1999) as 

  bbt PPPzP  CV )(                          (1b) 

where P denotes a generic material property like modulus, Pt and Pb denotes the property of the 

top and bottom faces of the beam respectively, Here, it is assumed that modules E, Gand v vary 

according to the Eq. (1b). However, for simplicity, Poisson’s ratio of beam is assumed to be 

constant in this study for that the effect of Poisson’s ratio v on deformation is much less than that 

of Young’s modulus (Delale and Erdogan. 1983, Benachour et al. 2011).  

 

2.1 Basic assumptions 
 

The assumptions of the present theory are as follows: 

- The origin of the Cartesian coordinate system is taken at the median surface of the FG beam. 

- The displacements are small in comparison with the height of the beam and, therefore, strains 

involved are infinitesimal.  

- The transverse normal stress σz is negligible in comparison with in-plane stresses σx. 

- This theory assumes constant transverse shear stress and it needs a shear correction factor to 

satisfy the plate boundary conditions on the lower and upper surface. 
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2.2 Kinematics and constitutive equations 
 

Based on the assumptions made in the preceding section, the displacement field can be 

obtained as 
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where u, w are displacements in the x, z directions, u0 is the neutral surface displacements. ϕ is 

function of coordinates x and time t. 

The strains associated with the displacements in Eq. (4) are 
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By assuming that the material of FG beam obeys Hooke’s law, the stresses in the beam become 

    
xx zQ   )(11  and 

xzSxz zQk   )(55                    (5a) 

kS is a shear correction factor which is analogous to shear correction factor proposed by 

Mindlin (1951). Using the material properties defined in Eq. (1b), stiffness coefficients, Qij can be 

expressed as 
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2.3 Equations of motion 
 

Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as Reddy (2002) 

  0
2

1


t

t

dtKU                                (6) 

where t is the time; t1 and t2 are the initial and end time, respectively; δU is the virtual variation of 

the strain energy; and δK is the virtual variation of the kinetic energy. The variation of the strain 

energy of the beam can be stated as 
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Where N, M and Q are the stress resultants defined as 
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The variation of the kinetic energy can be expressed as 
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Where dot-superscript convention indicates the differentiation with respect to the time variable 

t; ρ(z) is the mass density; and (I0, I1, I2) are the mass inertias defined as 
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Substituting the expressions for δU and δK from Eqs. (7) and (9) into Eq.(6) and integrating by 

parts versus both space and time variables, and collecting the coefficients of δu0, δϕ, and δw, the 

following equations of motion of the functionally graded beam are obtained 
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Eq. (10) can be expressed in terms of displacements (u0, ϕ, w) by using Eqs. (3), (4), (5) and (8) 

as follows 
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where A11, D11, etc., are the beam stiffness, defined by 
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3. Analytical solution 
 

The equations of motion admit the Navier solutions for simply supported beams. The variables 

u0, ϕ, w can be written by assuming the following variations 
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where Um, ψm, and Wm are arbitrary parameters to be determined, ω is the eigenfrequency 

associated with m th eigenmode, and λ=mπ/L. 

Substituting Eq. (13) into Eq. (11a)-(11c), the closed form solutions can be obtained from 
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t
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4. Numerical results and discussions 
 

In this section, various numerical examples are presented and discussed to verify the accuracy 

of present theories in predicting the free vibration response of simply supported FG beams. The 

FG beam is taken to be made of aluminum and alumina with the following material properties: 

Ceramic (PC: Alumina, Al2O3): Ec=380 GPa; ρc=3800 kg/m
3
; v=0.3; 

Metal (PM: Aluminium, Al): Em=70 GPa; ρc=2707 kg/m
3
; v=0.3; 

And their properties change through the thickness of the beam according to power-law. The 

bottom surfaces of the FG beams are aluminium rich, whereas the top surfaces of the FG beams 

are alumina rich.  

For convenience, the following dimensionless form is used:  

c

c

Eh

L 


2 
  

 

 
Table 1 Non-dimensional natural frequencies of simply supported homogenous beam versus thickness-to-

length ratio (k=0) 
c

c

Eh

L 


2 
  

h/L Euler-Bernoulli (Reddy1999) FSDT (Koochaki 2011) Present 

0.01 2.985526 2.986137 2.9861309 

0.0125 2.985232 2.985827 2.9858301 

0.0142 2.984340 2.985556 2.9855685 

0.0166 2.984865 2.985155 2.9851691 

0.02 2.983701 2.984505 2.9845053 

0.025 2.982588 2.983285 2.9832857 

0.033 2.979668 2.980657 2.9806569 

0.04 2.976570 2.978020 2.9780219 

0.05 2.971688 2.973193 2.9731933 

0.066 2.961235 2.962858 2.9628589 

0.1 2.931568 2.934044 2.9340444 
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The effects of thickness-to-length ratio h/L and the volume fraction index p on the natural 

frequency of simply supported FG beam is investigated, and the non-dimensional natural 

frequencies obtained using the new first shear deformation theory (NFSDBT) for homogenous 

beam (k=0) are compared with Euler-Bernoulli beam theory results (Reddy 1999) and the first 

order shear deformation (Koochaki 2011) in Table 1. 

As can be seen the results of the new first shear deformation beam theory is in good agreement 

with the Euler-Bernoulli beam and the first order shear deformation theory results. Also, the 

frequencies predicted by the two shear deformation theories are very close to each other. The 

values of the non-dimensional natural frequency of FG beams for various values of k based on the 

new first shear deformation theory are shown in Fig. 2. 

The natural frequencies decrease with increasing the thickness-to-length ratio h/L and volume 

fraction index k. 
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Fig. 2 The values of the non-dimensional natural frequency   of FG beams for various values of k 
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Fig. 2 Continued 
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5. Conclusions 
 

A New first shear deformation beam theory (NFSDT) is developed for dynamic behavior of FG 

beam. Based on the present theory, the equations of motion are derived from Hamilton’s principle. 

The effects of volume fraction ratio and thickness-to-length ratio on fundamental frequencies are 

investigated. The accuracy of the present theory is verified by comparing the obtained results with 

those reported in the literature. Finally, it can be concluded that the NFSDT is not only accurate 

but also simple in predicting the dynamic behavior of FG beam. 
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