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Abstract.  The paper is devoted to study a mesh-free analysis method of structural elements of 

engineering structures based on B-spline Wavelet Basis Function. First, by employing the moving-least 

square method and the weighted residual method to solve the structural displacement field, the control 

equations and the stiffness equations are obtained. And then constructs the displacement field of the structure 

by using the m-order B-spline wavelet basis function as a weight function. In the end, the paper selects the 

plane beam structure and the structure with opening hole to carry out numerical analysis of deformation and 

stress. The Finite Element Method calculation results are compared with the results of the method proposed, 

and the calculation results of the relative error norm is compared with Gauss weight function as weight 

function. Therefore, the clarification verified the validity and accuracy of the proposed method. 
 

Keywords:  structural analysis; moving-least square method; meshless local MLPG method; B-Spline 

wavelet weight function 

 
 
1. Introduction 
 

Currently, the Finite Element Method (hereafter abbreviated as FEM) is one of most important 

tools in numerical analysis. FEMs have been widely applied to assess, process and simulate the 

structural deformation, stress and fatigue and so on (Cui et al. 1998, Na and Karr 2013, Norwood 

and Dow 2013, Senjanovic et al. 2013). However, FEM has some disadvantages because of its 

own characteristics. Its calculation is not accurate enough and sometimes even interrupted while 

processing the displacement and stress fields in high-gradient regions. In order to solve this 

problem, FEMs adopt the method of refining the mesh (subdivision) or employ higher-order unit 

in the problem domain, which requires FEMs to be strong adaptive approach. Consequently, the 

pre-processing and post-processing works will increase and relatively the computational efficiency 

will rapidly reduce. In fact, FEMs can't absolutely eliminate the previous problems arising from 
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the structural deformation and stress in high-gradient regions. 
As an alternative numerical analysis method to FEMs, the mesh-free (mesh-less or element-

free) methods have been attracting much more attention (Tezduyar 2003, Belytschko et al. 1996, 

Liu et al. 1999, Atluri and Shen 2005, Oden et al. 1998) since two decades ago. Based on 

constructing a serial of discretization nodes, mesh-free method solves the problems by 

constructing the field approximation function. Compared with conventional finite element 

methods, the mesh-free methods don't need any meshing background. It is easy for us to increase 

or decrease nodes without any additional dealing with topology information between nodes in the 

course of calculation. Therefore the mesh-free method is particularly suitable for adaptive analysis 

and calculation. Moreover, it is unnecessary to create mesh for the structures. Thus it can save time 

and computing resources in generating and processing mesh. Mesh-free methods are widely 

involved in many fields (Liu and Gu 2000, He et al. 2006, Duan and Wang 2013, Johnson et al. 

2002), such as moving boundary problem, aviation materials, high-speed collision, dynamic crack 

propagation, molding, jointed rock analyzes, etc.  
Actually, the calculation accuracy of mesh-free method is impacted by its own characteristics, 

such as the density of nodes, the kind of basis function, its order and the scale of supporting 

domain and so on. It is paramount how to select the basis function and decide the scale of the 

support domain to solve the problem (Liu 2003). In addition, the scale of influence domain 

(support domain) is eventually determined by the fitting weight function. It is therefore vital to 

select a suitable weight function for approximate solutions and real solutions of approximation 

degree (Atluri and Zhu 1998). The paper presents a mesh-free analysis method that employs B-

spline wavelet weight function to assess the membrane (in-plane) structures according to above 

situation mentioned. Chen et al. (2015) presented a mesh-free analysis of the Ship Structures 

Based on Daubechies Wavelet Basis theory. This thesis by Chen et al. (2015) directly used DB 

wavelet analysis structure to construct the approximation function of the field, while the B-spline 

wavelet was regarded as a weight function in MLS employed in this thesis. Based on meshless 

local Petrov-Galerkin method, the paper employs m-order B-Spline wavelet basis function as the 

weight function. Numerical illustrative examples verified the validity of the proposed MLPG for 

the structures analysis. 

 

 

2. System equations of structural elements by MLPG 
 

In ship structure analysis, the thin plate structure is often simplified as a membrane structure in 

order to simplify the analysis. In this section, the meshless local Petrov-Galerkin method (MLPG) 

is applied to analyze the membrane. 

 
2.1 Governing equation 
 

For the discretized plane structure, its system equations are given on the basis of two-

dimensional elastic theory 

,ij i i σ b 0 ,                                 (1) 

Where i and j are relatively the two directions of the 2-dimensional plane. σij,i denotes 

the stress component along the i direction, and bi is the body force component in the i direction.  

Ω is defined as the problem domain, and Γ is defined as the boundary of Ω. 
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The essential boundary condition is ui= ūi, and Γu is the essential boundary. 

The natural boundary condition is σijni = it , Γt is the natural boundary, and ni is the j-th  

component of unit outward normal vector of the natural boundary condition. 

By employing the weighted residual method (Johnson et al. 2002), the strong form of 

differential equations of the system equations with respect to Node I can be obtained as following 

  


Q uQ

dWdW IiiIiiij 0ˆ)(ˆ)( , ΓuuΩbσ                     (2) 

Where Ŵ is a weight function, ΩQ is the integration domain of the node I, ΓQ is the its boundary 

and α is a penalty factor. In addition, 
uQ

Γ  is the overlap of the integration domain ΩQ and the 

essential boundary Γu. 

According to Eq. (2), for the I node, its system equation can be established while integrating in 

its integration domain. Thereby, the system equation of each node can be obtained in its integration 

domain by employing Eq. (2). And the system equations can be obtained for all of the discrete 

nodes. Assembling these system equations, the overall system equations of the problem domain 

are established. 

For each node, the shape function is obtained by moving-least squares method (MLS) in its 

supporting integration domain, and the approximation function of displacement field is obtained in 

the problem domain (Zienkiewicz 1989). 

     
1

N
h T

I I

I

u u


  X Φ X u X                        (3) 

In which ΦT(x) is the matrix of shape function connecting the approximation function of the node 

according to MLS. uI is the parameter value of the discrete node I. N is the number of the node in 

the supporting domain Ωs of the integration point. 

According to elastic stress-strain relations, there is 

0

0
n n

h

j j j j

j j

x

y

y x

 
 
 
 

    


 
  
 
  

 σ Dε DLu D Φ u D B u                (4) 

Where D is the plane-stress constitutive matrix, B is the strain-displacement matrix, and Bj is 

defined as follows, 

,

,

, ,

0

0

j x

j j y

j y i x





 

 
 

  
 
 

B . 

Supposed IV̂  is the Jacobian matrix of the weighted function IŴ , Eq. (2) can be derived as 

following 
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    


Q uQ uQ

III NσσdWudΓWσdΩV ˆˆˆ   

    


tQ u Q

III bdΩWdΓuWdΓtW ˆˆˆ                      (5) 

Where 
tQ

Γ is the overlapping part of the integration domain ΩQ and the natural boundary. N is 

the unit outward normal matrix of the natural boundary. 

 

2.2 Stiffness matrix 
 

For Node I, substituting the node system equation Eq. (3) and Eq. (4) into the governing 

equation Eq. (5), it can be shown as 

      


n

j

n

j

n

j

jjIjjIjj
T
I

uQ uQQ

dΓuBNWdΩuΦWdΩuBV ˆˆˆ   

    


tQ uQ Q

III bdΩWdΓuWdΓtW ˆˆˆ                    (6) 

Eq. (6) can be shortened as the following matrix form 

I IK u = F ,                                 (7) 

Where 

       


n

j

n

j

n

j

jIjIj

n

j

T
IIjI

uQ uQQ

dΓBNWdΩΦWdΩBVKK ˆˆˆ  , 

and     


tQ uQ Q

IIII bdΩWdΓuWdΓtWF ˆˆˆ  .  

By assembling these nodes discrete system equations, the overall system governing equations 

of the problem domain can be expressed as 

Ku = F .                                  (8) 

In MLS technique, the supporting domain of the node is compactly supported. Therefore, the 

overall stiffness matrix K is the banded sparse matrix. Taking such a matrix form, can greatly 

reduce the amount of computation. 

 

 

3. B-spline wavelet basis function 
 

In MLPG method, employing the moving least squares method (MLS) is the key to solve the 

approximating function of the displacement field. In mesh-free method, the weight function is 

required as a compactly supporting function, and it is consecutive and differentiable, monotone 

decreasing and normal compactly in solving domain and so on (Yang and Li 2005). The wavelet 

function has variable scale capacity, which can express the function at different resolution levels. 

Wavelet function's corresponding basis function (wavelet basis) not only has shock, attenuation but 

also compact supporting or approximate compact supporting (Long and Hu 2003, Mallat 
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1989).That is to say, B-spline function is segmentation smooth, local differentiable and linear 

combination (Qin 2012).  

Therefore, the B-spline wavelet function with time frequency local characteristic is the most 

similar Gauss function as the weight function among mesh-free method. Also its compact 

supporting nature is superior to Gauss function. This advantage has guaranteed its phase will not 

be distortion in the course of processing computation. The paper constructs the wavelet basis 

function as the weight function for MLPG method by combining the respective advantage of 

wavelet function and B-spline function. 

For the m-order B-spline function space, it is constructed of the spline functions from the 

sequence of the nodes serial  
2 2 1

1

j m
j

k k m
x

 

 
（the total amount of the nodes is 2j+2m−1, and the 

sequence of the node serial  
2 2 1

1

j m
j

k k m
x

 

 
are defined by the reference (Yang and LI 2005) 

    

1 2

1

2 1 2 2 2 1

0

2 , 1,2 , , 2

1j j j

j j

m m

j j j

k

j j j

m

x x

x k k

x x x

   

   

   


 
      

(9) 

According to Eq. (9), the j-th scaling approximation space 
 0,1

JV of the m-order local 

supporting nesting can be inferred in interval [0,1], and its basis function is expressed as 

     
   ,

,

2 , 1, 2, ,2 1

sup ,

j j j

m k m

j j j

m k k k m

B x N k k m m

pB



  

        


   

 (10) 

Where Nm(x) is the basis spline function. 

In the restricted interval [0,1], if the wavelet scaling function    , ,

j j

m k m kB    is satisfied, the 

condition 2j≥2m−1 should be satisfied. So the m-order B-spline scaling function  ,

j

m k   for any 

scaling j can be inferred as following (Cui and Quak 1993) 

      

 

 

 

,

, ,2

,0

2 , 1, 2, , 1

1 2 , 2 1, ,2 1

2 2 , 0,1, ,2

j

l j l

m k

j l j l j j

m k m m k

l j l l j

m

k m m

k m

k k m

 

   

 





 

 

      



     


  

 (11) 

The wavelet function  ,

j

m k   corresponding to  ,

j

m k   can be written as 

      

 

 

 

1

,

, ,2

,0

2 , 1, 2, , 1

1 2 , 2 2 2, ,2

2 2 , 0,1, , 2 2 1

j

l j

m k

j l j l j j

m k m m k

l j l l j

m

k m m

k m m

k k m

 

   

 





 

 

      



     


   

 (12) 

The wavelet compactly supporting space in local field can be expressed as 
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 

 

 ,

2 , 2 1 2

sup 0, 2 1 2

2 ,1

j j

j j

m k

j

k m k

p m k

k

 

 





   

    

  

                    (13) 

The paper selects 3-order B-spline wavelet function, namely m=3. The basis expression 

formulation of 3-order B-spline wavelet function can be written as 

 

   

     

     

   

3

3 3

3 3

3

2 2, 1

2 4 1 1,0
1

2 4 1 0,1
6

2 1,2

0 2

x x

x x x

x x x x

x x

x



    

     


     


 




                  (14) 

Because the selection of the weight function directly affects the accuracy of the meshless 

method, it is supposed to be matched in the selection process. In order to make 3-order B-spline 

wavelet meet the selection principle, according to the characteristics of the wavelet function, Eq. 

(14) can be made the transformation as, 

 

  

    

    

   

3

3 3

3 3

3

2 2, 1

2 4 1 1,0
1

2 4 1 0,16

2 1,2

0 2

x a b x

x a b x a b x

x x a b x a b x

x a b x

x



         
               


               
     
 

           (15) 

Where, a,b are constant. In general, the value range of a is (−1,1), and the value range of b is 

(1,2). Their specific value need to be adjusted as per the accuracy of the requirements to make 

approximation analytical solution. 

 

 
4. Essential boundary conditions 
 

Due to the meshless shape function ΦT(x) not satisfying the Kronecker delta condition, the 

parameter of node I is not the true displacement in the stiffness equation Eq. (7), so the essential 

boundary conditions can't be directly applied like the finite element method. Chen et al. (1996) 

introduced the Full transformation method to enforce the essential boundary conditions. The 

stiffness equations are re-corrected in accordance with the Full transformation method. The basic 

principle of the Full transformation method is described as following. 

Considering approximate displacement is 

   
1

N
h

I I

I

u x x u


                              (16) 
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The true displacement is 

   
1

N
h

I I

I

u u x x u


   Φu                        (17) 

Where 

     

     

     

1 1 2 1 1

1 2 2 2 2

1 2

n

n

n n n n

x x x

x x x

x x x

  

  

  

 
 
 
 
 
  

Φ  

So there is 

u = Λu                                  (18) 

Where Λ=Φ-1 

The system governing equations are expressed as 

 T T
ku = F Λ KΛu = Λ FΛ                         (19) 

Denoting K=ΛT
TKΛ and 

T
F = Λ FΛ , for node I, Eq. (8) can be re-written as 

I IK u = F
                               (20) 

 

 

5. Numerical examples 
 

In order to verify the validity of the proposed method of the paper, there are two numerical 

illustrative examples, one is the plane beam structure with openings, and the other one is the 

structure with opening hole. In following examples, the Young’s modulus is E=2.1×105 MPa, and 

Poisson’s ratio is μ=0.3. 

In the paper, the structure is discretized by the method of automatic discretization, and the 

generation of the initial node is randomly distributed, and it is not uniform. While calculating the 

parameters of each discrete node and the approximate field function, the paper presented method 

employing 3-order B-spline wavelet as the weight function, and the influence domains of the 

weight function are taken as the supporting domains of the nodes. 

In the presented method, the rectangular domain is taken as the influenced domain of the B-

spline wavelet weight function and the influence domain of the B spline wavelet power function in 

the moving-least square method. The length of the rectangular region is defined as following 

q e

i e

r d

r d









                                  (21) 

Where rq is the length of integration domain, ri is the length of influence domain, and de is the 

shortest distance among nodes. α is the length coefficient of integration domain, and it is taken 1.5. 

β is the length coefficient of influence domain, and it is taken 3.0. Integration domain is 

subdivided into 2×2 integration grids, and each grid takes 3×3 Gauss integration points. 
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Fig. 1 Typical beam structure under uniform pressure 

 

  

(a) Mesh-free discretized node figure (b) ANSYS meshing figure 

Fig. 2 Arrangement of the node with Mesh-free and FEM 

 

 

(a) Mises-stress cloud figure with MLPG (b) Mises-stress cloud figure with ANSYS 

Fig. 3 Mises-stress cloud figure with MLPG and FEM 

 

 

Fig. 4 Total deformation of the middle section along the X-direction 

 

 

5.1 Beam structure 
 

Simplifying the ship beam structure as shown in Fig. 1, one side is fixed, and the other side is 

free. The top edge is subjected to a uniform pressure p=10 N/m.  

Fig. 2(a) is a discretized node figure through a four-step adaptive algorithm employing the 

proposed mesh-free method. The initial distributed nodes are 90 points, and the integral 

background meshes are 351 points. After a four-step adaptive analysis, the number of nodes 

reaches to 387, the integral background meshes are 1210. Fig. 2(b) is the meshing map employing 

ANSYS (FEM). 

The mises-stress map is shown as Fig. 3(a) with the presented MLPG. Comparing with the 

calculation result of the finite element software ANSYS, which the stress map is shown as Fig. 

3(b), the stress concentration regions are consistent. 
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Fig. 5 Mises-stress of the middle section along the X-direction 

 

 

For simplicity, only the total deformation of middle section along the X-direction and mises-

stress of middle section along the X-direction are compared between the proposed method and 

FEMs (ANSYS), as shown in Fig. 4 and Fig. 5 under the wavelet basis Scale=2.5. (In the figure, 

FEM means the solution of the FEM, ANS denotes the analytical solution, and MLPG denotes the 

solution with the proposed method). There are two conclusions from the compared figure: First, 

FEM and MLPG computation relative error norm all are below 5%. Secondly, the proposed 

method is closer analytic solution compared to FEM method. Obviously, this paper proposed 

method has very high computation accuracy. 

In order to further analyze the correctness and precision of the method, under the condition of 

selecting the same scale parameter, there shows the relative error norm of the displacement and 

stress with Gauss weight function, and compares them with the proposed method.  

The relative error norm of the displacement Lu is defined by 

   

 

2

2

N
h

I I

I
Nu

I

I

u x u x

L

u x

  




                     (22) 

The relative error norm of the stress Lσ is defined by 

   

 

2

2

N
h

I I

I
N

I

I

x x

L

x


 



  




                   (23) 

The results of calculation are shown as Table 1. 

Table 1 shows as the relative error norm with the proposed method under various scales, and it 

is described with the error curve as Fig. 6. From Table 1 and Fig. 6, conclusion can be drawn that 

computation accuracy is affected by the scale parameter. When 3-order B-spline wavelet function 

is used as a weight function, the results are better than Gauss weight function as weight function.  
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Table 1 The relative error norm with 3-order B-spline wavelet and Gauss weight function 

Scale 2 2.1 2.5 2.8 3 3.5 4 

Lu-B 4.7734 3.4507 0.6516 3.3632 3.4613 1.5705 2.3853 

Lσ-B 4.9048 3.4261 1.3118 3.3479 3.4579 1.6858 2.347 

Lu-G 12.6074 15.568 7.1611 1.0792 5.5468 9.7283 4.7734 

Lσ-G 13.0931 15.6777 7.2242 2.1391 6.0378 9.7422 4.9048 

 

 

Fig. 6 The relative error norm with 3-order B-spline wavelet and Gauss weight function 

 

 

Fig.7 The plate with a circular opening 

 

 

In addition, the proposed method can achieve a good accuracy in the case of small support domain, 

namely, while Scale=2.5, it can achieve a higher fitting. 

 

5.2 Structure with opening hole 
 

Simplifying the structure as the flat plate as Fig. 7 shown, the two edges are free, and the other 

two edges are subjected to a uniform tension q=1 MPa. The plate has a circular opening hole in the 

center.  

290



 

 

 

 

 

 

A mesh-free analysis method of structural elements of engineering structures... 

  

(a) Mesh-free discrete node graph (b) ANSYS meshing graph 

Fig. 8 Arrangement of the node with Mesh-free and FEM 

 

  

(a) Mises-stress cloud figure with MLPG (b) Mises-stress cloud figure with ANSYS 

Fig. 9 The Mises-stress map with MLPG and FEM 

   

 

Fig.10 Mises-stress of the middle section along the Y-direction 

 

 

Fig. 8(a) is a discrete node figure through a four-step adaptive algorithm employing the 

proposal mesh-free methods. The initial evenly distributed nodes are 379 nodes, the integral 

background meshes are 1390 points, after a four-step adaptive analysis, the number of nodes reach 

to 1323, the integral background meshes are 2515. Fig. 8(b) is the meshing map employing 

ANSYS (finite element method). 
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The mises-stress map is shown as Fig. 9(a) with the presented MLPG. Comparing with the 

calculation result of the finite element software ANSYS, which the stress map is shown as Fig. 

9(b), the stress concentration regions are consistent. 

Further comparison with the results of the finite element method (ANSYS), for simplicity, only 

compares the total deformation of middle section along the X-direction and mises-stress of middle 

section along the Y-direction, as shown in Fig. 10 and Fig. 11. The largest relative error norm of 

the displacement with FEMs (ANSYS) is 2.5%, the largest error norm of the mises-stress is 2.4%, 

but the largest relative error norm of the displacement employing the proposed method is 0.3%, 

and the largest error norm of the mises-stress is 0.28%. Obviously, the accuracy of the method 

presented in the paper is superior. 

By the analysis of results following conclusions can be drawn: firstly, the proposed method has 

good accuracy; secondly, the scale selected has a great influence on the computational accuracy of 

the method presented. In order to further analyze the correctness and precision of the method, 

under the condition of selecting the same scale parameter, we show the relative error norm of the 

displacement and stress with Gauss weight function, and compare them with the presented 

method.  

Table 2 is shown as the relative error norm with the proposed method under various scales, and 

it is described with the error curve as Fig. 12. From Table 2 and Fig. 12, we can get conclusions 

that computation accuracy is affected by the scale parameter. When 3-order B-spline wavelet 

function is used as a weight function, the results are better than Gauss weight function as weight 

 

 

 

Fig. 11 Total deformation of the middle section along the X-direction 

 
Table 2 The relative error norm with 3-order B-spline wavelet and Gauss weight function 

Scale 2 2.1 2.5 2.8 3 3.5 4 

Lu-B 10.6184 1.8542 7.9014 16.4551 4.334 7.5362 3.3685 

Lσ-B 11.1394 3.5209 8.6167 17.0283 4.7365 8.0348 3.8175 

Lu-G 15.6284 9.8024 7.9167 4.3211 5.6237 7.2018 10.1034 

Lσ-G 15.3478 9.1273 8.8766 4.0325 5.7892 8.0121 11.2089 
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Fig. 12 The relative error norm with 3-order B-spline wavelet and Gauss weight function 

 

 

function. In addition, the proposed method can achieve a good accuracy in the case of small 

support domain, namely, while Scale=2.1, it can achieve a higher fitting. 

 

 

5. Conclusions 
 

The paper presents a mesh-free method of the ship structures based on meshless local MLPG 

method. Based on meshless local Petrov-Galerkin, employs m-order B-Spline function as the 

wavelet basis function to construct the approximating function of the membrane structures. The 

general applicability of the presented approach has been demonstrated through the two application 

examples, namely the plate beam structure and the structure with circular opening. It is shown to 

be accurately predicated. The results show good agreement with FEMs (ANSYS) and verify the 

presented method is valid. The paper calculated the relative error norm of the displacement and 

stress with Gauss weight function, and then compared them with the proposed method. The results 

are more satisfying than Gauss weight function. Nevertheless, the proposed method can achieve a 

good accuracy in the case of small support domain. The proposed approach provides significant 

computational benefits and feasible method to deal with the analysis of the membrance structures. 
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