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Abstract.  In this paper, a new first shear deformation plate theory based on neutral surface position is 

developed for the static and the free vibration analysis of functionally graded plates (FGPs). Moreover, the 

number of unknowns of this theory is the least one comparing with the traditional first-order and the other 

higher order shear deformation theories. The neutral surface position for a functionally graded plate which 

its material properties vary in the thickness direction is determined. The mechanical properties of the plate 

are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of 

the volume fractions of the constituents. Based on the present shear deformation plate theory and the neutral 

surface concept, the governing equations are derived from the principle of Hamilton. There is no stretching-

bending coupling effect in the neutral surface based formulation. Numerical illustrations concern flexural 

and dynamic behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for 

varying ceramic volume fraction, length to thickness ratios. The accuracy of the present solutions is verified 

by comparing the obtained results with the existing solutions. 
 

Keywords:  functionally graded material; first shear deformation theory; neutral surface position; volume 

fraction 

 
 
1. Introduction 
 

Nowadays functionally graded materials (FGMs) are an alternative materials widely used in 

aerospace, nuclear, civil, automotive, optical, biomechanical, electronic, chemical, mechanical and 

shipbuilding industries. In fact, FGMs have been proposed, developed and successfully used in 

industrial applications since 1980‟s (Koizumi 1993). Classical composites structures suffer from 

discontinuity of material properties at the interface of the layers and constituents of the composite. 

Therefore the stress fields in these regions create interface problems and thermal stress 

concentrations under high temperature environments. Furthermore, large plastic deformation of the 

interface may trigger the initiation and propagation of cracks in the material (Vel 2004). These 
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problems can be decreased by gradually changing the volume fraction of constituent materials and 
tailoring the material for the desired application. In fact, FGMs are materials with spatial variation 
of the material properties. However, in most of the applications available in the literature, as in the 
present work, the variation is through the thickness only. Therefore, the early state development of 
improved production techniques, new applications, introduction to effective micromechanical 
models and the development of theoretical methodologies for accurate structural predictions, 
encourage researchers in this field. Many papers, dealing with static and dynamic behavior of 
FGMs, have been published recently. An interesting literature review of above mentioned work 
may be found in the paper of Birman and Byrd (2007). Taj et al. (2013) conducted static analysis 
of FG plates using higher order shear deformation theory. Recently, Tounsi and his co-workers 
(Hadji et al. 2011, Houari et al. 2011, El Meiche et al. 2011, Bourada et al. 2012, Bachir 
Bouiadjra et al. 2012, Fekrar et al. 2012, Klouche Djedid et al. 2014, Nedri et al. 2014, Ait Amar 
Meziane et al. 2014, Draiche et al. 2014, Sadoune et al. 2014, Ait Yahia et al. 2014, Belkorissat et 
al. 2015) developed new shear deformation plates theories involving only four unknown functions. 

Belabed et al. (2014) presented an efficient and simple higher order shear and normal 
deformation theory for functionally graded material (FGM) plates. Hamidi et al. (2015) 
investigated a sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical 
bending of functionally graded sandwich plates. Hebali et al. (2014) studied the static and free 
vibration analysis of functionally graded plates using a new quasi-3D hyperbolic shear 
deformation theory. Mahi et al. (2015) studied the bending and free vibration analysis of isotropic, 
functionally graded, sandwich and laminated composite plates using a new hyperbolic shear 
deformation theory. Tounsi et al. (2013) use a refined trigonometric shear deformation theory for 
thermoelastic bending of functionally graded sandwich plates. Bouderba et al. (2013) studied the 
thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic 
foundations. Zidi et al. (2014) study hygro-thermo-mechanical loading for the Bending of FGM 
plates using a four variable refined plate theory. Bennoun et al. (2016) analyzed the vibration of 
functionally graded sandwich plates using a novel five variable refined plate theory. Ait Atmane et 
al. (2016), studied the effect of thickness stretching and porosity on mechanical response of a 
functionally graded beams resting on elastic foundations. Belifa et al. (2016) studied the bending 
and free vibration analysis of functionally graded plates using a simple shear deformation theory 
and the concept the neutral surface position. 

In the present article, a new first shear deformation plate theory based on neutral surface 
position is developed for the static and dynamic analysis of functionally graded plates. This theory 
has number of advantages over the CLPT and FSDPT. In the present theory the governing 
differential equation is of fourth order and plate physical properties and lateral loading are being 
used. The governing equations are obtained from the Hamilton principle and Navier solutions of 
FG simply supported plates are presented. The accuracy and effectiveness of the present theory are 
established through numerical examples. Numerical results are presented for Ceramic-Metal 
functionally graded plates. 
 

 
2. Theoretical formulations 
 

2.1 Physical neutral surface 
 

Consider a rectangular plate made of FGMs of thickness h, length a, and width b, referred to  
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Fig. 1 The position of middle surface and neutral surface for a functionally graded plate. 
 
 

the rectangular cartesian coordinates (x, y, z). The x-y plane is taken to be the undeformed mid-
plane of the plate, and the z axis is perpendicular to the x-y plane. Due to asymmetry of material 
properties of FG plates with respect to middle plane, the stretching and bending equations are 
coupled. But, if the origin of the coordinate system is suitably selected in the thickness direction of 
the FG plate so as to be the neutral surface, the properties of the FG plate being symmetric with 
respect to it. To specify the position of neutral surface of FG plates, two different planes are 
considered for the measurement of z namely, zms and zns measured from the middle surface and the 
neutral surface of the plate, respectively, as depicted in Fig. 1. 

The volume-fraction of ceramic VC is expressed based on zms and zns coordinates as 
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where n is the power law index which takes the value greater or equal to zero and C is the distance 
of neutral surface from the mid-surface. Material non-homogeneous properties of a functionally 
graded material plate may be obtained by means of the Voigt rule of mixture (Suresh and 
Mortensen 1998). Thus, using Eq. (1), the material non-homogeneous properties of FG plate P, as 
a function of thickness coordinate, become  
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where PM and PC are the corresponding properties of the metal and ceramic, respectively. In the 
present work, we assume that the elasticity modules E and the mass density ρ are described by Eq. 
(2), while Poisson’s ratio v, is considered to be constant across the thickness (Benachour et al. 
2011, Larbi Chaht et al. 2014).  

The position of the neutral surface of the FG plate is determined to satisfy the first moment 
with respect to Young’s modulus being zero as follows (Bourada et al. 2015, Bousahla et al. 2014, 
Al-Basyouni et al. 2015, Fekrar et al. 2014, Tounsi et al. 2015). 
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2.2 Basic assumptions 
 

The assumptions of the present theory are as follows: 
1. The origin of the Cartesian coordinate system is taken at the neutral surface of the FG plate. 
2. The displacements are small in comparison with the height of the plate and, therefore, strains 

involved are infinitesimal.  
3. The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 
4. This theory assumes constant transverse shear stress and it needs a shear correction factor to 

satisfy the plate boundary conditions on the lower and upper surface. 

 
2.3 Kinematics 

 
Based on the assumptions made in the preceding section, the displacement field can be 

obtained as follows 

x
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where u, v, w are displacements in the x, y, z directions, u0 and v0 are the neutral surface 
displacements. ϕ is function of coordinates x, y and time t. 

The strains associated with the displacements in Eq. (4) are 
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where 

,

00

0

0

0

0

0




























































x

v

y

u

y

u
x

u

xy

y

x







,

2
2

2

2

2

2































































yx

y

x

k

k

k

xy

y

x




















































xx

w

yy

w

S
xz

S
yz








           (6) 

The linear constitutive relations of a FG plate can be written as 
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where (σx, σy, τxy, τyz, τxz) and (εx, εy, γxy, γyz, γxz) are the stress and strain components, respectively. ks 
is a shear correction factor which is analogous to shear correction factor proposed by Mindlin 
(1951). 

Using the material properties defined in Eq. (2), stiffness coefficients, Qij can be expressed as 
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2.4 Governing equations 

 
The equations of motion are obtained using the principle of variational energy and virtual work. 
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By substituting Eq. (5) into Eq. (7) and the subsequent results into Eq. (10), the stress resultants 
are obtained as 
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where Aij, Dij, etc., are the plate stiffness, defined by 
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By substituting Eq. (11) into Eq. (9), the equations of motion can be expressed in terms of 
displacements (u0, v0, ϕ, w) as 
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where dij and dijl are the following differential operators  
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3. Analytical solution 
 

Rectangular plates are generally classified in accordance with the type of support used. We are 
here concerned with the exact solution of Eqs. (14a)-(14d) for a simply supported FG plate. The 
following boundary conditions are imposed at the side edges 
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The equations of motion admit the Navier solutions for simply supported plates. The variables 
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Umn, Vmn, ψmn, and Wmn are arbitrary parameters to be determined, and λ=mπ/a and μ=nπ/b. 
For the case of a sinusoidally distributed load, we have 














 y

b
x

a
qq


sin0

                           (18) 

where q0 represents the intensity of the load at the plate centre. 
Substituting Eq. (17) into Eq. (14a)-(14d), the closed form solutions can be obtained from 
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4. Results and discussion 
 

The study has been focused on the static behavior of functionally graded plate based on the 
present new first shear deformation plate theory and based on neutral surface position. For 
verification purpose, the obtained results are compared with those reported in the literature. In all  

133



 
 
 
 
 
 

Lazreg Hadji, M. Ait Amar Meziane, Z. Abdelhak, T. Hassaine Daouadji and E.A Adda Bedia 

Table 1 Effects of volume fraction exponent on the dimensionless displacements of a FGM square plate 
subjected to sinusoidal loading (a/h=10) 

n Model u  v  w  

Ceramic 

Present 0.22012 0.14674 0.29607 

HSDT# 0.21805 0.14493 0.29423 

HSDPT* 0.21815 0.144885 0.29604 

0.2 

Present 0.30688 0.21739 0.36013 

HSDT# 0.28172 0.19820 0.33767 

HSDPT* 0.30479 0.21538 0.35988 

0.5 

Present 0.44102 0.32783 0.45405 

HSDT# 0.42131 0.31034 0.44407 

HSDPT* 0.43859 0.32549 0.45369 

1 

Present 0.64442 0.49722 0.58897 

HSDT# 0.64137 0.49438 0.58895 

HSDPT* 0.64112 0.49408 0.58893 

2 

Present 0.90332 0.71468 0.75522 

HSDT# 0.89858 0.71035 0.75747 

HSDPT* 0.89793 0.70968 0.75733 

5 

Present 1.07519 0.85212 0.90144 

HSDT# 1.06297 0.84129 0.90951 

HSDPT* 1.06620 0.84399 0.91171 

Metallic 

Present 1.19492 0.79661 1.60722 

HSDT# 1.18373 0.78677 1.59724 

HSDPT* 1.18428 0.78652 1.60709 

#Results form Ref (Reddy 2000) 
*Results from Ref (Merazi et al. 2015) 

 
 

examples of the present work, a shear correction factor of 5/6 (Benguediab 2014) is used for the 
present theory. The Poisson’s ratio of the plate is assumed to be constant through the thickness and 
equal to 0.3. 

A functionally graded material consisting of Aluminum-Alumina is considered. The following 
material properties are used in computing the numerical values. 

And their properties change through the thickness of the plate according to power-law. The 
bottom surfaces of the FG plate are aluminium rich, whereas the top surfaces of the FG plate are 
alumina rich.  

 
4.1 Bending analysis 

 
The first example is performed for isotropic Al/Al2O3 square plates under sinusoidal loads. 

The Young’s modulus and Poisson’s ratio are, for aluminium (Al): 70 GPa, 0,3 and for alumina 
(Al2O3) : 380 GPa, 0,3, respectively. The various non-dimensional parameters used are 
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Results are tabulated in Table 1 and Table 2. The tables contain the non dimensionalised 
deflections and stresses respectively. 

The results obtained are compared with the Shear Deformation Theory of Reddy (2000) and a 
new hyperbolic shear deformation plate theory used by Merazi et al (2015). It can be observed that 
the values obtained using the present theory (NFSDPT) are in good agreement with the those 
given by the theory of Reddy (2000) and the model used by Merazi et al. (2015).  

The table shows the effect of volume fraction exponent (Vf) on the stresses and displacements 
of a functionally graded square plate with a/h=10. It can be observed that as the plate becomes  

 
 

Table 2 Effects of Volume fraction exponent on the dimensionless stresses of a FGM square plate subjected 
to sinusoidal loading (a/h=10) 

n Model x  y  xy  xz  yz  

Ceramic 

Present 1.97576 1.31718 0.70925 0.19099 0.19099 

HSDT# 1.98915 1.31035 0.70557 0.23778 0.19051 

HSDPT* 1.99515 1.31219 0.70656 0.24406 0.21289 

0.2 

Present 2.23747 1.39229 0.72254 0.19769 0.20699 

HSDT# 2.12671 1.30958 0.66757 0.22532 0.18045 

HSDPT* 2.26002 1.38706 0.72053 0.24805 0.22655 

0.5 

Present 2.59253 1.46451 0.69276 0.19964 0.22305 

HSDT# 2.61051 1.47147 0.66668 0.23817 0.19071 

HSDPT* 2.61929 1.45863 0.69119 0.24945 0.24311 

1 

Present 3.05366 1.49683 0.61251 0.19099 0.23484 

HSDT# 3.08501 1.4898 0.61111 0.23817 0.19071 

HSDPT* 3.08640 1.48954 0.611061 0.24406 0.26178 

2 

Present 3.56565 1.40565 0.54590 0.16252 0.22894 

HSDT# 3.60664 1.39575 0.54434 0.22568 0.1807 

HSDPT* 3.60856 1.39561 0.54413 0.22427 0.27558 

5 

Present 4.18482 1.11758 0.57827 0.12509 0.17396 

HSDT# 4.24293 1.10539 0.57368 0.21609 0.17307 

HSDPT* 4.24758 1.10329 0.57553 0.19919 0.24164 

Metallic 

Present 1.97576 1.31718 0.70925 0.19099 0.19099 

HSDT# 1.98915 1.31035 0.70557 0.23778 0.19051 

HSDPT* 1.99515 1.31219 0.70656 0.24406 0.21289 
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Fig. 2 Comparison of the variation of non-dimensional deflection w  of Al/Al2O3 square plate 
under sinusoidally distributed load versus power law index n 
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Fig. 3 Comparison of the variation of non-dimensional deflection w  of square Al/Al2O3 plate 
under sinusoidally distributed load versus thickness ratio a/h 

 
 

more and more metallic the deflection w  and normal stress x  increases but normal stress y   
decreases. It is very interesting to note that the stresses for a fully ceramic plate are the same as 
that of a fully metal plate. This is due to the fact that in these two cases the plate is fully 
homogeneous and stresses do not depend on the Modulus of elasticity.  

To further illustrate the accuracy of present theory for wide range of power law index n and 
tickness ratio a/h, the variations of dimensionless deflection w  with respect to power law index n 
and thickness ratio a/h are illustrated in Figs. 2 and 3, respectively. The obtained results are 
compared with those computed using the conventional HSDPT (Merazi 2015) with four 
unknowns. It can be seen that the results of present theory and the conventional HSDPT are almost 
identical. 

To further illustrate the accuracy of present theory for wide range of power law index n and  

w

n

w
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Table 3 Comparison of First Three natural frequencies of Al/ZrO2 FG square plates for various a/h ratio 





















m

m

Eh

a
ww

2
, 1n . 

Mode N° 

a/h Source 1 % erreur 2 % erreur 3 % erreur 

5 

Present 
HPSDPT* 

HSDT# 

3D$ 

5.6908 
5.6777 
5.6914 
5.4806 

3.84 
3.59 
3.85 
0.00 

15.3438 
15.3438 
15.3408 
14.558 

5.39 
5.39 
5.38 
0.00 

25.9249 
25.7764 
25.9257 
24.381 

6.33 
5.72 
6.34 
0.00 

20 

Present 
HPSDPT* 

HSDT# 

3D$ 

6.3372 
6.3358 
6.3371 
6.1076 

3.76 
3.74 
3.76 
0.00 

61.3751 
61.3751 
61.3744 

58.25 

5.36 
5.36 
5.36 
0.00 

103.7402 
103.7029 
103.7404 
98.145 

5.70 
5.66 
5.70 
0.00 

#Results form Ref (Reddy 2000) 
*Results from Ref (Merazi et al. 2015) 
$Results from Ref (Chi et al. 2006) 
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Fig. 4 Comparison of non-dimensional fundamental frequency  of  Al/Al2O3 square plate 
versus power law index n (a/h=5) 

 
 

tickness ratio a/h, the variations of dimensionless deflection w  with respect to power law index 
n and thickness ratio a/h are illustrated in Figs. 2 and 3, respectively. The obtained results are 
compared with those computed using the conventional HSDPT (Merazi 2015) with four 
unknowns. It can be seen that the results of present theory and the conventional HSDPT are almost 
identical. 

 
4.2 Free vibration analysis 
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The accuracy of the present theory is also investigated through free vibration analysis of FG 
plates. The material properties used in the present study are: 

Metal (Aluminum Al ) : 29 /1070 mNxEm  , 3.0 , 3/2702 mKgm  . 

Ceramic (Zerconia ZrO2 ) : 29 /10200 mNxEc  , 3.0 , 3/5700 mKgc  . 

Several parameters are varied and their dynamic behavior is studied. The first three natural 
frequencies for the fundamental vibration mode of m=n=1 of a square Al/Al2O3 FG plate are 
compared with the corresponding results of 3D analysis by Vel et al (2004) in Table 3. 

The table also presents the results obtained by Merazi theory (Merazi 2015) and the results of 
HSDT (Reddy 2000). From this Table it is evident that the present theory is in good agreement 
with the given by the others shear theory. 

Fig. 4 shows the variation of nondimensional frequency with respect to power law index n. It is 
observed that the non-dimensional frequencies   predicted by the NFSDT and the conventional 
HSDPT are almost identical.  
 
 
5. Conclusions 
 

An NFSDT is developed for bending and dynamic behavior of FG plates. Based on the present 
theory and the neutral surface concept, the equations of motion are derived from Hamilton’s 
principle. The accuracy of neutral surface-based model is verified by comparing the obtained 
results with those reported in the literature. Finally, it can be concluded that the NFSDT is not only 
accurate but also simple in predicting the bending and dynamic behavior of FG plates. 
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