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Abstract.  This paper presents the development of methodologies using Extended Finite Element Method 

(XFEM) for cracked unstiffened and concentric stiffened panels subjected to constant amplitude tensile 

fatigue loading. XFEM formulations such as level set representation of crack, element stiffness matrix 

formulation and numerical integration are presented and implemented in MATLAB software. Stiffeners of 

the stiffened panels are modelled using truss elements such that nodes of the panel and nodes of the stiffener 

coincide. Stress Intensity Factor (SIF) is computed from the solutions of XFEM using domain form of 

interaction integral. Paris’s crack growth law is used to compute the number of fatigue cycles up to failure. 

Numerical investigations are carried out to model the crack growth, estimate the remaining life and generate 

damage tolerant curves. From the studies, it is observed that (i) there is a considerable increase in fatigue life 

of stiffened panels compared to unstiffened panels and (ii) as the external applied stress is decreasing 

number of fatigue life cycles taken by the component is increasing. 
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1. Introduction 
 

Many real life structural components such as aerospace structural components, ship hull 

structures, off shore structural components are subjected to fatigue loading. These components 

contain internal defects such as cracks, inclusions, voids which are developed during 

manufacturing stage or at service stage. Structural panels are stiffened with stiffeners which 

improve the strength and stiffness of the panels, strength to weight ratio, vibration and buckling 

properties depending on the size and position of the stiffeners. Stiffeners act as crack arrestors 

which retard the crack growth and increase the number of loading cycles. The prediction of 

number of cycles of loading required to grow a crack to a certain length is very important in the 

assessment of service durability and structural life prediction which helps in determining the 
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proper inspection intervals which could prevent the catastrophic failure.  

Stress Intensity Factor is an influential fracture parameter which needs to be evaluated in order 

to carry out damage tolerant analysis. There are hand books (Murakami 1986, Rooke et al. 1976) 

available for the computation of SIF for simple crack geometry and loading. But for complicated 

crack geometry and loading, inevitably one has to go for numerical techniques. Hence a stable 

numerical method is required to model the structural panel, stiffeners, crack and crack growth with 

low computational effort and good accuracy. In this paper XFEM is used as a numerical tool to 

carry out damage tolerant analysis of cracked unstiffened and concentric stiffened panels subjected 

to tensile fatigue loading.  

Hence a stable numerical method is required to model the structural panel, crack and crack 

growth with low computational cost and good accuracy. Modelling of moving discontinuities 

(cracks) in finite element framework is a difficult task because of the need to update the mesh at 

each step as the crack propagates. A very fine mesh is required near the vicinity of the crack and 

mesh need to be conforming to the sides of the crack. Also the singularity at the crack tip must be 

accurately represented (Tong et al.1973) Another way of handling discontinuities such as cracks is 

to model the crack which is independent of the mesh. XFEM is one of the advanced numerical 

methods for fracture analysis of structural components. In this paper XFEM has been used as a 

numerical tool to carry out fracture analysis and estimate remaining life. 

XFEM can be used to add discontinuous enrichment functions to the original finite element 

approximation (Belytschko et al.1999, Moes et al. 1999 and Dolbow et al. 2000) through the 

partition of unity (Melenk and Babuska 1996). In XFEM, a standard finite element mesh is created 

without accounting for the geometric entity. The presence of discontinuity is then represented 

independently of the mesh by enriching the standard displacement based approximation with 

additional functions. For crack modelling, both discontinuous displacement fields (Heaviside step 

function) along the crack faces and leading singular asymptotic crack tip displacement fields are 

added to the displacement based standard finite element approximation through partition of unity. 

In addition, XFEM provides a seamless means to use higher order elements or special FEs without 

significant changes in the formulation. The XFEM will also improve the accuracy in problems 

where some aspects of the functional behaviour of the solution field is known a priori and relevant 

enrichment functions can then be used. 

Jiang et al. (2014) implemented the XFEM program to investigate the effects of voids, 

inclusions and minor cracks on the path of major crack propagation. Omidi et al (2014) applied 

XFEM methodologies to examine the fracture behaviour of centrally cracked aluminium plates 

with single and double sided composite patches. XFEM was applied by Natarajan et al. (2014) to 

study the inclusion and crack interaction in an elastic medium. Both the crack and inclusions were 

modelled in XFEM frame work. Sharma et al. (2014) studied the effect of inhomogeneities such as 

cracks, inclusions and voids on the stress intensity factor using XFEM. Meng et al .(2014) 

implemented XFEM to model the crack growth in the power law creep materials. XFEM was used 

by Rasuo et al. (2013) for fatigue life investigation of 2024-T3 aluminium spar of light aircraft. 

Both experimental and numerical analysis have been carried out where FEM has been used for 

estimation of spar life to crack initiation, whereas XFEM has been used for fatigue crack growth 

predictions. Himanshu et al.(2013) simulated the 3-D fatigue crack growth problem in XFEM. 

Singh et al. (2012) used the XFEM to simulate the fatigue crack growth of panels with multiple 

discontinuities.  

Dorata et al. (2012) presented a probabilistic method to predict fatigue crack growth and 

fatigue life of structural components subjected to variable amplitude loading. Ramachandra 
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Murthty et al. (2009a 2009b, 2007) developed methodologies for remaining life prediction of 

cracked stiffened panels under constant and variable amplitude loading. Sabelkin et al. (2006) has 

conducted experimental and analytical investigations to study the fatigue crack growth behaviour 

of stiffened 20124-T3 aluminium panels repaired with one sided adhesively bonded composite 

patch. Nechval et al. (2006) developed an artificial neural network model for the prediction of 

fatigue crack growth of cracked structural components. Dexter et al. (2005, 2003) developed a 

long fatigue crack growth model of stiffened panels and compared the model with the finite 

element analysis. Though lot of research has been done in the development of XFEM in recent 

past, implementation of XFEM need to be verified before it can be applied to large scale practical 

problems. To the best of authors knowledge there is no work reported till date using XFEM to 

model the cracked stiffened panels and to predict the fatigue life of stiffened structural 

components. 

In this paper, both cracked stiffened and unstiffened structural panels have been subjected to 

constant amplitude tensile fatigue loading. The stress intensity factors have been evaluated  from 

the XFEM solution to estimate the fatigue life of stiffened and unstiffened 350WT steel cracked 

panel subjected to constant amplitude tensile fatigue loading. Crack has been modelled as a linear 

combination of line segments using level set representation. Stiffeners have been modelled as truss 

elements such that nodes of the panels and nodes of the stiffeners coincide. Maximum hoop stress 

criterion has been used to find the direction of crack propagation. The stress intensity factors have 

been computed using domain form of interaction integral approach. Paris crack growth law has 

been used to model the fatigue life of 350WT steel panels. The studies made in this paper may be 

useful for damage tolerant design of structural components. 

 

 

2. XFEM formulations 
 

In XFEM, the following approximation is used to compute the displacement for the point x 

located within the domain (Belytschko et al. 1999) 

 
 


n

1i

m

1k

ki
enrFEh )()(N)(N)( ki axxuxuuxu                             (1) 

where ui is the vector of regular degrees of nodal freedom in the finite element method, n is the 

total number of nodes in finite element model, Ni shape function associated with node i,  ak is the 

added set of degrees of freedom to the standard finite element model, m is the number of enriched 

nodes and (x) is the discontinuous enrichment function defined for the set of nodes that the 

discontinuity has in its influence (support) domain. The enrichment function (x) can be chosen 

by applying appropriate analytical solutions according to the type of discontinuity. The first term 

on the right hand side of Eq.  (1) is the classical finite element approximation to determine the 

displacement field, while the second term is the enrichment approximation which takes into 

account the existence of any discontinuities. The second term utilises additional degrees of 

freedom to facilitate modelling the existence of any discontinuous field, such as a crack, without 

modelling it explicitly in the finite element mesh. 

When XFEM is applied to fracture mechanics problems, displacement field is taken as (Moes 

et al 1999) 
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Fig. 1 Heaviside enrichment function definition 

 

 

Fig. 2 Crack tip enrichment functions Fl, l=1,2,3,4 (a) F1, (b) F2, (c) F3, (d) F4 
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where, H(x) is the heaviside enrichment function defined such that it equals 1 for all x above the 

crack and -1 for all x below the crack as shown in the Fig. 1 and aj is the heaviside enriched node. 

J is the set of nodes, enriched with heaviside enrichment function, whose nodal shape function 

support contain crack but not crack tip. 

Here k1 and k2 are the set of nodes, associated with crack tips 1 and 2, whose element contain 

crack tips respectively;    
     

 , are vectors of additional degrees of nodal freedom for modelling 

crack faces and the two crack tips. The crack tip enrichment function is given by Fl(x) which is 

given as 








 






 

2
cossinr,

2
sinsinr,

2
cosr,

2
sinr),r(F 4

1ll                            (3) 
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Fig. 3 Nodal enrichment strategy 

 

 

Fig. 4 Fully heaviside enriched element 

 

 

where (r,θ) are crack tip polar coordinate system. The graphical representation of Eq. (3) is shown 

in Fig. 2. 

From the Fig. 2 it is clear that F1 is discontinuous function and rest of the functions are 

continuous. Thus F1 models the discontinuity from the tip of the crack to the edge of the crack tip 

enriched element. Nodal enrichment strategy is shown in Fig. 3. 

When a classical finite element node is enriched with heaviside enrichment we get additionally 

two unknown coefficients and with crack tip enrichment function eight unknown coefficients. 

 

2.1 Element stiffness matrix formulation 
 

Elements in XFEM can be classified into four types where first type is fully enriched elements 

with crack tip enrichment, second is fully enriched element with Heaviside enrichment, third is 

partially enriched element, fourth is classical standard finite element with no enrichment. In this 

section the element stiffness matrix formulations of fully enriched element with Heaviside 

enrichment and crack tip enrichment are presented. Subsequently, a generalized formulation has 

been presented. First consider the element stiffness matrix formulation for fully enriched element 

with Heaviside enrichment as shown in Fig. 4. 
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The displacement field is calculated as 

4433221144332211 HaNHaNHaNHaNuNuNuNuNu                   (4) 

4433221144332211 HbNHbNHbNHbNvNvNvNvNv                    (5) 

Writing the above equations in matrix form 

 









a

u
NN(x)u enrfem

h                                 (6) 

where 

  









v

u
(x)u

h                            (7) 











4321

4321

N0N0N0N0

0N0N0N0N
femN                 (8) 

    









HN0HN0HN0HN0

0HN0HN0HN0HN

4321

4321

enrN

                     

(9) 

Nfem, Nenr are finite element shape functions and enriched element shape functions respectively 

and u, a are classical finite element degrees of freedom and enriched element degrees of freedom 

respectively. 
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Thus displacement field in XFEM context is written as 

  aNuN(x)u enrfem
h                                            (11) 

Assuming small displacement and small strain theory 

x

v

y

u
γ

y

v
ε

x

u
ε xyyx



















              (12) 

Writing in matrix form leads to 

 

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u
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where  


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From theory of elasticity, the strain energy stored in a body is given by 

 



dΩ
2

1
U T            (17) 

But, =Dε, where D is the elasticity matrix. Thus 

 


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2

1
U D
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Substituting Eq. (13) into (18), 
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Let 
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Therefore 

71



 

 

 

 

 

 

M.R. Nanda Kumar, A. Ramachandra Murthy, Smitha Gopinath and Nagesh R. Iyer 

 

Fig. 5 Fully crack tip enriched element 
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Writing in matrix form 
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Hence element stiffness matrix is given by 

                     eK  








aaau

uauu

KK

KK
          (24)  

Size of element stiffness matrix of four node bilinear element whose element nodes are 

completely enriched with Heaviside enriched nodes is 16×16 

The element stiffness matrix for the crack tip element as shown in Fig. 5 is derived as follows 

The displacement field within the element is given as 
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Here i is the node number and strain displacement relation is given as 
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Therefore strain displacement matrix for the crack tip element is given as 
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Therefore element stiffness matrix of crack tip element is given as 
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For crack tip enriched element stiffness matrix of Eq. (34), size is 40x40 (for four node 

element) 

Now we can generalise the formulation for any type of element. In this paper four node bi 

linear element has been used to model the plate. Hence the generalized element stiffness matrix 

formulation in XFEM for four node bilinear element is given as follows 
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The displacement field within the four node bi-linear element in the context of XFEM is given 

as 

 
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b
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u
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                                                 (35) 

where, Nfem finite element shape functions, Na and Nb shape functions modified due to enrichment 

with heaviside enrichment functions and crack tip enrichment function respectively 
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Here P, Q represents the number of nodes in bi-linear elements enriched with heaviside 

enrichment function and crack tip enrichment functions respectively such that, depending on the 

position of the crack, 1≤P, Q≤4. 

Now, the strain displacement relation is obtained as 
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(44) 

Therefore element stiffness matrix is given by 




 dDBBK
T                                                             (45) 
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(a) Classical finite element (b) Partially enriched element 

Fig. 6 Gauss quadrature integration scheme for (a) classical finite element and (b) partially enriched element 

 

  
(a) Element fully cut by the crack (b) Element containing the crack tip 

Fig. 7 Element subdivision strategy for numerical integration for elements cut by the crack 

 

 

 bau BBBB                                                           (46) 

Substituting Eq. (46) in Eq. (45), element stiffness matrix in XFEM is obtained as 
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2.2 Numerical integration 
 

Evaluation of element stiffness matrix requires numerical integration. As there are different 

types of elements, depending on the nodal enrichment, a single standard gauss quadrature scheme 
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cannot be used for all types of elements. In this paper, four node bilinear elements are used and 

following integration scheme is used for different elements. 

For elements cut by the crack, element subdivision is done along the crack segment (Moes et 

al. 1999) such that each sub division is a triangle and new set of gauss points are derived for each 

triangle as shown in the Fig. 7 

For classical finite element, standard 2×2 gauss integration scheme is used and for partially 

enriched element a higher order 6×6 gauss quadrature scheme is used as shown in Fig. 6 

 

2.3 Finite element modelling of stiffeners 
 

As the stiffeners are placed concentric and the applied loading is tensile in nature, one can 

model the stiffeners using truss elements. It is assumed that stiffeners are continuous and are 

connected to the plate along the nodes of the plate element modelled as bilinear element. For 

example consider a square plate of side L modelled using four bilinear elements of side l and an 

edge stiffener using two node truss element as shown in Fig. 8. 

Assuming that the Young’s modulus of stiffener and Young’s modulus of panel is same and 

denoted it as E and area of cross section of each stiffener as A. The length of truss element is same 

as side of bilinear element. Thus element stiffness matrix of truss element is given as 

     
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







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11

11

l

AE
k         (48) 

The global stiffness matrix of panel modelled using four node bilinear element be Kp. Size of 

Kp depends upon the location and position of the crack in the panel. The assembled stiffness matrix 

of stiffeners modelled as truss elements can be obtained as 

 

(49) 

 

 

 
(a)                                                          (b) 

Fig. 8 (a) Finite element model of plate using four node bilinear element (b) Finite element model 

of stiffeners using two node truss element 
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where Kt1 and Kt2 are the assembled global stiffness matrices of stiffener 1 and stiffener 2 

respectively each of size equal to Kp. Note that the matrices shown in Eq. (49) are only sub 

matrices and the values in other locations of matrices Kt1 and Kt2 are zero 

Thus the final stiffness matrix of panel and stiffener is  

K = Kp + Kt1 + Kt2                                    (50)  

Similar lines the final stiffness matrix of panel and stiffener for various mesh discretizations 

can be formulated. 

 

2.4 Level set method 
 
Level set method (Stolarska et al. 2001) has been implemented in this paper to model the crack 

in XFEM framework. The main advantage of level set method is that it offers a convenient way to 

identify the elements which are cut by the crack, identify the nodes to be enriched. In level set 

method crack is considered to be a one dimensional manifold in the two dimensional domain and 

crack is represented as zero of the level set function. Level set values are taken positive on one 

side of the interface and negative on the other side. Signed distance function is used as level set 

function and is given as 

   xxxxx
**

c,min                                             (51) 

where, Ω is the problem domain and Γc is the crack. The sign is different on the two sides of the 

interface and can be determined from sign(n·(x−x
*)) with x

* being the closest point on the 

interface to x. In crack modelling we require two level set functions to represent the crack and 

crack tips as shown in Fig. 9. 

 

 

 

Fig. 9 Level set representation of crack 
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End point of the crack is represented as the intersection of zero level curve with the orthogonal 

zero level set i(x), where i is the number of tips on a given crack. The values of the level set 

functions are stored only at the nodes. The functions are interpolated over the mesh by the same 

shape functions as the displacement. Thus 

       



Jj

jj

Jj

jiji Nx     N xxx                                         (52) 

Level set function that represented the crack tip are initially represented as 

    ii txxx .i                                                             (53) 

where ti is a unit vector tangent to the crack at its tip and xi is the location of the ith crack tip. In 

Eq. (50), the planar function i have a zero level set which is orthogonal to at the crack tip. The 

initial level set functions, φ and i, and the representation of the crack are shown in Fig. 8. If there 

are two crack tips then crack tip level set function is taken as maximum of i(x). Thus crack is 

defined as the set 

     0  and   0:crack i  xxx                                          (54) 

Since only the evolution of a one dimensional curve is considered, the updating of level sets on 

the entire two dimensional domain is not considered. Thus, the level set representation is confined 

to a narrow band of elements around the crack and level set values need to be updated as the crack 

propagates. 

 

 

3. Stress intensity factor computation 
 

The domain form of interaction integral for two equilibrium states has been used to compute 

the mixed mode stress intensity factor (Yau et al. 1980, Moes et al. 1999) which is given as 
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where superscript (1) represents the equilibrium state corresponding to the XFEM analysis and 

superscript (2) represents the auxiliary equilibrium state corresponding to Westergaard’s stress 

analysis. W(1,2) is the interaction strain energy density given as 

         1
ij

2
ij

2
ij

1
ij

2,1W                                                      (56) 

For the numerical evaluation of the above integral, the domain A is set from the collection of 

elements about the crack tip as shown in Fig. 10. The characteristic length of an element touched 

by the crack tip is calculated as the square root of the element area and denoted as hlocal. The 

domain A is then set to be all elements which have a node within a ball of radius rd (in this paper rd 

is taken as three times of hlocal) about the crack tip as shown in Fig 10 and q is the smoothing 

function which takes the value 1 at the nodes within the ball radius rd and zero on the outer contour 

and intermediate values are interpolated using shape functions. Once the interaction integral is 

computed, then mixed mode stress intensity factor is computed as 
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Fig. 10 Domain for the computation of interaction integral 

 

 

 
 

 
 







2

I
K       

2

I
K

b2,1
1
II

a2,1
1
I                                           (57) 

where 2a, 2b corresponds to near tip auxiliary state obtained from Westergaard’s analysis for pure 

Mode I and Mode II respectively.  is given as (1-υ2)/E for plane strain and 1/E for plane stress. In 

this paper domain for computing SIF is taken as rd which is equal to three times the square root of 

area of finite element. 

 

 

4. Direction and magnitude of crack growth 
 

To model the fatigue crack growth, first the discrete set of equilibrium equations Ku=f have 

been solved from XFEM and the results have been used to compute the interaction integral given 

in Eq. (56) and stress intensity factors from Eq. (57). The amount of crack growth depends upon 

the crack growth law. The maximum hoop stress (σθθ) criteria (Erdogan and Sih 1963) has been 

used to predict the direction of crack propagation i.e., crack shall propagate in the direction where 

σθθ is maximum which is given for -π<θc<π as 
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The magnitude of incremental crack is determined from Paris’s crack growth law (Paris et al. 

1961) defined as 

 mΔKC
dN

da
                                                             (59) 

where C and m are Paris law constants defined for a material and ΔK is the equivalent mixed mode 

stress intensity factor range given by Tanaka (1974) as 

4 4
II

4
I 8KKΔK                                         (60) 
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Magnitude of incremental crack Δa is computed for a number of fatigue cycles ΔN. In this 

paper for each iteration ΔN is taken as 1000 cycles and for each 1000 cycles Δa is computed using 

Paris crack growth law equation given as 

  NKCa
m
                                                               (61) 

Once Δa is computed, initial crack geometry is updated and new set of level set values are 

updated by computing the new set of level set values at the nodes.  

Flow chart of XFEM code is 

 

 

 

Fig. 11 Flow chart of XFEM code 
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Fig. 12 (a) XFEM model of plate with 

edge crack 

Fig. 12 (b) zoomed view of mesh with enrichment 

near the vicinity of the crack 

 

 

Fig. 13 Fatigue crack growth curve comparison between XFEM with Paris law and Murakami 

handbook with Paris law(Reference curve) 

 
 
5. Numerical examples 

 
The implementation of XFEM has been verified/applied for fatigue and fracture analysis of 

stiffened and unstiffened 350WT steel panels. In all numerical examples following  properties of 

the panel have been used 

• Size of panel 2h2b=310100 mm 

• Material is homogeneous, isotropic and made up of 350WT Steel 

• Young’s modulus=2105 N/mm2 

• Poisson’s ratio=0.3 
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• Panel is modelled with four node bilinear element of size 2 mm2 mm 

• Stiffener is modelled with two node truss element 

• Plane strain linear elastic fracture mechanics assumption 

• Paris crack growth law constants C=1.0210-11, m=2.94 

•Fracture toughness KIC=50 MPa√m 

 

5.1 Plate with centred edge crack 

 

An unstiffened  plate of centred edge crack of length 19 mm is subjected to a constant 

amplitude fatigue loading with σmax=100 N/mm2 and σmin=0 have been used. Fig. 12 shows the 

XFEM model used for the analysis and the analysis is continued till the stress intensity factor 

reaching the fracture toughness of the material. Results obtained are shown in Fig. 13 

From Fig. 13 the XFEM results with Paris crack growth law curve are in good agreement with 

that of Murakami handbook (Murakami 1986) with Paris crack growth law curve. For 21000 

number of cycles of loading, XFEM has predicted a crack length of 29.701 mm and Murakami 

(Murakami 1986) with Paris law predicted a crack length of 30.270 mm. 

 

5.2 Centre cracked plate with edge stiffeners 
 

Stress intensity factor has been computed for 350 WT edge stiffened centre cracked panel 

subjected to uniaxial tensile stress of σ=100 N/mm2 for various stiffener areas (s=ratio of area of 

stiffener to half width of plate) and various crack width to plate width ratios (a/b) using XFEM 

analysis and the results are compared with the Rooke and Cartwright handbook (Rooke et al. 

1976) in which the results are available only for the edge stiffeners. The results obtained are shown 

in the Tables 1 to 6 which shows the comparison of SIF values between XFEM analysis and Rook, 

Cartwright hand book. 

 

 
Table 1 a/b= 0.1 and K0=σ√(πa)=12.533 MPa√m 

Area of Stiffener mm2 s=A/b KIROOKE MPa√m KIXFEM MPa√m 

0 0 12.658 13.079 

5 0.1 11.4051 11.9716 

10 0.2 10.5277 11.045 

17.5 0.35 9.211 9.919 

25 0.5 8.397 9.0254 

37.5 0.75 6.893 7.8902 

 
Table 2 a/b=0.2 and K0=σ√(πa)=17.724 MPa√m 

Area of Stiffener mm2 s=A/b KIROOKE MPa√m KIXFEM MPa√m 

0 0 18.362 18.587 

5 0.1 16.483 16.987 

10 0.2 14.976 15.654 

17.5 0.35 13.381 14.036 

25 0.5 11.96 12.756 

37.5 0.75 10.235 11.133 
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Table 3 a/b=0.3 and K0=σ√(πa)=21.708 MPa√m 

Area of Stiffener mm2 s=A/b KIROOKE MPa√m KIXFEM MPa√m 

0 0 23.01 23.98 

5 0.1 20.405 21.803 

10 0.2 18.668 20.01 

17.5 0.35 16.927 17.85 

25 0.5 14.761 16.16 

37.5 0.75 12.5906 14.03 

 
Table 4 a/b=0.4 and K0=σ√(πa)=25.066 MPa√m 

Area of Stiffener mm2 s=A/b KIROOKE MPa√m KIXFEM MPa√m 

0 0 27.62 28.348 

5 0.1 24.815 25.635 

10 0.2 22.496 23.434 

17.5 0.35 19.614 20.81 

25 0.5 17.5462 18.77 

37.5 0.75 14.788 16.22 

 
Table 5 a/b=0.5 and K0=σ√(πa)=28.024 MPa√m 

Area of Stiffener mm2 s=A/b KIROOKE MPa√m KIXFEM MPa√m 

0 0 33.236 34.471 

5 0.1 29.705 30.759 

10 0.2 26.342 27.841 

17.5 0.35 22.7 24.448 

25 0.5 20.177 21.86 

37.5 0.75 16.8144 18.686 

 
Table 6 a/b=0.6 and K0=σ√(πa)=30.7 MPa√m 

Area of Stiffener mm2 s=A/b KIROOKE MPa√m KIXFEM MPa√m 

0 0 39.91 39.97 

5 0.1 34.506 35.24 

10 0.2 30.546 31.613 

17.5 0.35 25.849 27.481 

25 0.5 22.718 24.383 

37.5 0.75 18.88 20.643 

 

 

Using the results of Tables 1 to 6, polynomial curve fitting has been done in MATLAB and the 

best fit results are shown in Fig. 14 whose x axis is a/b and y axis is KI/K0. From Tables 1 to 6 and 

Fig. 14 following observations can be drawn. 1. As the area of stiffener increases SIF values are 

decreasing. 2. The SIF results obtained from XFEM analysis are in good agreement with that of 

literature (Rooke et al. 1976) and 3. Always XFEM analysis is over predicting the SIF values 

when compared to SIF obtained from literature (Rooke et al. 1976). 
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Fig. 14 Comparison of XFEM results with Rooke et al. (1976) for various values of s 

 
 

5.3 Fatigue life estimation of centre cracked plate with edge stiffeners 
 

In this section 350 WT steel stiffened plate with centre crack of 2a=20 mm whose properties 

and modelling are described in the beginning of this section is subjected to a constant amplitude 

fatigue tensile loading of σmax=100 Mpa and σmin=0 Mpa is analysed. The XFEM analysis has been 

carried out and fatigue life criteria has been set as crack length reaching the 60% of plate width 

i.e., fatigue life has been defined as the number of cycles required for a crack to grow up to 60% of  
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Fig. 15 Fatigue life curves for centre cracked panel of initial crack length of 2a=20 mm and edge 

stiffened with various areas of stiffeners 

 
Table 7 Fatigue life and gain in life for edge stiffened centre crack panels using XFEM analysis  

Area of Stiffener in mm2 
Predicted Fatigue life in number 

of cycles using XFEM analysis 

Gain in fatigue life in percentage 

compared to unstiffened panel 

0 125000 - 

5 167000 33.6 % 

10 217000 73.6 % 

15 274000 119.2% 

20 340000 172% 

 

 

plate width. The results obtained are shown in Fig. 15 and Table 7. 

From Fig. 15 and Table 7 it is clear that compared to unstiffened panels there is a considerable 

gain in the fatigue life when the panels are stiffened. 

 

5.4 Damage tolerant curves generation for plate with a centre crack using XFEM 
 

A 350WT steel plate of width (2b) 100 mm, height (2h) 310 mm with a centre crack is 

subjected to tensile fatigue loading as shown in Fig. 16(a) and Fig. 16(b). The objective is to 

predict the number of fatigue cycles required for given applied stress range for a plate with centre 

crack using XFEM and get the applied stress range versus number of fatigue cycles required to fail 

i.e., the damage tolerant curves. The failure criterion of the plate has been set as the crack length 

reaching 60% of plate width or fracture toughness of the plate whichever is earlier. The 

assumptions are given in the beginning of this section. 
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(a) (b) 

Fig. 16 (a) Plate with centre crack subjected to tensile fatigue loading. (b) XFEM model of the plate 

with centre crack 

 

 

Fig. 17 Zoomed view of the mesh near the crack 

 

 
Fig. 17 shows the zoomed view of the mesh near the crack. Circled nodes are enriched with 

heaviside enrichment function and squared nodes are enriched with crack tip enrichment function. 

The damage tolerant curves are shown in Fig. 18. 

Stress range is varied from 200 MPa to 40 MPa for various initial crack length to plate width 

ratios (a/b) 0.1, 0.2 and 0.3. For each stress range XFEM analysis as described in previous sections 

and given in Flow chart of Fig. 8 is carried out to find the number of fatigue cycles required to fail. 

The results obtained are shown in Fig. 18, as applied stress range versus number of fatigue life 

cycles in the form of semi-log plot. 

From the results shown in Fig. 18, as the external applied stress is decreasing number of fatigue 

life cycles taken by the component is increasing. This figure gives the quick idea about the number 

of cycles a crack of initial length to plate width ratio between 0.1 and 0.3 can take for applied 

stress range between 200 MPa and 40 Mpa. 
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Fig. 18 Damage tolerant curves for plate with centre crack 

 

 

6. Conclusions 
 

An attempt has been made for the generation of damage tolerant curves and remaining life 

estimation of cracked unstiffened and concentric stiffened panels. XFEM formulations have been 

presented in detail and fracture analysis has been carried out for 350WT steel stiffened and 

unstiffened panels subjected to tensile loading. XFEM solutions are used to calculate the stress 

intensity factor using the domain form of interaction integral technique. Panel is modelled using 

four node bilinear isoparametric element and stiffener is modelled using truss element. Stress 

intensity factor obtained from XFEM solutions are compared with that of stress intensity factors 

available in handbooks and the SIFs obtained using XFEM analysis are in good agreement with 

that of SIFs obtained using handbooks. Further, the fatigue life analysis has been carried out on 

unstiffened panel with centre edge crack and edge stiffened panel with centre crack. Fatigue crack 

growth curves are obtained for various stiffener areas. It is observed that there is a considerable 

increase in fatigue life of stiffened panels when compared to unstiffened panels. 

In order to generate damage tolerant curves, SIF computed from XFEM analysis is substituted 

in Paris’s crack growth to compute the incremental crack growth (a) for a given number of 

fatigue cycles (N) up to failure. The process is repeated for various applied stress ranges () and 

corresponding to each  fatigue cycles to failure has been computed. This data has been used to 

generate curves known as damage tolerant curves which give information regarding given a plate 

with initial crack geometry and applied stress range, what would be the number of fatigue cycles 
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the cracked plate can take before undergoing failure. These curves give quick information 

regarding the fatigue life of a cracked structural component subjected to given constant amplitude 

tensile loading.  
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