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Abstract.  Spherical reticulated shells are widely applied in structural engineering due to their good 

bearing capability and attractive appearance. Parametric modeling of spherical reticulated shells is the basis 

of internal analysis and optimization design. In the present study, generation methods of nodes and the 

corresponding connection methods of rod elements are proposed. Modeling programs are compiled by 

adopting the ANSYS Parametric Design Language (APDL). A shape optimization method based on the 

two-stage algorithm is presented, and the corresponding optimization program is compiled in FORTRAN 

environment. Shape optimization is carried out based on the objective function of the minimum total steel 

consumption and the restriction condition of strength, stiffness, slenderness ratio, stability. The shape 

optimization of four typical Schwedler spherical reticulated shells is calculated with the span of 30 m~80 m 

and rise to span ratio of 1/7~1/2. Compared with the shape optimization results, the variation rules of total 

steel consumption along with the span and rise to span ratio are discussed. The results show that: (1) The left 

and right rod-Schwedler spherical reticulated shell is the most optimized and should be preferentially 

adopted in structural engineering. (2) The left diagonal rod-Schwedler spherical reticulated shell is second 

only to left and right rod regarding the mechanical behavior and optimized results. It can be applied to 

medium and small-span structures. (3) Double slash rod-Schwedler spherical reticulated shell is 

advantageous in mechanical behavior but with the largest total weight. Thus, this type can be used in 

large-span structures as far as possible. (4) The mechanical performance of no latitudinal rod-Schwedler 

spherical reticulated shell is the worst and with the second largest weight. Thus, this spherical reticulated 

shell should not be adopted generally in engineering. 
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(a) National Stadium of Australia (b) National Theatre of China 

Fig. 1 Examples of reticulated shell structures 

 
 
1. Introduction 
 

In recent years, spherical reticulated shells have been used widely in domestic and foreign 

public buildings due to the advantages of rod-system and thin-shell, i.e., good appearance, 

reasonable stress and large stiffness (Shen and Chen 1996). They have vast application prospects 

in modern large-span building structures (Dong and Yao 2003), such as major sports/arts venues, 

waiting halls and shopping malls (Fig. 1). However, the number of nodes and rod elements of 

spherical reticulated shells are too many and the variation of span, height, grid size, type and other 

parameters can cause structural internal force reallocation. The workload of re-modeling is very 

large and it is quite difficult to carry out high efficient stress analysis and structural optimization 

design. In addition, structural materials of spherical reticulated shells are ideal but of high cost. 

Thus, shape optimization is quite necessary and important for the design and construction of 

spherical reticulated shells. 

Schwedler spherical reticulated shells are typical and widely used structures in modern 

architectural reticulated shells because they are easy to calculate and install. In addition, they have 

advantages of small number of nodes and light weight, etc. Conventional modeling of these 

structures often relies on hand-modeling rather than on parametric modeling in domestic and 

foreign studies. Relevant research is also seldom related to the specific work of shape optimization 

design. 

At present, continuous variable optimization is now well-established, but the research on 

optimum design of discrete variables is not many. Now the main research results are as follows: 

Lipson and Gwin (1977) researched discrete sizing of trusses for optimal geometry. The optimal 

configuration and discrete member sizes were automatically determined to minimize the cost of 

three-dimensional indeterminate truss structures under multiple loading conditions. Member areas 

and joint coordinates were used as design variables. Svanberg (1987) presented a new method for 

non-linear programming in general and structural optimization in particular. In each step of the 

iterative process, a strictly convex approximating sub problem was generated and solved. Jenkins 

studied structural optimization with the genetic algorithm (1991) and natural algorithm (1997). 

Salajegheh and Vanderplaats (1993) presented a method for optimizing truss structures with 

discrete design variables, and the design variables were considered to be sizing variables as well as 
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coordinates of joints. Moreover, both types of variables could be discrete simultaneously and 

mixed continuous-discrete variables could also be considered. Rajan (1995) developed a procedure 

for the combined sizing, shape, and topology design of space trusses. Sun et al. (1995) proposed a 

two-level algorithm for shape optimization of space trusses with discrete sizing variables. Chai and 

Sun (1996) presented a two-level combination algorithm for solving (0, 1, 2) planning issues. Saka 

and Kameshki (1998) investigated optimum design of nonlinear elastic framed domes, i.e., an 

algorithm was presented for the optimum design of three-dimensional rigidly jointed frames which 

took into account the nonlinear response due to the effect of axial forces in members. Salajegheh 

(2000) achieved optimum design of structures with multiple frequency constraints, and a two-point 

approximation was employed to approximate the frequency. Xu et al. (2006) investigated an 

optimal method, and this optimum design was performed by the combination of the direct 

searching method and the criterion. Vyzantiadou et al. (2007) proposed structural systems. The 

proposed computational method produces algorithms using fractal mathematics, and could 

generate forms applicable to shells. Yas et al. (2007) introduced the stacking sequence optimization 

of a laminated cylindrical shell for obtaining maximum natural frequency and buckling stress, 

simultaneously .Rahami et al. (2008) developed a combination of energy and force method, and 

genetic algorithm was employed as an optimization tool for minimizing the weight of the truss 

structures. Dietl and Garcia (2010) proposed a new approach to change the shape of the beam to 

concentrate the strain in sections of the beam where it can contribute the most to transduction. Wu 

et al. (2010) investigated a new design concept of MAS, and a shape optimization method with 

finite element analysis was applied on two-dimensional (2D) stent models. Fraternali et al. (2011) 

employed the variation AL theory of optimal control problems and evolutionary algorithms to 

investigate the form finding of minimum compliance elastic structures. Durgun and Yildiz (2012) 

introduced a new optimization algorithm, called the Cuckoo Search Algorithm algorithm, for 

solving structural design optimization problems. The CS algorithm was applied to the structural 

design optimization of a vehicle component to illustrate how the present approach can be applied 

for solving structural design problems. Xia et al. (2012) presented a level set solution to the 

stress-based structural shape and topology optimization. A novel global measure of stress was 

proposed, and the optimization problem was formulated to minimize the global measure of stress 

subject to a constraint of material volume. Luo et al. (2012) also studied a meshless Galerkin level 

set method for shape and topology optimization of continuum structures. Gholizadeh and Barzegar 

(2013) proposed an efficient harmony search based algorithm for solving the shape optimization 

problem of pin-jointed structures subject to multiple natural frequency constraints. Yildiz (2013) 

investigated a comparison of evolutionary-based optimization techniques for structural design 

optimization problems. Furthermore, a hybrid optimization technique based on differential 

evolution algorithm was introduced for structural design optimization problems. Emmanuel et al. 

(2014) used ANN and GA for buckling optimization of laminated composite plate with elliptical 

cutout. In addition, the publications (Chiu 2010, Pedersen 2010, Qian 2010, Kaveh and Ahmadi 

2014, Kaveh and Zolghadr 2014) also considered the structural optimization design.  

The present study firstly describes main geometric parameters of spherical reticulated shells in 

section 2. Generation methods of nodes and connection methods of rod elements are proposed, and 

the corresponding modeling programs are compiled by adopting the ANSYS Parametric Design 

Language (APDL) in section 3. The proposed modeling method is simple, efficient and practical, 

which can provide the possibility for quickly generating different types of Schwedler reticulated 

spherical shells. Then, the selection of rod element types is introduced in section 4. The internal 

forces of four typical Schwedler spherical reticulated shells are analyzed and discussed in section  
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Fig. 2 Geometric schematic diagram of spherical reticulated shells 

 

 
5. A shape optimization method based on the two-stage algorithm is presented in section 6, and the 

corresponding optimization program is compiled in FORTRAN environment. Thus, the total steel 

consumption of Schwedler spherical reticulated shells is optimized to be the lightest and the 

production costs are also optimized to be the least. The shape optimization of four typical 

Schwedler spherical reticulated shells are carried out with the span of 30 m~80 m and rise to span 

ratio of 1/7~1/2. Finally, compared with the shape optimization results, the variation rules of the 

total steel consumption along with the span and rise to span ratio are analyzed and discussed in 

section 7. The analysis results have some guiding significance for engineering design of Schwedler 

spherical reticulated shells (Wu 2013).  

 
 
2. Geometric definitions 
 

The shell span (S), rise (F), latitudinal portions (Kn) and radial loops (Nx) are main geometric 

parameters of describing spherical reticulated shells, which is shown in Fig. 2. The curvature 

radius of sphere R and global angle Dpha of two radial neighboring circle nodes are expressed by 

Eqs. (1)-(2) (Shen and Chen 1996). The derivation process of Eq. (2) is also given in detail. 
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As for Eq. (2), firstly, the total global angle Dϕ, 
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3. Parametric models of four typical Schwedler spherical reticulated shells 
 

In the spherical coordinates given the shell span (S), rise (F), latitudinal portions (Kn), radial 

loops (Nx), then radius of curvature R and global angle Dpha are calculated. The nodes are 

generated in each circle from inside to outside in order by using cyclic command statements (Lu et 

al. 2013). Rod elements are generated by the following rules after node created. Let vertex be 

number 1. Applying loads on nodes whose number is less than the starting node number of the 

outermost circle and imposing displacement constraints on other nodes. Rod types, material 

properties, real constants, etc., are applied to analyze the structural internal force. Macro routines 

are compiled by using the parametric design language APDL in ANSYS (Chen and Liu 2009, 

Gong and Xie 2010). 

 

3.1 Left diagonal rod-Schwedler spherical reticulated shell (Fig. 3) 
 
Determine the numbers and coordinates of nodes: The node of the j-th at the i-th circle is 

numbered as 1+Kn×(i-1)+j, which coordinates are (R, (j-1)×360/Kn, 90-i×DPha). Wherein i=3~12, 

j=6~22. 

Elements connection: a) The latitudinal elements at the i-th circle and j-th symmetric area are 

made by connecting the node 1+Kn×(i-1)+j and the node 1+Kn×(i-1)+j+1.Elements at the last 

symmetric area of each circle are made by connecting the last node 1+Kn×i and the first node 

1+Kn×(i-1)+1 of this circle. b) The radical elements at the j-th symmetric area between the i-th and 

(i+1)-th circles are made by connecting the node 1+Kn×(i-1) +j and the node 1+Kn×i+j. Elements 

between the apex and the first circle are made by connecting the node 1 and the node 1+j. c) The 

diagonal elements at the j-th symmetric area between the i-th and (i+1)-th circles are made by 

connecting the node 1+Kn×(i-1) +j and the node 1+Kn×i+j+1. Elements at the last symmetric area 

of each circle are made by connecting the node 1+Kn×i and the node 1+Kn×i+1. 

 

3.2 Double slash rod-Schwedler spherical reticulated shell (Fig. 4) 
    

Compared with left diagonal rod - Schwedler spherical reticulated shell, double slash rod have 

additional right diagonal rod. The right diagonal elements at the j-th symmetric area between the 

i-th and (i+1)-th circles are made by connecting the node 1+Kn×(i-1)+j+1 and the node 1+Kn×i+j.  
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Fig. 3 Left diagonal rod (Kn=14, Nx=5) Fig. 4 Double slash rod (Kn=12, Nx=4) 

 

  

Fig. 5 No latitudinal rod (Kn=18, Nx=6) Fig. 6 Left and right rod (Kn=20, Nx=6) 

 

 

Elements at the last symmetric area of each circle are made by connecting the node 1+Kn×(i-1)+1 

and the node 1+Kn×(i+1). 

 

3.3 No latitudinal rod-Schwedler spherical reticulated shell (Fig. 5) 
    

Compared with double slash rod - Schwedler spherical reticulated shell, no latitudinal rod only 

removes the latitudinal elements, but the outermost latitudinal rods are reserved. 

 
3.4 Left and right rod-Schwedler spherical reticulated shell (Fig. 6)  
 
The connection of latitudinal and radical elements is the same as left diagonal rod, the 

connection of diagonal elements as follows: 

a) Odd-numbered circles: The diagonal elements at the j-th symmetric area between the i-th and 

(i+1)-th circles are made by connecting the node 1+Kn×(i-1) +j and the node 1+Kn×i+j+1,the 

diagonal elements at the (j-1)-th symmetric area between the i-th and (i+1)-th circles are made by  
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Fig. 7 Type selection window 

 

 

Fig. 8 Geometrical parameters window 

 

 

connecting the node 1+Kn×(i-1) +j and the node Kn×i+j, elements at the last symmetric area of 

each circle are made by connecting the node 1+Kn×(i-1)+1 and the node 1+Kn×(i+1). 

b)Even-numbered circles: The diagonal elements at the (j-1)-th symmetric area between the 

(i+1)-th and (i+2)-th circles are made by connecting the node Kn×i+j and the node 1+Kn×(i+1)+j, 

the diagonal elements at the j-th symmetric area between the (i+1)-th and (i+2)-th circles are made 

by connecting the node 1+Kn×i+j+1 and the node 1+Kn×(i+1)+j, elements at the last symmetric 

area of each circle are made by connecting the node 1+Kn×(i+1) and the node 1+Kn×(i+1)+1. 

 

3.5 Preparation of entry interface  
 
Through the compilation of type selection window, users can input program codes (1, 2, 3, 4) of 

four typical Schwedler spherical reticulated shells as needed, and enter the geometrical parameters 

interface. Then users can easily get the required models only by inputting parameters such as the 

shell span (S), rise (F), latitudinal portions (Kn), radial loops (Nx). Procedures are as follows: 

Customizing programs of type selection window (Fig. 7) 

FINISH 

/PMACRO   

/CLEAR, start 

*ASK, shell_ type_ number, 1 2 3 4        

!1= Left diagonal rod；2= Double slash rod；3= No latitudinal rod；4= Left and right rod； 
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*IF, shell_type_number,EQ,1, THEN Left diagonal rod  

*ELSEIF, shell_type_number,EQ,2, THEN Double slash rod 

*ELSEIF, shell_type_number,EQ,3, THEN No latitudinal rod  

*ELSEIF, shell_type_number,EQ,4, THEN Left and right rod 

   *ENDIF 

Customizing programs of geometrical parameters window (Fig. 8) 

MULTIPRO,'start',4   

   *cset,1,3, S, ' span=(mm)',30 

   *cset,4,6, F, ' rise =(mm)',10 

   *cset,7,9, Kn, ' latitudinal portions = ',6 

   *cset,10,12, Nx, ' radial loops =',4 

   *cset,61,62, 'Please input geometry parameters' 

MULTIPRO, 'end' 

 

 
4. The selection of element types 

 

For now, articulated rod elements and beam elements of space are generally taken in finite 

element analysis of reticulated shells. Schwedler spherical reticulated shells can adopt beam 

elements of space to carry out finite element analysis.  

Beam3, Beam4, Beam188 and Beam189 are used commonly in beam elements of space in 

ANSYS, and Beam4 element (Fig. 9) is selected in the present study. Beam4 is a tensile and 

compressive, torsional and bending element in the axial direction, meanwhile, each node has six 

degrees of freedom, which can translate along the X, Y, Z directions and rotate around the X, Y, Z 

axis in the node coordinate system. 

 

 

 

Fig. 9 Schematic diagram of Beam4 element (captured from ANSYS software documentation) 
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5. The internal force analysis of four typical Schwedler spherical reticulated shells  

 

The purpose of internal force analysis of Schwedler spherical reticulated shells is analyzing and 

calculating the displacements and stresses of the structures under loads and in the boundary 

conditions, and getting on structural design accordingly. The process of internal force analysis of 

Schwedler spherical reticulated shells is actually seeking rational shape, reasonable stress and 

distribution of stress, reasonable stiffness and distribution of stiffness continually. 

Principles and methods of internal force analysis of Schwedler spherical reticulated shells are 

as follows (Shang and Qiu 2005): 

Schwedler spherical reticulated shell as a used widely spatial structure, its analytical procedures 

are classic methods based on basic principles. The methods mainly include two categories: one is a 

method based on continuity assumption and the other based on discretization assumption.  

The first method is imitative shell method. This method is to analyze and study the structures in 

accordance with the basic theory of elastic thin shells. Its purpose is to obtain the displacements 

and stresses of the structures and then convert into internal force of spherical reticulated shell 

structures. The second category is finite element method of truss structures. In other words, the 

grids constituted by rod members originally can disperse into individual element. And a rod 

member usually as a basic element when conducting internal force analysis.  

As computer technology updates more quickly, finite element method of truss structures is 

usually adopted by Schwedler spherical reticulated shells at the time of internal force analysis. 

This method can be more flexible for linear (or nonlinear), static, dynamic and stability analysis of 

all types of reticulated shells. Internal force analysis of Schwedler spherical reticulated shells is 

carried out within the linear elastic range, and geometric nonlinearity of the material are generally 

not considered. This study make use of finite element analysis software (ANSYS) for internal 

force analysis of Schwedler spherical reticulated shells, meanwhile, beam elements of space are 

used as rod members, and assumed the nodes of spherical reticulated shells are ideal rigid joints.  

In order to make the calculated results comparable, the relevant parameters are the same. 

Constraint conditions of the outermost nodes of Schwedler spherical reticulated shells are simply 

supported. Hot rolled seamless steel pipe (calculated by YB 231-70) is adopted as rod elements of 

Schwedler spherical reticulated shells. The model information of four typical Schwedler spherical 

reticulated shells is shown in Table 1. Stress and displacement contours are shown in Fig. 10 (such 

left diagonal rod - Schwedler spherical reticulated shell as an example). The internal force analysis 

results of four typical Schwedler spherical reticulated shells are shown in Table 2. 

Table 2 shows that: 

(1) Among the four typical Schwedler spherical reticulated shells, the maximum stress and 

displacement of double slash rod is the smallest, followed by left and right rod, then left diagonal 

rod, and no latitudinal rod is the biggest. 

 

 
Table 1 The model information of four typical Schwedler spherical reticulated shells 

Type Left diagonal rod, Double slash rod, No latitudinal rod, Left and right rod 

Span (Rise to span ratio ) 30 m (1/5), 60 m (1/6), 90 m (1/5) 

Steel density 7800 kg/m
3
 Elastic modulus 2.06 × 10

5
 Mpa 

Poisson ratio 0.3 Yield strength 2.15×10
8
 N/m

2
 

Even load 2.35 kN/m
2
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Table 2 The internal force analysis results of four typical Schwedler spherical reticulated shells 

Span (m) Type 
Rise to span 

ratio 
Kn Nx 

The maximum 

Stress (Mpa) 

The maximum 

displacement (mm) 

30 

Left diagonal rod 1/5 10 4 122 17.249 

Double slash rod 1/5 10 4 99 14.052 

No latitudinal rod 1/5 10 4 167 25.217 

Left and right rod 1/5 10 4 121 16.963 

60 

Left diagonal rod 1/6 14 5 152 46.370 

Double slash rod 1/6 14 5 118 38.388 

No latitudinal rod 1/6 14 5 198 62.841 

Left and right rod 1/6 14 5 150 45.498 

90 

Left diagonal rod 1/5 16 6 183 54.121 

Double slash rod 1/5 16 6 132 45.635 

No latitudinal rod 1/5 16 6 201 75.512 

Left and right rod 1/5 16 6 179 52.899 

 

  
(a) Stress contour (b) Displacement contour 

Fig. 10 Left diagonal rod - Schwedler spherical reticulated shell (S=30, F=6, Kn=10,Nx=4) 

 

 

(2) The maximum stresses and displacements all appeared at vicinity of the vertex and the first 

circle latitudinal rods. Due to the structures without latitudinal rods, no latitudinal rod has poor 

mechanical properties. In contrast, double slash rod has better mechanical behavior because of the 

dense grids. The maximum stresses and displacements have little difference between left and right 

rod and left diagonal rod, and both of them have reasonable force distribution. 

 

 
6. Shape optimization programming 
 

The principles of shape optimization, from Sections 6.1 to 6.3, are the same as our previous study 

(Wu et al. 2015). However, the optimized objects are different, thus the corresponding conclusions 

are also different. 
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6.1 Mathematical models of shape optimization 
 
6.1.1 Design variables 
The cross-sectional area of the rod member Ai (i=1, 2, , m),  

The volume of the node Vj (j=1, 2, , n). 

 
6.1.2 The objective function 
The total weight of shell structures 
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ii VAlW
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min   (3) 

where m is the number of rod elements; n is the number of nodes; Ai is cross-sectional area of the 

i-th rod element, (m
2
); 𝜌i, 𝜌j are density of steel of rod elements and nodes respectively, (kg/m

3
); li 

is geometry length of the i-th rod element, (m); Vj is volume of the j-th ball node, (m
3
); The 

volume of hollow ball, Vj =πd
2
t, t is the wall thickness of welded hollow spherical joints, (mm). 

 
6.1.3 Constraint conditions 
1) Deflection Constraints 

   max                                   (4) 

where δ max is the maximum calculated deflection, [δ] is the allowable deflection. 

2) Strength constraints of the rods: 

Pull rod 

  
i

i
i

A

N
                               (5) 

where Ni is axial pull of the i-th pull rod, (N); [ζ] is the design strength. 

Pressure rod 

  

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ii

i
i

A

N
                               (6) 

where Ni is axial pressure of the i-th pressure rod, (N); φi 
is stability factor of the i-th pressure rod. 

3) Slenderness ratio of the rods 

   
i

i
i

r

l0                              (7) 

where l0i is geometry length of the i-th rod element, (m); ri is cross-sectional radius of gyration of 

the i-th rod element, (m); λi is slenderness ratio of the i-th rod element, [λ] is the allowable 

slenderness ratio. 

4) Upper and lower constraints of cross-section of the rods: 
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 AAi                                         (8) 

 VVj                                         (9) 

 SS k                                        (10) 

where {A} is a variable discrete set of cross-sectional dimensions of the rods; {V} is a variable 

discrete set of volume of the nodes; {S} is a variable discrete set of structural geometry. 

5) Constraints of the nodes: 

Welded hollow spherical 



ndd
D

221
min


                            (11) 

where d1, d2 is the outer diameter of two adjacent rods, (mm); θ is the angle between two adjacent 

rods, (rad); αn 
is clear distance between adjacent rods in the spherical surface.  

 

6.2 Cross-sectional optimization 
 
In the present study, the designed algorithms of two-stage cross-sectional optimization are 

adopted, which is based on discrete variables. The first stage makes use of a one-dimensional 

search algorithm to process local constraints, and the second stage takes advantage of a relative 

difference quotient algorithm to handle whole constraints (Deng and Dong 1999). The 

mathematical models of cross-sectional optimization are as follows (Lu et al. 2013, Wu et al. 2015, 

Sun et al. 2002) 
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6.3 Shape optimization 
 
The mathematical models (Lu et al. 2013, Wu et al. 2015, Sun et al. 2002) of shape 

optimization 

     

 

 





 


max

11

2

..

,min

,

ts

VAnxknlW

nxknSeekingP
n

j
jji

m

i
ii

 (13) 

824



 

 

 

 

 

 

Parametric modeling and shape optimization of four typical Schwedler... 

 

Given the range of Kn and Nx, searching combination of Kn and Nx, in order to minimize total 

steel consumption of spherical reticulated shells. 

 

6.4 Programming  
   

For Schwedler spherical reticulated shells, the number of rod elements and nodes are the main 

factors affecting the total weight of the structures. This study takes the total steel consumption of 

reticulated shells (including the weight of rods and nodes) as objective function. Meanwhile, Kn 

and Nx are taken as design variables (Lu et al. 2012, Wu et al. 2015). A shape optimization 

program is compiled in FORTRAN environment. The most important feature of the program is 

that it can drive large-scale finite element analysis software ANSYS to re-analysis and re-checking 

of internal forces constantly in the background, so that modeling, solving and optimized design 

can be achieved. Moreover, Modular, structural design ideas (Deng and Dong 1999, Xu et al. 

2006) are adopted, so that the programs can be modified, extended, and transplanted in follow-up 

works. 

(1) Steps of an algorithm 

Firstly, an initial cross-sectional area of rod element A
(0)

 is given based on design experience 

and estimation. The design variable cross-sectional area of rod elements in this study should meet 

the following requirements 
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Wherein, A
(k)

 represents the cross-sectional area of rod elements after the k-th iteration. 

Secondly, the stress ratio of rod elements is calculated. 
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Wherein, Ni
(k)

 is axial pressure of rod elements after the k-th iteration, Mi
(k)

 is the maximum 

bending moment in the range of rod elements after the k-th iteration, Ai
(k)

 is the cross-sectional area 

of rod elements after the k-th iteration, Wi
(k)

 is the section modulus of rod elements after the k-th 

iteration, ew 
is the allowable stress. 

Then, the common iterative formula is formulated. 
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                            (16) 

Ui
(k)

 is the stress ration of the i-th rod element during the k-th iteration. 

(2) Convergence criterion 

During the global optimization,  
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Fig. 11 Shape optimization flowchart of Schwedler spherical reticulated shells 
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Wherein, W
(k+1)

, W
(k)

 represent the total weight of shell structures after (k+1)-th and k-th 

iterations, respectively. ε2 is a positive decimal value. 

During the local optimization 

1

)()1(  K

i

K

i AA
                             

(18) 

Wherein, Ai
(k+1)

, Ai
(k)

 represent the cross-sectional area of the i-th rod element after the (k+1)-th 

and k-th iterations, respectively. ε1 is a positive decimal value. 

(3) Optimization methods 

Start with the global optimization (Xu et al. 2006), then, the local optimization, followed by the 

global optimization, this cyclic process is adopted in the present study. The cross-sectional area of 

rod elements and the volume of nodes are used as primary design variables in cross-sectional 

optimization (local optimization), while Kn and Nx are taken as primary design variables in shape 

optimization (global optimization). Meanwhile, the method of alternating primary and secondary 

design variables continually is used, which makes original coupling relations of the design 

variables simplified, moreover, the interplay between them is also considered, which makes the 

whole and local coordinate. Make sure the whole optimal point is based on the local optimal point. 

The cycle is kept going until it satisfies all the constraints. Different convergence conditions are 

adopted at different stages, which make the program have extensive applicability.  

The range of Kn and Nx is defined beforehand in optimization program based on theoretical 

and practical problems. Under the certain rise to span ratio, from one side, if the Kn and Nx are too 

large, the grid of the shells will be too thick, especially the radical rod elements at the position of 

the vertex, if the Kn is too large, welded-sphere joints must be big enough to ensure these certain 

holes, which makes it difficult to construct. From the other side, if the Kn and Nx are too small, the 

grid of the shells will be too thin, which leads to unreasonable stress problems. Therefore, as for 

spherical reticulated shells of different span and height, the range of Kn and Nx is selected 

appropriately based on theoretical and practical experiences in optimization program. 

In order to present the process of shape optimization intuitively, Fig. 11 gives the flowchart of 

Schwedler spherical reticulated shells (Wu et al. 2015).  

 
 

 

Fig. 12 The total steel consumption of four typical Schwedler spherical reticulated shells when span is 30 m 
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Fig. 13 The total steel consumption of four typical Schwedler spherical reticulated shells when span is 40 m 

 

 

Fig. 14 The total steel consumption of four typical Schwedler spherical reticulated shells when span is 50 m 

 

 

Fig. 15 The total steel consumption of four typical Schwedler spherical reticulated shells when span is 60 m 

 

 

7. Shape optimization results and discussion 
 

Under the same S, Kn and Nx, different rise to span ratio, the total steel consumption of four 

typical Schwedler spherical reticulated shells after optimization are shown in Figs. 12-17. 
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Fig. 16 The total steel consumption of four typical Schwedler spherical reticulated shells when span is 70 m 

 

 

Fig. 17 The total steel consumption of four typical Schwedler spherical reticulated shells when span is 80 m 

 

 

(1) When the span is 30 m, it can be seen clearly from Fig. 12: The total weight of double slash 

rod after shape optimization is the maximum, followed by no latitudinal rod, then left diagonal 

rod, and the total weight of left and right rod after shape optimization is the lightest. It also shows, 

the total weight of four typical Schwedler spherical reticulated shells is minimal when the rise to 

span ratio is 1/6. The result is obtained from the optimizer, i.e., when the rise to span ratio of the 

structures is 1/6, the selected cross-sectional area of rod elements and volume of nodes are 

relatively smaller on the premise of satisfying all the constraint conditions. From the aspect of 

internal force analysis, in such cases, the stress and displacement are both smaller, and the 

structures have reasonable force. In this case, the difference of total weight between double slash 

rod and no latitudinal rod is 2×10
3 
kg, and the difference of total weight between left diagonal rod 

and left and right rod is close to 2×10
3 
kg, meanwhile, the difference between the maximum and 

minimum is 8×10
3 
kg. 

(2) Similarly, when the span is 40 m (Fig. 13), the results are basically consistent with the 

analysis of Fig. 12. While the rise to span ratio is 1/6, the difference of total weight between 

double slash rod and no latitudinal rod is 3×10
3 
kg, and the difference of total weight between left 

diagonal rod and left and right rod is 2×10
3 
kg, meanwhile, the difference between the maximum 

and minimum is 1.5×10
4 
kg, which has nearly doubled than the difference when the span is 30 m. 
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(3) When the span is 50 m and rise to span ratio is 1/6 (Fig. 14), the difference of total weight 

between double slash rod and no latitudinal rod is 3×10
3 

kg, and the difference of total weight 

between left diagonal rod and left and right rod is 2.3×10
3 
kg, meanwhile, the difference between 

the maximum and minimum is 2.3×10
4 
kg, which has increased two times than the difference when 

the span is 30 m. 

(4) When the span is 60 m and rise to span ratio is 1/6 (Fig. 15), the difference of total weight 

between double slash rod and no latitudinal rod is 6×10
3 

kg, and the difference of total weight 

between left diagonal rod and left and right rod is close to 6×10
3 

kg, meanwhile, the difference 

between the maximum and minimum is 4×10
4 

kg, which has increased four times than the 

difference when the span is 30 m. 

(5) When the span is 70 m, it can be seen clearly from Fig. 16: The total weight of double slash 

rod after shape optimization is the maximum, followed by no latitudinal rod, then left diagonal 

rod, and the total weight of left and right rod after shape optimization is the lightest. It also shows, 

the total weight of four typical Schwedler spherical reticulated shells is minimal when the rise to 

span ratio is 1/5. In this case, the difference of total weight between double slash rod and no 

latitudinal rod is 7×10
3 
kg, and the difference of total weight between left diagonal rod and left and 

right rod is 7×10
3 
kg, meanwhile, the difference between the maximum and minimum is 6.5×10

4 

kg, which has increased seven times than the difference when the span is 30 m. 

(6) Likewise, when the span is 80 m (Fig. 17), the results are basically consistent with the  

analysis of Fig. 16. While the rise to span ratio is 1/5, the difference of total weight between 

double slash rod and no latitudinal rod is 1.3×10
4 
kg, and the difference of total weight between 

left diagonal rod and left and right rod is 1.6×10
4 

kg, meanwhile, the difference between the 

maximum and minimum is 9×10
4 
kg, which has increased ten times than the difference when the 

span is 30 m. 

(7) Overall, when the span is less than 60 meters, the difference of total weight of four typical 

Schwedler spherical reticulated shells is small. Otherwise, the total weight increased rapidly. When 

the span is 60 meters, the total weight of double slash rod and no latitudinal rod is much greater 

than left and right rod and left diagonal rod. And as the span increases, the difference is also 

growing. When the span is 80 meters, the maximum difference has increased by nearly tenfold 

more. 

(8) Under the same span and rise to span ratio, after shape optimization, the total weight of 

double slash rod is the maximum. That is because the grids of double slash rod are denser and the 

number of rod elements is larger, thereby increasing its weight. 

(9) Under the certain span, the total weight of four typical Schwedler spherical reticulated 

shells changes with the changes of rise to span ratio. When the rise to span ratio is between 1/6 to 

1/5, the figure is the lightest. 

(10) In a word, when the span is between 30 to 80 meters, the total weight of left and right rod 

after shape optimization is the minimum, followed by left diagonal rod, and the total weight of no 

latitudinal rod and double slash rod after shape optimization is larger. Thus, left and right 

rod-Schwedler spherical reticulated shell can be used for large, medium and small-span structures 

from the viewpoint of economic aspect, which has broad scope of application. 

 

 

8. Conclusions 
 

Parametric modeling and shape optimization of four typical Schwedler spherical reticulated 
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shells are achieved in the present study.  

Generation methods of nodes and the corresponding connection methods of rod elements are 

proposed. Modeling programs are compiled by adopting the APDL. The internal forces of four 

typical Schwedler spherical reticulated shells are analyzed. A shape optimization method based on 

the two-stage algorithm is presented, and the corresponding optimization program is compiled in 

FORTRAN environment. Shape optimization is conducted by considering the objective function of 

the minimum total steel consumption, global and locality constraints The shape optimization of 

four typical Schwedler spherical reticulated shells is carried out with the span of 30 m~80 m and 

rise to span ratio of 1/7~1/2. Compared with the shape optimization results, the variation rules of 

total steel consumption along with the span and rise to span ratio are discussed. The results show 

that:  

• From the viewpoint of internal force analysis and shape optimization, left and right 

rod-Schwedler spherical reticulated shell is the most optimized and should be preferentially 

adopted in structural engineering. It can be widely used in large, medium and small-span 

structures. 

• The left diagonal rod-Schwedler spherical reticulated shell is second only to left and right rod 

regarding the mechanical behavior and optimized results. It can be applied to medium and 

small-span structures. 

• After internal force analysis, the stress and displacement of double slash rod-Schwedler 

spherical reticulated shell is minimal. However, the total weight of the optimized structure is the 

largest. Thus, this type can be used in large-span structures as far as possible. 

• Because the stress and displacement under the loads of no latitudinal rod-Schwedler 

reticulated shell is the largest. In addition, the total weight of the optimized structure is the second 

largest. Thus, this spherical reticulated shell should not be adopted generally in engineering. 
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