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Abstract.  This paper presents a novel method based on sensitivity of structural response for identifying 
both the system parameters and input excitation force of a bridge. This method, referred to as “Adjoint 

Variable Method”, is a sensitivity-based finite element model updating method. The computational cost of 

sensitivity analyses is the main concern associated with damage detection by these methods. The main 

advantage of proposed method is inclusion of an analytical method to augment the accuracy and speed of the 

solution. The reliable performance of the method to precisely indentify the location and intensity of all types 

of predetermined single, multiple and random damages over the whole domain of moving vehicle speed is 

shown. A comparison study is also carried out to demonstrate the relative effectiveness and upgraded 

performance of the proposed method in comparison to the similar ordinary sensitivity analysis methods. 

Moreover, various sources of error including the effects of noise and primary errors on the numerical 

stability of the proposed method are discussed. 
 

Keywords:  simultaneous damage detection; sensitivity; model updating; Ill posed problem; Inverse 

problem; regularization; noise 

 
 
1. Introduction 
 

Bridges have finite life spans and begin to degrade as soon as they are put into service. 

Processes such as corrosion, fatigue, erosion, wear and overloads degrade them until they are no 

longer fit for their intended use. Currently, bridges are inspected visually every two years. There is 

a strong interest to aid these inspection efforts with a more continuous, reliable, physics-based and 

less subjective procedure. This has led to a great deal of activity in structural health monitoring.  

Structural Health Monitoring (SHM) defines the process of assessing the state of health of a 

structure and of predicting its remaining life. SHM potentially offers increased safety, since faults 

cannot grow to a dangerous level and reduces ownership costs by replacing pre-planned 

precautionary servicing with targeted, responsive maintenance. 

An SHM system comprises of both hardware and software elements. The hardware elements 
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are essentially the sensors and the associated instrumentation, while the software components 

consist of damage modeling and damage detection algorithms (Srinivasan et al. 2011). Successful 

development and implementation of the SHM process involves the understanding of modeling 

aspects and computing technology.  

Damage detection is the primary task of most of SHM systems. In general, all existing methods 

can be divided into two groups: local and global approaches. Local monitoring methods locate and 

identify small defects in narrow inspection zones via ultrasonic testing (Staszewski 2003, 

Ostachowicz et al. 2009) or statistical classification techniques (Silva et al. 2008, Nair et al. 2006). 

These methods do not require structural modeling and are outside the scope of this paper.  

Detecting damages in large structures like bridges usually requires a combination of local and 

global structural responses recorded on the structure. Also, it is very important that the selected 

structural responses are sensitive to the possible damages in the structure.  

In this regard, vibration measurements on bridges are among the global measurements that can 

be directly related to the damages occurring in the bridge. The premise of this analogy lies in the 

fact that changes in the stiffness and mass properties of the bridges can result in changes of 

dynamic characteristics of bridges. 

The developments in the field of System Identification (SI) using vibration data of civil 

engineering structures have been recently reviewed by several authors. 

Doebling et al. (1998) provided a comprehensive review on the damage detection methods by 

examining changes in the dynamic properties of a structure. Zou et al. (2000) summarized the 

methods on vibration-based damage detection and health monitoring for composite structures, 

especially in delamination modeling techniques and delamination detection. 

Damage detection usually requires a mathematical model on the structure in conjunction with 

experimental modal parameters of the structure. The identification approaches are mainly based on 

the change in the natural frequencies (Cawley and Adams 1979, Friswell et al. 1994, Narkis 1994), 

mode shapes (Pandey et al. 1991, Ratcliffe 1997, Rizos et al. 1990) or measured modal flexibility 

(Pandey and Biswas 1994, Doebling et al. 1996, Lim 1991, Wu and Law 2004).  

The natural frequency is easy to measure with a high level of accuracy, and is the most 

common dynamic parameter for damage detection. However, problems may arise in some 

structures if only natural frequency is used, since the symmetry of the structure would lead to non-

uniqueness in the solution in the inverse analysis of damage detection. 

For non-stationary and moving loads, the analysis is most often performed in the time domain 

via a direct comparison of the simulated and measured responses. (Choi and Kim 2005) 

Majumder and Manohar (2003, 2004) propose a method for damage identification of linear and 

non-linear beams excited by a moving oscillator; the beam and the oscillator are treated together as 

a single coupled and time-varying system. Sieniawska et al. (2009) use a static substitute of the 

equation of motion for identification of parameters of a linear structure from its responses to a 

moving load of a known constant magnitude. 

Identification of moving loads is important not only for assessment of pavements or bridges but 

also in traffic studies, in design code calibration, for traffic control, etc. Several techniques have 

been developed, which address both these identification problems separately: either they identify 

the damage while assuming load characteristics to be known or they identify the moving load, but 

the structure is assumed to be undamaged. 

Identification of moving loads has been studied extensively in the past two decades (Yu and 

Chan 2007). A direct measurement of the dynamic axle loads of vehicles is expensive, difficult and 

subject to bias. Therefore, techniques of indirect identification from measured responses have been 
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studied, as they can be performed easier and at lower costs. Chan, Law et al. have proposed four 

general methods for indirect identification, which are the Time-Domain Method (TDM) (Law et 

al. 1997), the Frequency-Time Domain Method (FTDM) (Law et al. 1999), Interpretive Method I 

(IMI) (Chan and O’Connor 1990) and Interpretive Method II (IMII) (Chan et al. 1999). All of 

them require the parameters of the model of the bridge to be known in advance. Each method has 

its merits and limitations, which are compared in Chan et al. (2001). The numerical ill-

conditioning of the problem seems to be the main factor that decreases the accuracy of the 

identification results. To improve the accuracy, techniques based on the Singular Value 

Decomposition (SVD) have been investigated and adopted for the inverse computation (Yu and 

Chan 2003). Other regularization methods have been also used, e.g., Law et al. (2001) and Zhu 

and Law (2006) use the Tikhonov regularization, while Law and Fang (2001) and González et al. 

(2008) couple it with the dynamic programming approach. In general, all these methods require a 

known and well-defined model of the structure in order to build the load–response relation, even if 

some of them allow for the identification of chosen additional parameters besides the moving load, 

such as the prestressing force (Law et al. 2008) or parameters of the vehicle model (Jiang et al. 

2004).  

In real applications unknown damages and unknown moving loads can coexist and together 

influence the response of the system; it seems that their simultaneous identification is a relatively 

unexplored area. 

In the case of unknown excitations and unknown structural damages, the related identification 

problems are inherently coupled: both factors together influence the structural response and cannot 

be identified independently from each other. Hoshiya and Maruyama (1987) apply a weighted 

global iteration procedure and the extended Kalman filter for simultaneous identification of a 

moving force and modal parameters of a simply supported beam. Lu and Law (2007) identify 

damage and parameters of non-moving impulsive or sinusoidal force excitations in a two-step 

identification process using a limited number of measurements. Zhang et al. (2009) present a 

method for simultaneous identification of structural physical parameters and an unknown support 

excitation. Zhu and Law (2007) propose a method for simultaneous identification of moving loads 

and damages using a two-step approach that separately adjusts the loads and the damage factors in 

each iteration of the optimization process; the number of sensors is one less than the number of the 

beam elements. 

Zhang et al. (2010) addressed simultaneous identification of damages and nonmoving 

excitation forces in truss structures; a moving force could be identified only by a simultaneous 

identification of all load-time histories in all involved Degrees Of Freedom (DOF’s). 

In this paper, a novel sensitivity-based damage detection method referred to as Adjoint Variable 

Method (AVM), is developed. The sensitivities of dynamic response with respect to the structural 

physical parameters and the input excitation force are calculated simultaneously and perturbations 

in the structural parameters are identified together with the input excitation forces using an 

iterative algorithm.  

The outline of the work is as follows: Inverse problems along with model updating are briefly 

introduced in section2. The basic theory of sensitivity analysis is addressed in section3 and the 

proposed algorithm will be presented in section4. Numerical simulations are presented in section 5 

with studies on the effect of different factors which may affect the accuracy of the proposed 

analysis in practice. Conclusion will be drawn in the last section.  
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Fig. 1 General flowchart of a FEM-updating 

 
 
2. Finite element model updating and inverse problem 
 

Since many algorithms of damage detection are based on the difference between modified 

model before occurrence of damage and after that, problems such as parameter identification and 

damage detection are closely related to model updating. Discrepancy between two models is used 

for detection and quantification of damage. 

A key step in model-based damage identification is the updating of the finite element model of 

the structure in such a way that the measured responses can be reproduced by the FE-model. A 

general flowchart of this operation is given in Fig. 1 the identification procedure presented in this 

paper is a sensitivity based model updating routine. Sensitivity coefficients are the derivatives of 

the system responses with respect to the physical parameters or input excitation force, and are 

needed in the cost function of the flowchart of Fig. 1.  

 
2.1 Finite element modeling of bridge vibration under moving loads 
 

For a general finite element model of a linear elastic time-invariant structure, the equation of 

motion is given by 

,M-{z,tt} + ,C-{z,t} + ,K-*z+ = ,B-*F+                                                  (1) 

Where [M] and [K] are mass and stiffness matrices and [C] is damping matrix. Z,tt and Z,t and Z 

are the respective acceleration, velocity and displacement vectors for the whole structure and {F} 

is a vector of applied forces with matrix [B] mapping these forces to the associated DOF’s of the 

structure. A proportional damping is assumed to show the effect of damping ratio on the dynamic 

magnification factor. Rayleigh damping, in which the damping matrix is proportional to the 

combination of the mass and stiffness matrices, is used. 

,C- = a0,M- + a1,K-                                                              (2) 

Where a0 and a1 are constants to be determined from two modal damping ratios. If a more 

accurate estimation of the actual damping is required, a more general form of Rayleigh damping, 

the Caughey damping model can be adopted. The dynamic responses of the structures can be 

obtained by direct numerical integration using Newmark method. 
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2.2 Objective functions 
 

The approach minimizes the difference between response quantities (acceleration response) of 

the measured data and model predictions. This problem may be expressed as the minimization of 

J, where 

J(θ) = ‖zm − z(α)‖
2 = ϵTϵ  

ϵ = zm − z(α)                                                                    (3) 

Here zm and z(α) are the measured and computed response vectors, α is a vector of all unknown 

parameters, and ϵ is the response residual vector. 
 

2.3 Nonlinear model updating for damage detection 
 

When the parameters of a model are unknown, they must be estimated using measured data. 

Since the relationship between the acceleration responses 𝑧ï and the fractional stiffness parameter 
α is nonlinear, a nonlinear model updating technique, like the Gauss-Newton method, is required. 

This kind of method has the advantage that the second derivatives, which can be challenging to 

compute, are not required. The Gauss-Newton method in the damage detection procedure can be 

described in terms of the acceleration response at the i
th
 DOF of the structure as 

z̈dl(αd) = z̈ul(α
0) + S(α0) × ∆α1 + S(α0 + ∆α1) × ∆α2 +⋯                          (4) 

The superscript 0, 1, 2 denote the iteration numbers. Index u denotes the initial state or state 0 

while index d denotes the final damage state. �̈�𝑑𝑙 and �̈�𝑢𝑙 are vectors of the acceleration response at 
the i

th
 DOF of the damaged and intact states, respectively. The damage identification equation for 

(𝑘 + 1)th iteration is 

  Δz̈k = Sk × Δαk+1                                                                (5) 

Where 𝑆𝑘 and 𝛿�̈�𝑘 are obtained from the kth iteration. The iteration in Eq. (5) starts with an 
initial value 𝛼0  leading to ∆�̈�0 = �̈�𝑑𝑙 − �̈�𝑢𝑙(𝛼

0)  and 𝑆0 = 𝑆(𝛼0) . The parameter vector 𝛼𝑘 =

𝛼0 + ∑ ∆𝛼𝑖𝑘
𝑖=1 . Sensitivity matrix 𝑆𝑘 = 𝑆(𝛼𝑘), And the residual vector ∆�̈�𝑘 = �̈�𝑑𝑙 − �̈�𝑢𝑙(𝛼

0) −
∑ 𝑆𝑖∆𝛼𝑖+1𝑘−1
𝑖=0 , (𝑘 = 1,2,… ) of the next iteration are then computed from results in the previous 

iterations. 

The acceleration response vector �̈�𝑢𝑙 from the physical intact structure is computed, in general, 
from the associated analytical model via dynamic analysis. �̈�𝑑𝑙 is the acceleration response of the 
model of the damaged structure. In general, the measured acceleration responses (including 

measurement errors) from the damaged structure are obtained for �̈�𝑑𝑙 . 
The iteration is terminated when a pre-selected criterion is met. The final identified damaged 

vector becomes (Ratcliffe 1997). 

 ∆α = ∆α1 + ∆α2 +⋯+ ∆αn                                                           (6) 

 
2.4 Regularization 
 

Like many other inverse problems, the solution of Eq. (5) is often ill-conditioned and 

regularization techniques are needed to provide bounds to the solution. The aim of regularization 
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in the inverse analysis is to promote certain regions of parameter space where the model 

realization should exist. The two most widely used regularization methods are Tikhonov 

regularization (Friswell and Penny 1994) and truncated singular value decomposition (Friswell and 

Mottershead 1995, Ricles and Kosmatka 1992). In the Tikhonov regularization, the new cost 

function is defined as 

J(∆αk+1, λ) = ‖Sk. Δαk+1 − Δz̈k‖
2

2
+ λ2‖Δαk+1‖

2

2
                                      (7) 

The regularization parameter 𝜆 ≥ 0 controls the extent of contribution of the two errors to the 
cost function in Eq. (7) and the fractional stiffness change increment ∆𝛼𝑘+1  is obtained by 
minimizing the cost function in Eq. (7)  

The regularized solution from minimizing the function in Eq. (7) can be written in the 

following form as 

  Δαk+1 = ((Sk)
T
Sk + λ2I)−1(Sk)TΔz̈k                                                (8) 

To express the contribution of the singular values and the corresponding vectors in the solution 

clearly and to show how the regularization parameter plays the role as the filter factor, the 

sensitivity matrix is singular value decomposed and Singular Value Decomposition (SVD) applies 

to the sensitivity matrix 𝑆𝑘 to obtain 

Sk = 𝑈ΣVT                                                                    (9) 

Where 𝑈 ∈ 𝑅𝑛𝑡×𝑛𝑡  and 𝑉 ∈ 𝑅𝑚×𝑚  are orthogonal matrices satisfying 𝑈𝑇𝑈 = 𝐼𝑛𝑡  and𝑉
𝑇𝑉 =

𝐼m , and matrix ∑ has the size of 𝑛𝑡 ×𝑚  with the singular values 𝜎𝑖(𝑖 = 1, 2, … ,𝑚)  on the 
diagonal arranged in a decreasing order such that 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑚 ≥ 0 and zeros elsewhere. 

 The regularized solution in Eq. (8) can be written as 

Δαk+1 =∑ fi
Ui
TΔz̈k

σi
Vi

m

i=1
                                                     (10) 

Where 𝑓𝑖 = 𝜎𝑖
2 (𝜎𝑖

2 + 𝜆2) ⁄  (𝑖 = 1, 2, … ,𝑚) are referred as filter factors. The solution norm 

‖Δ𝛼𝑘+1‖
2

2
 and the residual norm ‖𝑆𝑘. Δ𝛼𝑘+1 − Δ�̈�𝑘‖

2

2
 can be expressed as 

η2 = ‖Δαk+1‖
2

2
=∑(

σi
2

σi
2 + λ2

Ui
TΔz̈k

σi
)2

m

i=1

                                           (11) 

ρ2 = ‖Sk. Δαk+1 − Δz̈k‖
2

2
=∑(

λ2

σi
2 + λ2

Ui
TΔz̈k)2 

m

i=1

                               (12) 

These two quantities represent the smoothness and goodness-of-fit of the solution and they 

should be balanced by choosing an appropriate regularization parameter. 

 
2.5 Element dmage idex 
 

In the inverse problem of damage identification, it is assumed that the stiffness matrix of the 

whole element decreases uniformly with damage, and the flexural rigidity, 𝐸𝐼𝑖  of the i
th
 finite 

element of the beam becomes 𝛽𝑖𝐸𝐼𝑖,when there is damage. The fractional change in stiffness of an 
element can be expressed as (Zhu and Hao 2007). 
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ΔKbi = (Kbi − K̃bi) = (1 − βi)Kbi                                                 (13) 

Where 𝐾𝑏𝑖 and �̃�𝑏𝑖 are the i
th
 element stiffness matrices of the undamaged and damaged beam, 

respectively. Δ𝐾𝑏𝑖  is the stiffness reduction of the element. A positive value of 𝛽𝑖 ∈ ,0,1- will 
indicate a loss in the element stiffness. The i

th
 element is undamaged when 𝛽𝑖 = 1 and the stiffness 

of the i
th
 element is completely lost when 𝛽𝑖 = 0 

The stiffness matrix of the damaged structure is the assemblage of the entire element stiffness 

matrix �̃�𝑏𝑖 

Kb =∑Ai
TK̃biAi =∑ β

i

N

i=1

Ai
TKbiAi

N

i=1

                                               (14) 

Where Ai is the extended matrix of element nodal displacement that facilitates assembling of 

global stiffness matrix from the constituent element stiffness matrix. 

 
2.6 Input force identification 
 

The sensitivity-based analysis method without considering the second and higher order effects 

is adopted in this study. In the Gauss-Newton method, we have 

*δz̈+ = ,SF-*δP+                                                                  (15) 

The physical parameters of the intact structure are used, as an approximation, to calculate the 

matrix ,𝑆𝐹- as we are not certain about the true state of the damage structure. ,𝑆𝐹- is the sensitivity 
matrix, which is the change of acceleration response with respect to the force parameters in time 

domain and *𝛿𝑃+ is the vector of perturbation in the force parameters. Eq. (15) can be solved by 
Tikhonov method as 

δP = ((SF)
TSF + λ

2I)−1(SF)
Tδz̈                                                      (16) 

 
2.7 Damage identification 
 

Once the forces have been obtained from above, we can move on to the local damage 

identification. Again by using Gauss-Newton method, we have 

 *δz̈+ = ,SS-*δα+                                                                  (17) 

,𝑆𝑆- is the sensitivity matrix, which is the change of acceleration response with respect to the 
physical parameter in time domain. *𝛿𝛼+  is the vector of perturbation of the parameter. The 
physical parameter can also be obtained using Tikhonov method as 

δα = ((SS)
TSS + λ

2I)−1(SS)
Tδz̈                                                    (18) 

 
 
3. Sensitivity analysis of transient dynamic response 

 

The objective of sensitivity analysis is to quantify the effects of parameter variations on 

calculated results. Terms such as influence, importance, ranking by importance and dominance are  
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Fig. 2 Different approaches to sensitivity analysis 

 

 

all related to sensitivity analysis.  

The most important difficulty in sensitivity base SI methods is calculation of sensitivity matrix. 

Calculation of this massive matrix is repeated in each iteration and according to its dimensions, is 

so time-consuming and has a significant effect on the efficiency of method. 

 
3.1 Methods of structural sensitivity analysis 
 

When the parameter variations are small, the traditional way to assess their effects on 

calculated responses is by using perturbation theory, either directly or indirectly, via variational 

principles. The basic aim of perturbation theory is to predict the effects of small parameter 

variations without actually calculating the perturbed configuration but rather by using solely 

unperturbed quantities.  

Various methods employed in sensitivity analysis are listed in Fig. 2 three approaches are used 

to obtain the sensitivity matrix: the approximation, discrete, and continuum approaches.  

 
3.2 Approximation approach 
 

In the approximation approach, sensitivity matrix is obtained by either the forward finite 

difference or the central finite difference method. 

If the design is perturbed to u+Δu, where Δu represents a small change in the design, then the 

sensitivity of ψ(u) can be approximated as 

  

  
 
 ( + Δ ) −  ( )

Δ𝑢
                                                         (19) 

Eq. (19) is called the forward difference method since the design is perturbed in the direction of 

+Δu. If –Δu is substituted in Eq. (19) for Δu, and then the equation is defined as the backward 

difference method. Additionally, if the design is perturbed in both directions, such that the design 

sensitivity is approximated by Eq. (20), the equation is defined as the central difference method. 

  

  
 
 ( + Δ ) −  ( − Δ )

2Δ 
                                                  (20) 

Sensitivity 
methods 

Approximation 
Approach 

Forward Finite 
Difference 

Centeral Finite 
Difference 

Discrete 
Approach 

Analytical 
discrete 

approach 

semi-analytical 
discrete 

approach 

Continuum 
Approach 

Continuum-
Discrete Method 

Continuum-
Continuum 

Method 
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3.3 Discrete approach 
 

In the discrete method, sensitivity matrix is obtained by design derivatives of the discrete 

governing equation. For this process, it is necessary to take the derivative of the stiffness matrix. If 

this derivative is obtained analytically using the explicit expression of the stiffness matrix with 

respect to the variable, it is an analytical method, since the analytical expressions of stiffness 

matrix are used. However, if the derivative is obtained using a finite difference method, the 

method is called a semi analytical method. The design represents a structural parameter that can 

affect the results of the analysis.  

The design sensitivity information of a general performance measure can be computed either 

with the direct differentiation method or with the adjoint variable method.  

 
3.3.1 Direct differentiation method 
The Direct Differentiation Method (DDM) is a general, accurate and efficient method to 

compute finite element response sensitivities to the model parameters. This method directly solves 

for the design dependency of a state variable, and then computes performance sensitivity using the 

chain rule of differentiation. This method clearly shows the implicit dependence on the design, and 

a very simple sensitivity expression can be obtained.  

Consider a structure in which the generalized stiffness and mass matrices have been reduced by 

accounting for boundary conditions. Performing differentiation to both sides of Eq. (1) with 

respect to the i
th
 excitation force, 𝑃𝑖 , we have 

,M- {
 z,tt
 Pi

} + ,C- {
 z,t
 Pi
} + ,K- {

 z

 Pi
} = ,B-                                            (21) 

Performing differentiation to both sides of Eq. (1) again with respect to the j
th
 physical 

parameter, 𝛼 , of the j
th
 element, and assuming Rayleigh damping in the system, we have 

,M- 8
 z,tt
 α 

9 + ,C- 8
 z,t
 α 
9 + ,K- 8

 z

 α 
9 = −

 ,K-

 α 
*z+ − a1

 ,K-

 α 
{z,t}                        (22) 

Where  1 is the coefficient for Rayleigh damping. Note that Eqs. (20) and (21) have the same 

form as Eq. (1). The response sensitivities can also be obtained by Newmark method. The initial 

values of the dynamic responses and the sensitivities can be taken equal to zero. 

 
3.4 Continuum approach 

 
In the continuum approach, the design derivative of the variational equation is taken before it is 

discretized. If the structural problem and sensitivity equations are solved as a continuum problem, 

then it is called the continuum-continuum method. The continuum sensitivity equation is solved by 

discretization in the same way that structural problems are solved. Since differentiation is taken at 

the continuum domain and is then followed by discretization, this method is called the continuum-

discrete method. 

 
3.5 Adjoint variable method  
 

Sensitivity analysis can be performed efficiently by using deterministic methods based on 

adjoint functions. The use of adjoint functions for analyzing the effects of small perturbations in a 
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linear system was introduced by Wigner (1945).  

This method, constructs an adjoint problem that solves for the adjoint variable, which contains 

all implicitly dependent terms. 

For the dynamic response of structure, the following form of a general performance measure 

will be considered 

ψ =  (z( ),  ) + ∫ G(z,  ) t                                                     (23)
T

0
  

Where the final time T is determined by a condition in the form 

 (z( ), z,t( ),  ) = 0                                                            (24)  

It is presumed that Eq. (24), uniquely determines T, at least locally. This requires that the time 

derivative of   is nonzero at T, as 

 ,t =
  

  
z,t( ) +

  

  
z,tt( )  0                                                      (25)  

To obtain the design sensitivity of Ψ, define a design variation in the form 

  =  +                                                                        (26)  

Design b is perturbed in the direction of δb with the parameter τ. Substituting bτ into Eq. (23), 

the derivative of Eq. (23), can be evaluated with respect to τ at τ=0. Leibnitz’s rule of 

differentiation of an integral may be used to obtain the following expression 

  =
  

  
  +

  

 z
[z ( ) + z,t( ) 

 ] + G(z( ),  )  +∫ [
 G

 z
z +

 G

  
  ]  t

T

0

  

z = z ( , δ )  
 

  
z(t,  +  δ )| =0 =

 

  
,z(t,  )-δ  

  =   ( , δ )  
 

  
 ( +  δ )|

 =0
=
  

  
δ                                       (27) 

Note that since the expression in Eq. (23), that determines T depends on the design, T will also 

depend on the design. Thus, terms arise in Eq. (27), which involves the derivative of T with respect 

to the design. In order to eliminate these terms, differentiate Eq. (24), with respect to τ and 

evaluate it at τ=0 in order to obtain 

  

  
[z ( ) + z,t( ) 

 ] +
  

  , 
[z ,t( ) + z,tt( ) 

 ] +
  

 b
  = 0                          (28)  

This equation may also be written as 

 ,t 
 = [

  

  
z,t( ) +

  

  , 
z,tt( )]  

 = −(
  

  
z ( ) +

  

  , 
z ,t( ) +

  

 b
  )                  (29)  

Since it is presumed by Eq. (25), that 𝛺
,𝑡
 0 , then 

  = −
1

 , 
(
  

  
z ( ) +

  

  , 
z ,t( ) +

  

 b
  )                                       (30)  

Substituting the result of Eq. (30), into Eq. (27), the following is obtained: 
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ψ
 
= ,
  

 z
− 4

  

 z
z,t( ) + G(z( ),  )

1

 ,t

  

 z
7 z ( ) − [

  

 z
z,t( ) + G(z( ),  )]

1

 ,t

  

 z,t
z ,t( ) + 

∫ [
 G

 z
z +

 G

  
  ]  t +

  

  
  − [

  

 z
z,t( ) + G(z( ),  )]

1

 ,t

  

  
        

T

0

              (31) 

Note that Ψ’ depends on z’ and z’,t at T, as well as on z’ within the integration. 

In order to write Ψ’ in Eq. (30), explicitly in terms of a design variation, the adjoint variable 

technique can be used. In the case of a dynamic system, all terms in Eq. (1), can be multiplied by 

λ
T
(t) and integrated over the interval [0, T], to obtain the following identity in λ 

∫  
T[M( )z,tt + C( )z,t + K( )z − F(t,  )] t = 0                                       (32)

T

0
  

Since this equation must hold for arbitrary λ, which is now taken to be independent of the 

design, substitute bτ into Eq. (32), and differentiate it with respect to τ in order to obtain the 

following relationship 

∫ 0 TM( )z ,tt +  
TC( )z ,t +  

TK( )z −
  

 b
  1  t = 0

T

0
                               (33)  

Where 

 = λ̃TF(t,  ) − λ̃TM( )z̃,tt − λ̃
TC( )z̃,t − λ̃

TK( )z ̃                                (34)  

With the superposed tilde (~) denoting variables that are held constant during the differentiation 

with respect to the design in Eq. (33). 

Since Eq. (33), contains the time derivatives of z’, integrate the first two integrands by parts in 

order to move the time derivatives to λ, as 

 
TM( )z ,t( ) −  ,t

T( )M( )z ( ) +  TC( )z ( ) + 

∫ {[ ,tt
T M( ) −  ,t

TC( ) +  
TK( )]z −

  

  
  }  t = 0 

T

0

                                   (35) 

The adjoint variable method expresses the unknown terms in Eq. (31), in terms of the adjoint 

variable (λ). Since Eq. (35), must hold for arbitrary functions λ(t), λ may be chosen so that the 

coefficients of terms involving z’(T),z’,t(T) and z’ in Eq. (31), and Eq. (35), are equal. If such a 

function λ(t) can be found, then the unwanted terms in Eq. (31), involving z’(T), z’,t(T) and z’ can 

be replaced by terms that explicitly depend on δb in Eq. (35), To be more specific, choose a λ(t) 

that satisfies the following 

M( ) ( ) = −0
  

  
z,t( ) + G(z( ),  )1

1

 , 

   

  , 
                                     (36)  

M( ) ,t( ) = C
T( ) ( ) −

   

  
+ 0

  

  
z,t( ) + G(z( ),  )1

1

 , 

   

  
                   (37)  

M( ) ,tt − C
T( ) ,t + K( ) =

   

  
, 0  t                                        (38)  

Note that once the dynamic equation of Eq. (1), is solved and Eq. (24), is used to determine T, 

then z(T), z,t(T), 
  

  
, 
  

  , 
 and Ω

,𝑡
 may be evaluated. Eq. (25), can then be solved for λ(T) since the 

mass matrix M(b) is nonsingular. Having determined λ(T), all terms on the right of Eq. (37), can be 
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evaluated, and the equation can be solved for λ,t(T). Thus, a set of terminal conditions on λ has 

been determined. Since M(b) is nonsingular, Eq. (38), may then be integrated from T to 0, yielding 

the unique solution λ(t). Taken as a whole, Eq. (36), through Eq. (38), may be thought of as a 

terminal value problem. 

Since the terms involving a variation in the state variable in Eq. (31), and Eq. (35), are 

identical, substitute Eq. (35), into Eq. (31), to obtain 

  =
  

  
δ + ∫ [

 G

  
+
  

  
]  tδ − ,

  

 z
z,t( ) + G(z( ),  )-

1

 ,t

  

  
δ  

  

  
δ 

T

0

          (39) 

Every term in this equation can now be calculated. The terms 
  

 b
 , 
  

 b
 and 

  

 b
 represent explicit 

partial derivatives with respect to the design. The term 
  

 b
, however, must be evaluated from Eq. 

(34), thus requiring λ(t). Note also that since design variation  b does not depend on time, it is 

taken outside the integral in Eq. (39). 

Since Eq. (39), must hold for all δb, the design derivative vector of Ψ is 

  

  
=
  

  
(z( ),  ) + ∫ ,

 G

  
(z,  ) +

  

  
( (t), z(t), z,t(t),

T

0

z,tt(t),  )- t  

−
1

 ,t
[
  

 z
z,t( ) + G(z( ),  )]

  

  
                                                      (40) 

 

3.6 Sensitivity method selection 
 

The advantage of the finite difference method is obvious. If structural analysis can be 

performed and the performance measure can be obtained as a result of structural analysis, then the 

expressions in Eq. (15) and Eq. (16) are virtually independent of the problem types considered. 

Major disadvantage of the finite difference method is the accuracy of its sensitivity results. 

Depending on perturbation size, sensitivity results are quite different. For a mildly nonlinear 

performance measure, relatively large perturbation provides a reasonable estimation of sensitivity 

results. However, for highly nonlinear performances, a large perturbation yields completely 

inaccurate results. Thus, the determination of perturbation size greatly affects the sensitivity result. 

Although it may be necessary to choose a very small perturbation, numerical noise becomes 

dominant for a too-small perturbation size. That is, with a too-small perturbation, no reliable 

difference can be found in the analysis results.  

The continuum-continuum approach is so limited and is not applicable in complex engineering 

structures because very simple, classical problems can be solved analytically.  

The discrete and continuum-discrete methods are equivalent under the conditions given below. 

(Choi and Kim 2005).  

First, the same discretization (shape function) used in the FE method must be used for 

continuum design sensitivity analysis. Second, an exact integration (instead of a numerical 

integration) must be used in the generation of the stiffness matrix and in the evaluation of 

continuum-based design sensitivity expressions. Third, the exact solution (and not a numerical 

solution) of the FE matrix equation and the adjoint equation should be used to compare these two 

methods. Fourth, the movement of discrete grid points must be consistent with the design 

parameterization method used in the continuum method. 
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In this paper two different analytical discrete methods, including DDM and AVM are presented 

and efficiency of the proposed method is investigated with compared to DDM. 

 
 
4. Proposed method 
 

While structural vibration responses are used for damage detection, assuming G=0, Eq. (38), is 

a free vibration of beam with terminal conditions. Solving Eq. (38), for a single degree of freedom 

system is as follow 

 λ,tt −  λ,t +   = 0   th t     a       t      λ( ), λ̇( ) 

λT(t) =  
  (t−T)(A1   (  t) + B1   (  t))                                      (41) 

{
 
 

 
 A1 = (

λ,t( )

  
−

 

√1 −  2
λ( ))   (   ) + λ( )    (   )

B1 =
λ( )

   (  t)
− A1 ta (   )  

                         (42) 

In which 

 =  2  ⁄ =     ⁄  1 a     =  √1 −  
2  

When time T is known, the coefficients of the characteristic equation of T' and thereupon   will 

be zero, so the terminal conditions are as follow 

 𝜆(𝑇) = 0                                                                        (43) 

λ,t( ) = M
−1( ) × 4−

  T

 z
5                                                     (44) 

Substitute Eq. (43), into Eq. (44), to obtain 

A1 =
λ,t( )

  
   (   )    B1 = −

λ,t( )

  
   (   )                                 (45)  

Note that 
  

  
 like A1 and B1 is dependent to time T, so terminal values for different amounts of T 

are not similar and adjoint equation should be calculated for all amounts of T separately. So 

λT(t) =  
  (t−T) 4

λ,t( )

  
   (   )    (  t) −

λ,t( )

  
   (   )    (  t)5 = PTf(t) +  T (t)  

PT =  
−  T

λ,t( )

  
   (   ) f(t) =  

  t   (  t)  T = − 
−  𝑇

λ,t( )

  
   (   )  (t) 

=    t    (  t)                                                                  (46) 
 
4.1 Sensitivity matrix for physical parameter 
 

Using Eq. (40), assuming T is known and G=0 because of using structural vibration data, Eq. 

(47), can be obtained 

883



 

 

 

 

 

 

Reza Abbasnia, Akbar Mirzaee and Mohsenali Shayanfar 

  

  
= ∫

  

  
 t                                                                   (47)

T

0

 

In this equation: 

𝑅 = �̃�𝑇 (𝑡) − �̃�𝑇 �̃�,𝑡𝑡 − �̃�
𝑇 ( )�̃�,𝑡 − �̃�

𝑇𝐾( )�̃� and  =  0𝐾( ) +  1  is Rayleigh damping 

matrix. 

Performing differentiation to Eq. (34) with respect to the j
th
 physical parameter, 𝛼 , of the j

th
 

element, we have 

  

  
=
  

 α 
= −λT̃a0

 K

 α 
z,t̃ − λ

T̃
 K

 α 
z̃                                               (48) 

And component of sensitivity matrix in time T is 

  

 α 
( ) = ∫ (−λT̃a0

 K

 α 
z,t̃ − λ

T̃
 K

 α 
z̃

T

0

) t                                           (49) 

In a multi degree of freedom problem, solving the above equations directly is not possible. For 

this purpose, change the variables as follow 

*λ+ = , -* +                                                                     (50) 

In this equation matrix [φ] forms vibration modes (modal matrix) and terminal conditions of 

above equations are 

* ( )+ = M−1, -T, -*λ( )+                                                      (51) 

{ ,t( )} = M
−1, -T, -{λ,t( )}                                                    (52) 

By inserting Eq. (50) in Eq. (38) and multiplying , -𝑇 in both sides, the new equation in modal 

space is 

,M-{ ,tt} − ,C-{ ,t} + ,K-* + = *0+                                                 (53) 

Each of , -, , - a   ,𝐾- matrices is diagonal, so 

Mi2 ,tti3 − Ci{ ,t } + Ki* i+ = *0+                                                 (54) 

  

 α 
( ) = −∫ 〈 〉 × , -T × a0 6

  

 α 
7 × {z,t}

T

0

+ 〈 〉 × , -T × 6
  

 α 
7 × *z+ t           (55)  

Consider: , -T × a0 [
 k

   
] × {z,t} = *zz,t+ and , -T × [

 k

   
] × *z+ = *zz+ 

Eq. (55) can be reduced to Eq. (56) 

  

 α 
( ) = −∫ 〈 〉 × {zz,t}

T

0

+ 〈 〉 × *zz+ t                                              (56) 

From Eq. (46) variable Y in modal space can be written as 

* + = *P( )+. *f(t)+ + * ( )+. * (t)+                                                 (57) 
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Replacing Eq. (57) in Eq. (56) a new expression is derived to calculate the sensitivity. 

  

 α 
( ) = −∫ (*P( )+. *f(t)+ + * ( )+. * (t)+)T × {zz,t}

T

0

+  

(*P( )+. *f(t)+ + * ( )+. * (t)+)T × *zz+ t                                          (58) 

Eq. (58) can be rewritten as follow 

  

 α 
( ) = −∫ 〈P( )〉 × (*f(t)+. {zz,t}

T

0

+ *f(t)+. {zz,t}) + 〈 ( )〉 

× (* (t)+. {zz,t} + * (t)+. {zz,t}) t                                                (59) 

Consider following parameters 

A = ∫ *f(t)+. {zz,t}
T

0

 t B = ∫ * (t)+. {zz,t}
T

0

 t C = ∫ *f(t)+. *zz+
T

0

 t D = ∫ * (t)+. *zz+
T

0

 t  

So, Eq. (59) is presented as 

  

 α 
( ) = −〈P( )〉 × (*A+ + *C+) − 〈 ( )〉 × (*B+ + *C+)                           (60)  

Solution of Eq. (60) directly is too time consuming, because in each time step all terms in Eq. 

(60) should be recalculted. Therefore, an incremental solution is developed as follow 

*AT+∆T+ = ∫ *f(t)+. {zz,t}
T+∆T

0

 𝑡 = ∫ *f(t)+. {zz,t}
T

0

 t +∫ *f(t)+. {zz,t}
T+∆T

T

 t            (61) 

*AT+∆T+ = *AT+ + * A+ , * A+ = ∫ *f(t)+. {zz,t}
T+∆T

T

 t  {f ( +
∆ 

2
)} . {zz,t ( +

∆ 

2
)}  (62) 

Similar to Eq. (60) for other parameters we have 

* B+ = ∫ * (t)+. {zz,t}
T+∆T

T
 t  2 . +

∆T

2
/3 . 2zz,t . +

∆T

2
/3                        (63) 

*δC+ = ∫ *f(t)+. *zz+
T+∆T

T
 t  2f . +

∆T

2
/3 . 2zz . +

∆T

2
/3                            (64) 

*δD+ = ∫ * (t)+. *zz+
T+∆T

T

 t  { ( +
∆ 

2
)} . {zz ( +

∆ 

2
)}                         (65) 

And finally the sensitivity expression in time 𝑇 + ∆𝑇 is 

  

 α 
( + ∆ ) = −〈P( + ∆ )〉 × (*AT+∆T+ + *CT+∆T+) − 〈 ( + ∆ )〉 

× (*BT+∆T+ + *DT+∆T+)                                                            (66)  

 
4.2 Sensitivity matrix for excitation force 
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Performing differentiation to Eq. (34) with respect to the parameters of the i
th
 excitation force, 

we have 

  
  

 b
=

  

   
= λT̃B                                                                     (67) 

And component of sensitivity matrix in time T is 

 
d 

d  
( ) = ∫ λT̃B

T

0
 t                                                                 (68) 

Using modal space and Eq. (57) we have 

 
d 

d  
( ) = ∫ 〈 〉 × , -T ×

T

0
,B- t                                                      (69)  

Consider: , -𝑇 × , - = *  +  using Eq. (57) in Eq. (69) a new expression is derived to 

calculate the sensitivity. 

 
d 

d  
( ) = ∫ (*P( )+. *f(t)+ + * ( )+. * (t)+)T × *BB+

T

0
 t                                (70)  

Eq. (70) can be rewritten as follow 

  

 Pi
( ) = ∫ 〈P( )〉 × (*f(t)+. *BB+

T

0

) + 〈 ( )〉 × (* (t)+. *BB+) t                      (71)  

Consider following parameters: 𝐸 = ∫ *𝑓(𝑡)+. *  +
T

0
 𝑡  = ∫ *𝑔(𝑡)+. *  +

𝑇

0
 𝑡  

So, Eq. (71) is presented as 

  

 Pi
( ) = 〈P( )〉 × *E+ + 〈 ( )〉 × *F+                                               (72)  

Using incremental solution is as follow 

*ET+∆T+ = ∫ *f(t)+. *BB+
T+∆T

0

 t = ∫ *f(t)+. *BB+
T

0

 t + ∫ *f(t)+. *BB+
T+∆T

T

 t              (73) 

*ET+∆T+ = *ET+ + * E+ , * E+ = ∫ *f(t)+. *BB+
T+∆T

T

 t  {f ( +
∆ 

2
)} . {BB ( +

∆ 

2
)}   (74) 

Similar to Eq. (74) for other parameter we have 

* F+ = ∫ * (t)+. *BB+
T+∆T

T
 t  2 . +

∆T

2
/3 . 2BB . +

∆T

2
/3                            (75) 

And finally the sensitivity expression in time 𝑇 + ∆𝑇 is 

  

 Pi
( + ∆ ) = 〈P( + ∆ )〉 × *ET+∆T+ + 〈 ( + ∆ )〉 × *FT+∆T+                    (76)  

 
4.3 Computational algorithm 
 

The computational algorithm that leads to the determination of sensitivity matrix is as follow: 
- Step1: Calculate 𝜆,𝑡(𝑇) from Eq. (44) 
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- Step2: Calculate 𝜔,𝜔𝐷   𝑛    from and consider i=1 

- Step3: For the i 
th
 element calculate 

𝜕𝐾

𝜕𝑏
 and 𝑧𝑧,𝑡 , 𝑧𝑧 and consider j=1 

- Step4: For the j 
th
 sensor and corresponding Dof’s calculate 𝜆,𝑡(𝑇) from step1 and 𝑌,𝑡(𝑇) from Eq. (52) 

and 𝑇𝑛=Δt and 𝑇𝑜=0 

- Step5: Consider A=B=C=D=E=F=0  

- Step6: Calculate 𝑇𝑚 = 𝑇0 +
Δ𝑡

2
 and Calculate 𝑃(𝑇𝑛) − 𝑄(𝑇𝑛) − 𝑓(𝑇𝑚) − 𝑔(𝑇𝑚) from Eq. (46)  

- Step7: Calculate * A+, * B+, * C+, * D+, * E+ a   * F+ from Eq. (61~64 and 74~75) 

- Step8: Calculate 
d 

d  
( n) from Eq. (66) and 

d 

d𝑃𝑖
 from Eq. (76) 

- Step9: If 𝑇𝑛  𝑇𝑓𝑖𝑛𝑎𝑙  Consider 𝑇0 = 𝑇𝑛 and 𝑇𝑛 = 𝑇𝑛 + Δ𝑡 and go to step5 otherwise go to next step  

- Step10: If 𝑗  𝑛𝑢𝑚 𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 Consider j=j+1 and go to step 4 otherwise go to next step 

- Step11: If 𝑖  𝑛𝑢𝑚 𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 Consider i=i+1 and go to step 3 otherwise finish. 

 
4.4 Procedure of iteration for force identification and damage detection 
 

The proposed method requires measurement from two states of the structure. The first set of 

measurement from the undamaged structure serves to update the system parameters with a known 

set of force input. While in the measurement on the second state of damage, both the excitation 

force and the damaged structure are unknown, and the following iterative algorithm is used in the 

identification (Lu and Law 2007). The updated finite element model and excitation force in i
th
 

iteration step serves as the reference model in the subsequent comparison. 
 
(A) Iteration for excitation force parameters 

Starting with an initial guess on the unknown force parameter vector 𝑃0  and the set of 

physical parameter 𝛼0 from the updated FE model of the structure, the procedure of iteration is 

given as: 
- Step 1: With the initial force vector and vector of the undamaged system, Eq. (1) is solved at 𝑗 = 𝑘 + 1 
iteration step for the displacement vector *𝑧+  using Newmark method and subsequently for the 

acceleration vector *�̈�+ and the error vector *𝛿𝑧+̈.  
- Step 2: The sensitivity matrix ,𝑆𝐹- of the response with respect to the force is obtained from Eq. (76) 
and proposed algorithm for 𝑗 = 𝑘 + 1 iteration step with the force vector *𝑃𝑘+ obtained from a previous 
step. 

- Step 3: Find *𝑃𝑘+1+ from Eq. (16). 
- Step 4: Repeat steps 1~3 until the following convergence criteria are satisfied. 

‖Pk+1 − Pk‖

‖Pk+1‖
× 100      1                                                        (77) 

- Step 5: The final vector *𝑃𝑘+1+ obtained is taken as the modified set of force {P} for the second stage 

of iteration.  

 
(B) Iteration for the physical parameters of the structure 

With the modified excitation force parameter vector *𝑃+ obtained from (A) above, the set of 

physical parameters is then obtained as below: 
- Step 6: The vector of physical parameter *𝛼𝑠+ from the updated finite element model of the structure is 
taken as the set of initial values. Eq. (1) is solved at 𝑗 = 𝑘 + 1iteration step for the displacement vector 
{z} by Newmark method and subsequently for the acceleration vector and the error vector *�̈�+. 
- Step 7: The sensitivity matrix ,𝑆𝑠- of the response with respect to the different physical parameters of 
the structure is obtained from Eq. (66) and proposed method at 𝑗 = 𝑘 + 1 iteration step with the initial 
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physical parameter vector *𝛼𝑘+ obtained from a previous step. 
- Step 8: Find *𝛼𝑘+1+ from Eq. (18). 
- Step 9: Repeat steps 6~8 until the following convergence criteria are reached. 

‖αk+1 − αk‖

‖αk‖
× 100      2                                                       (78) 

‖        k+1 −         k‖

‖        k‖
× 100      3                                         (79) 

- Step 10: The final vector *𝛼𝑘+1+ obtained is taken as the modified set of physical parameters *𝛼𝑘+ for 
the next cycle of iteration on the force parameters. 

The identified excitation force obtained in (A) should be further improved using the updated 

physical parameters obtained in (B) and repeating steps 1~5 and the vector of physical parameters 

should also be further improved using the modified excitation force and repeating steps 6~10.  

This iteration procedure continuous until the following convergence criteria is reached. 

‖Pi+1 − Pi‖

‖Pi+1‖
× 100      4                                                            (80) 

‖αi+1 − αi‖

‖αi‖
× 100      5                                                           (81) 

The convergence of this computation strategy has been proved by Li and Chen (1999). All 

tolerances is set equal to 1×10
-6

 in this study except otherwise specified. 

 
 
5. Numerical results 
 

To illustrate the formulations presented in the previous sections, we consider the system shown 

in Figs. 3 and 7, and capabilities of proposed method are investigated. 

The Relative Percentage Error for Physical parameter (RPEP) and Excitation Force (RPEF) in 

the identified results is calculated from Eq. (82), where ‖. ‖ is the norm of matrix, 𝐸 𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 and 

𝐸𝑇 𝑢𝑒 are the identified and the true elastic modulus respectively and 𝑃 𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 and 𝑃𝑇 𝑢𝑒 are the 

identified and the true excitation force respectively. 

 PEP =
‖E d nti i d − ET u ‖

‖ET u ‖
× 100    𝑅𝑃𝐸 =

‖P d nti i d − PT u ‖

‖PT u ‖
× 100          (82) 

Since the true value of elastic modulus is unknown, RPEP and RPEF can just be used for 

investigating the efficiency of method. 

 
5.1 Multi span model 
 

A two-span bridge as shown in Fig. 3 is studied to illustrate the proposed method. It consists of 

20 Euler-Bernoulli beam elements with 21 nodes each with two DOF’s. The mass density of 

material is 7.8×10
3
 kg/m

3
 and the elastic modulus of material is 2.1×10

7
 N/ cm

2
. The total length 

of bridge is 20 m and height and width of the frame section are respectively 200 and 200 mm. The 

first five un-damped natural frequencies of the intact bridge are 29.3829, 45.8299, 117.3834, 

148.1623 and 265.0938 Hz. Rayleigh damping model is adopted with the damping ratios of the 
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first two modes taken equal to 0.05. The equivalent Rayleigh coefficients a0 and a1 are respectively 

0.1 and 4.6413×10
-6

. 

The transverse point load P has a constant velocity, =  𝑇⁄  , Where T is the traveling time 

across the bridge and L is the total length of the bridge. 

The integration parameters 𝛽 = 1 4⁄  and 𝛾 = 1 2⁄  is used for Newmark method, which lead to 

constant-average acceleration approximation. Speed ratio is defined as 

 𝛼 =
 

   
                                                                          (83) 

In which 𝑉𝑐  is critical speed ( 𝑉𝑐 =
 

l
√
  

 
 ), V is moving load speed and ρ is mass per unit length 

of beam. 

 

5.1.1 Damage scenarios 
Five damage scenarios of single, multiple and random damages in the bridge without 

measurement noise are studied and they are shown in Table 1. 

Local damage is simulated with a reduction in the elastic modulus of material of an element. 

The sampling rate is 10000 Hz and 600 data of the acceleration response (degree of indeterminacy 

is 20) collected along the z-direction at nodes 2, 8, 12 and 18 are used in the identification. 

Scenario 1 studies the single damage scenario. The proposed method converges in all speed 

ranges. Maximum relative percentage of error for physical parameter (RPEP) is 0.5972 and 

 

 

 

Fig. 3 Multi span bridge model used in detection procedure 

 
Table1 Damage scenarios for multi-span bridge 

Damage 

scenario 
Damage type Damage location Reduction in elastic modulus Noise 

M1-1 Single 14 20% Nil 

M1-2 Multi 8,13,17 11%,4%,7% Nil 

M1-3 Multi 3,7,11,15,18 2%,6%,5%,2%,8% Nil 

M1-4 Random All elements 
Random damage in all elements 

with an average of 5% 
Nil 

M1-5 Random All elements 
Random damage in all elements 

with an average of 10% 
Nil 

M1-6 
Estimation of 

undamaged state 
All elements 5% reduction in all elements Nil 
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Table 2 RPEP of AVM method for model1 

Damage 

scenario 

Speed ratio 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

M1-1 0.5031 0.4890 0.4168 0.4931 0.4737 0.4226 0.5031 0.4890 0.4168 

M1-2 0.5465 0.4159 0.4145 0.4492 0.4833 0.4180 0.5465 0.4159 0.4145 

M1-3 0.5972 0.4129 0.4185 0.4153 0.4471 0.3441 0.5972 0.4129 0.4185 

M1-4 0.4445 0.4156 0.4186 0.3852 0.3951 0.3026 0.4445 0.4156 0.4186 

M1-5 0.2876 0.3624 0.2888 0.3736 0.2124 0.3048 0.2876 0.3624 0.2888 

M1-6 0.2812 0.2729 0.3078 0.2870 0.2774 0.3044 0.2812 0.2729 0.3078 

 

Table 3 RPEF of AVM method for model1 

Damage 

scenario 

Speed ratio 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

M1-1 0.0039 0.0110 0.0105 0.0115 0.0112 0.0133 0.0039 0.0110 0.0105 

M1-2 0.0044 0.0095 0.0084 0.0097 0.0131 0.0114 0.0044 0.0095 0.0084 

M1-3 0.0049 0.0091 0.0112 0.0095 0.0085 0.0098 0.0049 0.0091 0.0112 

M1-4 0.0030 0.0093 0.0105 0.0025 0.0107 0.0061 0.0030 0.0093 0.0105 

M1-5 0.0026 0.0027 0.0025 0.0025 0.0021 0.0027 0.0026 0.0027 0.0025 

M1-6 0.0025 0.0024 0.0025 0.0024 0.0025 0.0026 0.0025 0.0024 0.0025 

 

 
Fig. 4 Detection of damage location and amount in elements 3, 7, 11, 15 and 18 and distribution of 

error in different elements with AVM scheme 
 

 

maximum relative percentage of error for input excitation force (RPEF) is 0.0049. 

Scenarios 2 and 3 are on multiple damages with different amount of measured responses for the 

identification and scenarios 4-5 are on random damages with different average for the 
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identification. These scenarios also converge in all speed ranges with maximum RPEP of 0.4931 

and maximum RPEF of 0.0131. One more scenario with model error is also included as scenario 6. 

This scenario consists of no simulated damage in the structure, but with the initial elastic modulus 

of material of all the elements under-estimated by 5% in the inverse identification. 

Using proposed method, the damage locations and amount are identified correctly in all the 

scenarios (Fig. 4) and the RPEP and RPEF parameters are shown in Tables 2 and 3. 

 
5.1.2 Effect of noise 
To evaluate the sensitivity of results to measurement noise, noise-polluted measurements are 

simulated by adding to the noise-free acceleration vector a corresponding noise vector whose 

Root-Mean-Square (RMS) value is equal to a certain percentage of the RMS value of the noise-

free data vector. The components of all the noise vectors are of Gaussian distribution, uncorrelated 

and with a zero mean and unit standard deviation. Then on the basis of the noise-free acceleration 

�̈�,𝑡𝑡   ; the noise-polluted acceleration �̈�,𝑡𝑡   of the bridge at location x can be simulated by 

z̈,tt  = z̈,tt  +  MS(z̈,tt  ) ×  l v l ×  unit                                       (84) 

Where RMS (�̈�,𝑡𝑡  ) is the RMS value of the noise-free acceleration vector �̈�,𝑡𝑡  ×  𝑙𝑒𝑣𝑒𝑙 is the 

noise level, and  𝑢𝑛𝑖𝑡  is a randomly generated noise vector with zero mean and unit standard 

deviation. (Jiang et al. 2004) 

In order to study effect of noise in stability of sensitivity methods, scenario2 (speed ratio of 

moving load is considered to be fix and equal with 0.3) is considered and different levels of noise 

pollution are investigated, and RPEP changes with increasing number of loops for iterative 

procedure has been studied.  

Results are illustrated in Fig. 5 for DDM and AVM methods respectively. These contours show 

that both AVM and DDM methods are sensitive to noise and if noise level becomes greater than 

1.4% these methods lose their effectiveness and are not able to detect damage. So, in cases with 

noise level greater than 1.4%, a denoising tool alongside sensitivity methods should be used. 

5.1.3 Efficiency of proposed method 
In order to compare and quantification the performance of different methods and evaluate the 

proposed method, Relative Efficiency Parameter (REP) is defined as 

 EP = S    S    ⁄                                                                    (85) 
 

 

  
Fig. 5 RPE contours with respect to noise level and loops 
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Table 4 REP ranges in different scenarios 

Damage scenario Max REP Min REP average 

M1-1 4.722087 2.367644 3.457256 

M1-2 3.884751 2.192863 2.827125 

M1-3 3.453202 2.016751 2.615719 

M1-4 4.028332 2.211189 2.854083 

M1-5 3.179909 1.831374 2.245494 

M1-6 2.735529 1.336874 1.915498 

Total 4.722087 1.831374 2.652529 

 

 

Fig. 6 REP changes in different scenarios with respect to speed ratio 

 

 
In which, ST is the solution time of SI method. In fact this parameter represents the 

computation cost of method. Table 4 shows that in different scenarios and for different speed ratio, 

the efficiency parameter is between 1.831 to 4.722 and its average is 2.653, therefore the AVM 

method is extremely successful and the computational cost for this method is about 37.7% of other 

sensitivity base finite element model updating method. Fig. 6 shows the REP changes with respect 

to speed ratio in different scenarios. 

  

5.2 Plane grid model 
 

A plane grid model of bridge is studied as another numerical example to illustrate the 

effectiveness of the proposed method. The finite element model of the structure is shown in Fig. 7 

the structure is modeled by 46 frame elements and 32 nodes with three DOF’s at each node for the 

translation and rotational deformations. The mass density of material is 7.8×10
3
 kg/m

3
 and the 

elastic modulus of material is 2.1×10
7
 N/ cm

2
. The first five un-damped natural frequencies of the 

intact bridge are 45.59, 92.77, 181.74, 259.73 and 399.07 Hz. Rayleigh damping model is adopted 

with the damping ratios of the first two modes taken equal to 0.05. The equivalent Rayleigh 

coefficients a0 and a1 are respectively 0.1 and 2.364×10
-5

.  
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Fig. 7 Plane grid bridge model used in detection procedure 

 
Table 5 Damage scenarios for grid model 

Damage 

scenario 
Damage type Damage location Reduction in elastic modulus Noise 

M2-1 Single 41 7% Nil 

M2-2 Multi 4,14,20 14%,8%,11% Nil 

M2-3 Multi 5,7,12,15,24,37 4%,11%,6%,2%,10%,16% Nil 

M2-4 Random All elements 
Random damage in all elements 

with an average of 5% 
Nil 

M2-5 Random All elements 
Random damage in all elements 

with an average of 10% 
Nil 

 

 
 5.2 Plane grid model 
 

A plane grid model of bridge is studied as another numerical example to illustrate the 

effectiveness of the proposed method. The finite element model of the structure is shown in Fig. 7 

the structure is modeled by 46 frame elements and 32 nodes with three DOF’s at each node for the 

translation and rotational deformations. The mass density of material is 7.8×10
3
 kg/m

3
 and the 

elastic modulus of material is 2.1×10
7
 N/ cm

2
. The first five un-damped natural frequencies of the 

intact bridge are 45.59, 92.77, 181.74, 259.73 and 399.07 Hz. Rayleigh damping model is adopted 

with the damping ratios of the first two modes taken equal to 0.05. The equivalent Rayleigh 

coefficients a0 and a1 are respectively 0.1 and 2.364×10
-5

.  
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5.2.1 Damage scenarios 
Five damage scenarios of single, multiple and random damages in the bridge without 

measurement noise are studied and they are shown in Table 5.  

The sampling rate is 14000 Hz and 460 data of the acceleration response (degree of 

indeterminacy is 10) collected along the z-direction at nodes 4, 11, 21 and 27 are used.  

Similar to the previous model, scenario 1 studies the single damage scenario. The proposed 

method converges in all speed ranges. The RPEP is 0.1271 and the RPEF is 0.0020. 

Scenarios 2 and 3 are on multiple damages with different amount of measured responses for the 

identification and scenarios 4-5 are on random damages with different average for the 

identification. These scenarios also converge in all speed ranges with maximum RPEP of 0.1161 

and maximum RPEF of 0.0018. One more scenario with model error is also included as scenario 6. 

Using proposed method, the damage locations and amount are identified correctly in all the 

scenarios and the RPEP and RPEF parameters are shown in Tables 6 and 7. 

 

5.2.2 Effect of noise 
In order to study effect of noise in stability of sensitivity methods, scenario3 (speed ratio of 

moving load is considered to be fix and equal with 0.3) is considered and different levels of noise 

pollution are investigated and RPE changes with increasing number of loops for iterative 

procedure has been studied. 

Fig. 8 shows that both AVM and DDM methods are sensitive to noise and if noise level 

becomes greater than 1.8% for these methods loses their effectiveness and are not able to detect 

damage. So, in cases with noise level greater than mentioned value, a de-noising tool such as 

 

 
Table 6 RPEP of AVM method for model2 

Damage 

scenario 

Speed ratio 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

M2-1 0.0236 0.0239 0.0264 0.0259 0.0408 0.0266 0.0236 0.0239 0.0264 

M2-2 0.0236 0.0239 0.0257 0.0267 0.0336 0.0279 0.0236 0.0239 0.0257 

M2-3 0.0224 0.0206 0.0176 0.0194 0.0173 0.0191 0.0224 0.0206 0.0176 

M2-4 0.0189 0.0191 0.0134 0.0129 0.0171 0.0162 0.0189 0.0191 0.0134 

M2-5 0.0165 0.0221 0.0105 0.0126 0.0156 0.0154 0.0165 0.0221 0.0105 

M2-6 0.1271 0.1161 0.0142 0.0123 0.0161 0.0166 0.1271 0.1161 0.0142 

 
Table 7 RPEF of AVM method for model2 

Damage 

scenario 

Speed ratio 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

M2-1 0.0005 0.0005 0.0007 0.0006 0.0008 0.0006 0.0005 0.0005 0.0007 

M2-2 0.0005 0.0005 0.0009 0.0008 0.0008 0.0007 0.0005 0.0005 0.0009 

M2-3 0.0006 0.0005 0.0005 0.0007 0.0005 0.0006 0.0006 0.0005 0.0005 

M2-4 0.0007 0.0007 0.0004 0.0004 0.0005 0.0005 0.0007 0.0007 0.0004 

M2-5 0.0006 0.0005 0.0003 0.0004 0.0004 0.0004 0.0006 0.0005 0.0003 

M2-6 0.0020 0.0018 0.0003 0.0004 0.0003 0.0004 0.0020 0.0018 0.0003 
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Fig. 8 RPE contours with respect to noise level and loops 

 
Table 8 REP ranges in different scenarios for model2 

Damage scenario Max REP Min REP average 

M2-1 3.746256 2.180788 2.915806 

M2-2 3.492461 2.215382 3.051252 

M2-3 3.453202 2.016751 2.615719 

M2-4 4.028332 2.211189 2.854083 

M2-5 3.179909 1.831374 2.245494 

M2-6 2.546435 1.720415 2.067321 

Total 4.028332 1.720415 2.624946 

 

 

wavelet transform alongside sensitivity methods should be used. The wavelet transform is mainly 

attractive because of its ability to compress and encode information to reduce noise or to detect 

any local singular behavior of a signal. (Solís et al. 2013)  

 
5.2.3 Efficiency of proposed method 
Table 8 shows that in different scenarios and for different speeds, the efficiency parameter is 

between 1.720 to 4.028 and its average is 2.625, therefore the AVM method is extremely 

successful and computational cost for this method is about 38.1% of other sensitivity base finite 

element model updating method.  

 
 
6. Conclusions 
 

In this paper an iterative sensitivity-based method has been developed to identify both the input 

excitation force and the physical parameters of a bridge from the output of the system only. This 

method can be a good tool in the case when the structure, for example a highway bridge, should 

not be switched off from the use for a long time. 

In the proposed method an incremental solution for adjoint variable equation developed that 

calculates each elements of sensitivity matrix separately. The main advantage is inclusion of an 

analytical method to augment the accuracy and speed of the solution. 
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Numerical simulations demonstrate the efficiency and accuracy of the method to identify 

location and intensity of single, multiple and random damages and unknown excitation input force 

simultaneously in different bridge models. Comparison studies confirmed that computational cost 

for this method is much lower than other traditional sensitivity methods. For modern, practical 

engineering applications, the cost of damage detection analysis is expensive. So, this method is 

feasible for large-scale problems. 
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