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Abstract.  The present paper attempts to investigate the propagation of plane waves in generalized 

piezo-thermoelastic medium under the effect of rotation. The normal mode analysis is used to obtain the 

expressions for the displacement components, the temperature, the stress and the strain components. 

Comparisons are made with the results predicted by different theories (Coupled theory, Lord-Schulman, 

Green-Lindsay) in the absence and presence of rotation. 
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1. Introduction 
 

Piezoelectric materials are used for transducer electrical and mechanical energy. Piezoelectric 

material technology has enabled a wide variety of commercially successful sensors and actuators. 

These devices range in complexity and sophistication from the ultrasound arrays used in 

biomedical imaging to the tonal buzzers used in automobile horns, from high intensity focused 

ultrasound (HIFU) arrays which can thermally ablate tumors to the speaker elements in talking 

greeting cards.  

The theory of thermo-piezoelectricity was first proposed by Mindlin (1961). He also derived 

governing equations of a thermo-piezoelectric plate (1974). Nowacki (1978, 1979) has studied the 

physical laws for the thermo-piezoelectric materials. Chandrasekharaiah (1988) has generalized 

Mindlin’s theory of thermo-piezoelectricity to account for the finite speed of propagation of 

thermal disturbances. The propagation of Rayleigh waves in generalized piezo-thermoelastic half 

space is investigated by Sharma and Walia (2008). Abd-alla and Alsheikh (2009) studied the 

reflection and refraction of plane quasi-longitudinal waves at an interface of two piezoelectric 

media under initial stresses. Abd-alla et al. (2012, 2011) investigated the reflection phenomena of 

quasi-vertical transverse and longitudinal waves in the piezoelectric medium under initial stresses. 

Abd-alla et al. (2014) studied the phenomena of reflection and transmission waves in smart 

nano-materials. Hou et al. (2008) studied three-dimensional fundamental solutions for transversely 

isotropic piezo-thermoelastic material. The effect of rotation on wave characteristics in 
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piezoelectric crystals has been discussed by various authors such as Gates (1968) and Soderkvist 
(1994). Sharma and Walia (2007) studied the effect of rotation on Rayleigh waves in 
piezo-thermoelastic half space. Othman (2004) studied the effect of rotation on plane waves in 
generalized thermoelasticity with two relaxation times. Othman et al. (2008) studied the 
generalized magneto-thermo-viscoelastic plane waves under the effect of rotation without energy 
dissipation. Othman and Sarhan (2014) studied the effect of rotation on a fibre-reinforced 
thermo-elastic under Green-Naghdi theory and the influence of gravity. Othman et al. (2014) 
studied the effect of rotation on micropolar generalized thermoelasticity with two-temperature 
using a dual-phase-lag model. The development of the effect of rotation is available in many 
studies, such as Ellahi and Ashgar (2007), Hayat et al. (2004a, b, 2007, 2003). 

The generalized theories of thermoelasticity have been developed to overcome the infinite 
propagation speed of thermal signals predicted by the classical coupled dynamical theory of 
thermoelasticity Biot (1956). The subject of generalized thermoelasticity covers a wide range of 
extensions of the classical theory of thermoelasticity. We recall the first two earliest and 
well-known generalized theories proposed by Lord and Shulman (1967) and Green and Lindsay 
(1972). In the model (1967) the Fourier law of heat conduction is replaced by Maxwell-Cattaneo 
law that introduces one thermal relaxation time parameter in the Fourier law, whereas in the model 
of Green and Lindsay (1972) of two relaxation parameters are introduced in the constitutive 
relations for the stress tensor and the entropy. Othman et al. (2002) studied the generalized 
thermo-viscoelastic plane waves with two relaxation times. Othman (2002) studied Lord-Shulman 
theory under the dependence of the modulus of elasticity on the reference temperature in 
two-dimensional generalized thermoelasticity. Othman and Sarhan (2014) studied propagation of 
plane waves of a mode-I crack for a generalized thermoelasticity under influence of gravity for the 
different theories. 

In this paper, we have investigated the effect of rotation of piezo-thermoelastic medium based 
on three theories (CT, L-S, G-L) by applying the normal mode analysis. Also, the effect of rotation 
on the physical quantities is discussed numerically and illustrated graphically. 
 
 
2. Basic equations 
 

The basic governing field equations of generalized hexagonal piezo-thermoelastic in 
homogeneous anisotropic solid for two dimensional motions in x-z plane are 

 
2.1 Strain-displacement-relation 
 

     
, ,

1
( ),

2ij i j j iu u    (1)

 
2.2 Stress-strain-temperature 
 

   
1(1 ) .ij ijkl kl kij k ij ijC e E t T

t
   

   


                  (2) 

 
2.3 Equation of motion 
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, [ { ( )} (2 ) ],ij j i i iu u u                              (3) 

2.4 Gauss equation and electric field relation 
 

, 0i iD                                    (4) 

1(1 ) ,i ijk jk ij j iD e E p t T
t

 
   


                        (5) 

Where ,i iE     

 
2.5 Heat conduction equation 
 

, 0 0 1 0 , 1 0 ,(1 ) [ (1 ) (1 ) ].ij ij ij i j i ieK T C t T T n t u p n t
t t t

    
     

  
             (6) 

Where i, j, k, l=1,2,3 
Eqs. (2)-(6) are the field equations of the generalized thermoelastic solid, can be defined in 

terms of the three theories (CT), (L-S) and (G-L) as follows:  
1. The coupled (CT) theory, when t1=t0=0 

,ij ijkl kl kij k ij ijC e E T                             (7) 

,i ijk jk ij j iD e E p T                              (8) 

0, , ,[ ].eij ij ij i j i iK T C T T u p                              (9) 

2. Lord-Shulman (L-S) theory, when n1=1, t1=0, t0>0 
Eqs. (7) and (8) remain unchanged and (6) has the form 

0 0, , ,(1 )[ ( )].eij ij ij i j i iK T t C T T u p
t

  
   


 

                  
(10) 

3. Green-Lindsay (G-L) theory, when n1=0, t1≥t0>0 
Eqs. (2) and (5) remain unchanged and (6) has the form 

0 0, , ,(1 ) [ ].eij ij ij i j i iK T C t T T u p
t

  
   


                    (11) 

The constitutive relation and electric displacement of the hexagonal (6mm) crystal symmetry 
given by 

11 13 31 1 1(1 ) ,xx xx zz zC C e E t T
t

    
    


                   (12) 

 13 33 33 3 1(1 ) ,zz xx zz zC C e E t T
t

    
    


                   (13) 
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 44 152 ,zx zx xC e E                               (14) 

x 15 , , 11( ) ,z x xD e u w E                            (15) 

z 31 , 33 , 33 3 1( ) .1x z zD e u e w E p t T
t


    


                   (16) 

 
 
3. Formulation of the problem 
 

We consider a homogeneous, anisotropic, piezo-thermoelastic half space of hexagonal type. 
We chose x-axis in the direction of wave propagation so that all particles on a line parallel to 
y-axis are equally displaced. Therefore, all the field quantities will be independent of y coordinate. 
The medium is assumed to be rotating with angular frequency Ω=(0, Ω, 0) that rotate at a constant 
rate about the y-axis. 

The basic governing field Eqs. (3), (4), and (6) for temperature change T(x,z,t), displacement 
vector ( , , ) ( , 0, ),x z t u wu  and electric potential ( , , ),x z t  are given by 

2
11 , 44 , 13 44 , 31 15 , 1 1 ,( ) ( ) (1 ) ( 2 ),xx zz xz xz xC u C u C C w e e t T u u w

t
  

          


 
   

(17) 

2
44 13 , 44 , 33 , 15 , 33 , 3 1 ,( ) (1 ) ( 2 ),xz xx zz xx zz zC C u C w C w e e t T w w u

t
   

          


     (18) 

 1 , 3 , 0 0 1 1 0 , 3 1 0 , 3 1 0 ,(1 ) [ (1 ) (1 ) (1 ) ],xx zz e x z zK T K T C t T T n t u n t w p n t
t t t t

      
        

   
     (19) 

 

15 31 , 15 , 33 , 11 , 33 , 3 1 ,( ) (1 ) 0xz xx zz xx zz ze e u e w e w p t T
t

  
       


           (20) 

For simplification we shall use the following non-dimensional variables 
 

 
 

 

 

y         

      Propagation direction 

                                                                 x 

 
z 

 
 

Fig. 1 Geometry of the problem 
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 
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



 1 11 12 1 13 3( ) ,C C C      

     3 13 1 33 32 .C C     (21)

The dimensionless of Eqs. (17)-(20) 

 2
1 , 2 , 3 , 4 , 1 ,(1 ) ( 2 ),xx zz xz xz xu u w t T u u w

t
     

        


 
           

(22) 

2
3 , 2 , 5 , 6 , , 7 1 ,(1 ) ( 2 ),xz xx zz xx zz zu w w t T w w u

t
       

         


 
         

(23) 

8 , 9 , 10 , 11 , 12 , 13 1 ,(1 ) 0,xz xx zz xx zz zu w w t T
t

        
      


            (24) 

14 , 15 , 0 1 0 16 , 17 , 18 ,(1 ) (1 )[ ].xx zz x z zT T t T n t u w
t t

      
      

 
  

          
(25) 

Where δj, j=1−18 are given in Appendix A. 
  

 
4. Normal mode analysis. 
 

The solution of the considered physical variables can be decomposed in terms of normal modes 
in the following form 

 * * * * ( )[ , , , ]( , , ) [ , , , ] ( ) .ia x ctu w T x z t u w T z e                    (26) 

Where 
dz

d
D  ,

 
c

a


 , ω is the complex time constant (frequency), i is the imaginary unit, a is 

the wave number in the x-direction, and u*, w*, φ* and T* are the amplitudes of the functions, then 

 2 * * * *
1 2 3 4 5(D ) ( D ) D 0A u A A w A A T      ,                  (27) 

 * 2 * 2 * *
6 7 8 9 10 11( D ) (D ) ( D ) D 0A A u A w A A A T       ,              (28) 

 * 2 * 2 * *
12 13 14 15 16D (D ) ( D ) D 0,A u A w A A A T                     (29) 

 * * * 2 *
17 18 19 20D D (D ) 0A u A w A A T     .                  (30) 

Where Aj, j=1−20 are given in Appendix A. 

8 6 4 2 * * * *(D D D D ) { ( ), ( ), ( ), ( )} 0,A B C E u z w z z T z                  (31) 
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Where A, B, C, E are given in Appendix A. 
Eq. (31) can be factored as 

2 2 2 2 2 2 2 2 * * * *
1 2 3 4(D )(D )(D )(D ) { ( ), ( ), ( ), ( )} 0,k k k k u z w z z T z                (32) 

The solution of Eq. (31), which is bounded as z→∞, is given by 

4
*

1

,n
n

n

k zu M e 



                                (33) 

In a similar manner, we get 

4
*

1
1

,n
n n

n

k zw H M e 



 
                            

(34) 

4
*

2
1

,n
n n

n

k zH M e 



 
                            

(35) 

4
*

3
1

.n
n n

n

k zT H M e 



 
                            

(36) 

Where 2 ( 1, 2,3, 4)nk n   are the roots of the characteristic equation of Eq. (32). 
By taking dimensionless and normal mode to Eqs. (12)-(16) then substituting from Eqs. 

(33)-(36), we obtain 

4
*

4
1

,n
xx n n

n

k zH M e 



 
                          

(37) 

4
*

5
1

,n
zz n n

n

k zH M e 



 
                          

(38) 

4
*

6
1

,n
xz n n

n

k zH M e 



 
                          

(39) 

4
*

7
1

,n
x n n

n

k zD H M e 



 
                          

(40) 

4
*

8
1

,n
z n n

n

k zD H M e 



 
                          

(41) 

Where Hjn, j=1−8, i=1,2,3,4 are given in Appendix B. 
 
 
5. Boundary conditions 
 

The parameters Mn (n=1,2,3,4) have to be chosen such that the boundary conditions on the 
surface z=0

 
take the form 

1
* ( )( , 0, ) e ,zz

ia x ctx t f    ( ,0, ) 0,xz x t   2
* ( )e ,ia x ctT f   0

z





          (42) 
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Where f1
*, f2

* are constant. 
Using the expressions of the variables considered into the above boundary conditions (42), we 

can obtain the following equations satisfied by the parameters 
4

5
1

*
1 ,n n

n

H M f


 
                             

(43) 

4

6
1

0,n n
n

H M



                               

(44) 

4

3 2
1

*,n n
n

H M f


                               (45) 

 
4

2
1

0.n n n
n

k H M


                               (46) 

Solving Eqs. (43) - (46) for Mn (n=1,2,3,4) by using the inverse of matrix method as follows 

1 *
51 52 53 541 1

61 62 63 642

*3 31 32 33 34 2

4 1 21 2 22 3 23 4 24

0

0

.

H H H HM f

H H H HM

M H H H H f
M k H k H k H k H

    
   
       
             

               (47) 

  
 

6. Numerical results and discussions 
 

The material chosen for the purpose of numerical calculations is taken as Cadmium Selenide 
(CdSe) having hexagonal symmetry (6 mm class) 

10 2
11 7.41 10 ,C Nm    

10 2
12 4.52 10 ,C Nm    

10 2
13 3.93 10 ,C Nm    

10 2
33 8.36 10 ,C Nm    

10 2
44 1.32 10 ,C Nm    0 298 ,T K  35504 ,Kgm 

 
2

13 0.160 ,e Cm   2
33 0.347 ,e Cm  

2
15 0.138 ,e Cm   6 1 2

1 0.621 10 . ,Nk m    6 1 2
3 0.551 10 . ,NK m     

6 1 2
3 2.94 10 . ,p CK m     

1 1
1 3 9 . ,K K Wm K    

11 2 1 2
11 8.26 10 . ,C N m      

11 2 1 2
33 9.03 10 . ,C N m      1 1260 .eC J Kg K   

Figs. 2-10 depict the variety of the displacement components u, w the stress components σxx, 
σxz, σzz the temperature T, the electric potential φ and the electric displacements Dx and Dz in the 
absence and presence of rotation (i.e., Ω=0, 0.5). The computations are carried out for the 
non-dimensional time t=0.3 on the surface plane x=1.5. Fig. 2 depicts that the distribution of the 
horizontal displacement u always begins from positive values. In the context of the (CT), (L-S) 
and (G-L) theory, the values of u decreases in the range 0≤z≤1.3, for Ω=0, 0.5. It is also clear that 
the rotation acts to increase the values of u. Fig. 3 is plotted for the variation in vertical 
displacement w with distance z. Here, we can observe that w increases and finally goes to zero in 
the context of (CT), (L-S) and (G-L) theories for Ω=0 while the value of w decrease in the range  
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Fig. 2 Horizontal displacement distribution u in the absence and presence of rotation 

 

 
Fig. 3 Vertical displacement distribution w in the absence and presence of rotation 

 

 
Fig. 4 Temperature distribution T in the absence and presence of rotation 

 
 

0≤z≤0.2 then increase in the range 0.2≤z≤7, then w converges to zero with increasing of the 
distance z≥7 for Ω=0.5. It is observed that the two curves of the (CT) and (L-S) theories are 
coinciding for Ω=0. Fig. 4 demonstrates the behavior of the temperature T based on three theories.  
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Fig. 5 Distribution of stress component σxx in the absence and presence of rotation 

 

 
Fig. 6 Distribution of stress component σzz in the absence and presence of rotation 

 
 
It shows that the values of T decrease in the range 0≤z≤2 for Ω=0, 0.5. We notice that the rotation 
has no great effect on the distribution of the temperature T. Fig. 5 exhibits that the distribution of 
the stress component σxx always begin from a positive value in the context of three theories for 
Ω=0, 0.5. It decreases to the range 0≤z≤1, for Ω=0 and in the range 0≤z≤2 for Ω=0.5 then σxx 
converge to zero with increasing of the distance z at z≥4 for Ω=0, 0.5. Fig. 6 shows the variation of 
the stress component σzz with distance z. The behavior of σzz for the three theories is almost same 
for Ω=0, 0.5 and satisfy the boundary conditions. It is an increasing function in the domain 
0≤z≤0.8 and a decreasing function in the domain 0.8≤z≤7 for Ω=0.5 while σzz start with increasing 
to a maximum value in the range 0≤z≤0.5 then decreasing in the range 0.5≤z≤7 for Ω=0 Fig. 7 
exhibits the stress component σxz and demonstrates that it reaches a zero value and satisfies the 
boundary conditions at z=0. In the context of the three theories, the values of σxz increase in the 
beginning to a maximum value in the range 0≤z≤0.8, then decrease and converge to zero in the 
range 0.8≤z≤7 for Ω=0, 0.5. We can also observed from Figs. 5-7 that the rotation acts to increase 
the magnitude of the real part of the stress components σxx, σzz and σxz. 

Fig. 8 depicts that the distribution of the electric potential φ, in the context of three theories, 
increases in the range 0≤z≤1.8 then decreases and converges to zero for Ω=0 while increases in the 
range 0≤z≤1.6 then decreases for Ω=0.5. Fig. 9 is plotted to show the variation of the electric 
displacement component Dx in the context of the three theories for Ω=0, 0.5. Here, we can observe 
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Fig. 7 Distribution of stress component σxz in the absence and presence of rotation 

 

 
Fig. 8 Distribution of electric potential ϕ in the absence and presence of rotation 

 

 
Fig. 9 Distribution of electric displacement component Dx in the absence and presence of rotation

 
 
that Dx increases and finally goes to zero in the context of (CT) and (L-S) theories for Ω=0, 0.5. 
The values of Dx based on G-L theory, decrease then increase for Ω=0 while Dx decreases to a 
minimum value in the range 0≤z≤0.3 increasing in the range 0.3≤z≤2.2 then decreasing and 
converges to zero with increasing the distance z≥4.3 for Ω=0.5. Fig. 10 shows that the electric  
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Fig. 10 Distribution of electric displacement component Dz in the absence and presence of rotation

 

Fig. 11 (3D) Horizontal component of displacement u against both components of distance based on 
G-L model at Ω=0.5 

 

 

Fig. 12 (3D) Vertical component of displacement w against both components of distance based on G-L 
model at Ω=0.5 

 
 
displacement component Dz in the context of the three theories for Ω=0, 0.5, always begin from 
positive value. It is shown that the value of Dz based in the three theories decreases in the range  
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Fig. 13 (3D) Temperature against both components of distance based on G-L model at Ω=0.5 

 

 
Fig. 14 (3D) Distribution of stress component σzz ainst both components of distance based on G-L 
model at Ω=0.5 

 

Fig. 15 (3D) Electric potential against both components of distance based on G-L model at Ω=0.5 
 
 
0≤z≤1.5 then converge to zero for Ω=0, while Dz decreases to the minimum value in the range 
0≤z≤1.7 then increase in the range 1.7≤z≤5 and converges to zero with increasing the distance z≥5. 
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Fig. 16 (3D) Electric displacement against both components of distance based on G-L model at Ω=0.5
 
 
3D Figs. 11-16 are representing the relation between the physical variables and both 

components of distance, in the presence of rotation (Ω=0.5), in the context of the Green-Lindsay 
theory (G-L). The curves obtained are highly depending on the vertical, distance and all the 
physical quantities are moving in wave propagation. 
 
 
7. Conclusions 
 

By comparing the figures which obtained under the three theories, important phenomena are 
observed that:  

• Analytical solutions based upon normal mode analysis for thermoelastic problem in solids 
have been developed and utilized.  

• The method which used in the present article is applicable to a wide range of problems in 
hydro-dynamics and thermoelasticity.  

• The value of all physical quantities converges to zero with an increase in distance z and all 
functions are continuous.  

• All the physical quantities satisfy the boundary conditions. From all most figures it is clear 
that the rotation acts to increase the magnitude of the real part of the physical quantities. 

• The comparisons of different theories of thermoelasticity, (CT), (L-S), (G-L) theories are 
carried out. 
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CC 
 
 
Nomenclature 
 
ui is the mechanical displacement 
φ is the electric potential 
T is an absolute temperature 
εij is the strain tensor 
σij is the stress tensor 
βij is the thermal elastic coupling tensor 
Ei is the electric field 
Di is the electric displacement 
Cijkl is the elastic parameters tensor 
ejik is the piezoelectric moduli 
∈ij is the dielectric moduli 
pi is the pyroelectric moduli 
ρ is the mass density 
t0, t1 is the thermal relaxation time parameters 
Kij is the heat conduction tensor 
T0 is the reference temperature 
Ce is the specific heat at constant strain 
n1 is non-dimensional parameter 
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