
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 56, No. 3 (2015) 461-472 

DOI: http://dx.doi.org/10.12989/sem.2015.56.3.461                                           461 

Copyright ©  2015 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8        ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Brief and accurate analytical approximations to nonlinear static 
response of curled cantilever micro beams 

 

Youhong Suna, Yongping Yu
 
and Baochang Liub 

 
College of Construction Engineering, Jilin University, Changchun 130026, P.R. China 

 
(Received April 25, 2014, Revised October 25, 2015, Accepted October 28, 2015) 

 
Abstract.  In this paper, the nonlinear static response of curled cantilever beam actuators subjected to the 

one-sided electrostatic field is focused on. By assuming the deflection function of electrostatically actuated 

beam, analytical approximate solutions are established via using Galerkin method to solve the equilibrium 

equation. The Pull-In voltages which determine the stability of the curled beam actuators are also obtained. 

These approximate solutions show excellent agreements with numerical solutions obtained by the shooting 

method and the experimental data for a wide range of beam length. Expressions of these analytical 

approximate solutions are brief and could easily be used to derive the effects of various physical parameters 

on MEMS structures. 
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1. Introduction 
 

Micro-electromechanical systems (MEMS) have widely been applied as switches, inductors 

and variable capacitors for high radio frequency circuits (Gupta 1997, Senturia 2001, Rebeiz 2003, 

Al-Sadder 2006, Zhang and Zhao 2006, Zamanian et al. 2010, Zamanian and Hosseini 2012, 

Abbasnejad et al. 2013, Mobki et al. 2013) as well as bio-MEMS (Wang and Soper 2007, Hess et 

al. 2011, Miyashita et al. 2014). Analyzing behavior of electrically actuated MEMS is crucial for 

their designs. Besides, the material parameters of thin films, such as Young’s modulus and 

residual stresses can be extracted from the Pull-In voltages of test structures (Elata and Abu-Salih 

2005).  

The finite element method (FEM) is often used for modeling the nonlinear response of MEMS 

structures and has been implemented in various commercial MEMS simulation software (Chen et 

al. 2008, Chuang et al. 2010, Kazama et al. 2013). Compared with the finite element method 

(FEM), the analytical model providing explicit solutions could give more intuitive expression of 

the physical characteristics of MEMS structures (Gabbay and Senturia 2000, Younis et al. 2003, 

Krylov 2007). Continuum-based modeling of MEMS for the description of the nonlinear static 

behavior is often presented as a boundary value problem of the microbeam structures. There have 
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been numerous works on analytical modeling of the nonlinear behavior for beams or diaphragms. 
An efficient model for describing the nonlinear static (and dynamic) behavior of a 

clamped-clamped microbeam structure with large deflections and the nonlinear electromechanical 
coupling force has been proposed (Younis et al. 2003, Krylov 2007). A reduced-order model 
commonly based on the Galerkin decomposition with undamped linear eigenmodes as base 
functions is constructed (Gabbay and Senturia 2000, Nayfeh et al. 2005) to investigate the 
behavior of MEMS. However, for a continued analytical description of the system’s response, the 
integral of the electromechanical forcing term has to be solved in closed form. To deal with this 
problem, one approach is to solve the integral actuation term numerically (Krylov 2007) and to set 
further analytical investigations aside. Another approach is to expand this term into a Taylor 
series, but poor accuracy has been reported, even more higher-order terms were included (Younis 
et al. 2003, Nayfeh et al. 2005). By multiplying the equation of motion by the denominator of the 
electrostatic force before applying the discretization technique, Younis et al. (2003) have 
introduced a different method. In contrast, a single-mode approximation is sufficient enough to 
predict also large displacement equilibria (including Pull-In) if the boundary value problem is 
discretized following the Galerkin method without premultiplication of the denominator of the 
forcing term (Gutschmidt 2010). However, the determination of the coefficient in such a 
reduced-order model deduced from the discretization without premultiplication of the denominator 
requires solving integral equation by the numerical method. Challenges could be faced by such a 
method, in finding solutions whenever the system approaches a singularity, like in the cases of 
primary and secondary Pull-In instabilities (Gutschmidt 2010). 

A simple lumped model, which consists of a single parallel plate capacitor suspended by an 
ideal linear spring, was often used formerly to simulate the electrostatically actuated 
microstructures (Pamidighantam et al. 2002, Cheng et al. 2004, Chowdhery et al. 2005), with the 
effect of the fringing field and the distributed structural deformation as well as non-ideal boundary 
conditions. Based on well-known beam and plate theories, the distributed model could be 
established, but whose solution could only be obtained via numerically solving the highly 
nonlinear governing differential equations (Osterberg 1995, Gupta 1997, Yu et al. 2012). Some 
other analytical models (Petersen 1978, Lee and Kim 2000, Wu et al. 2013) give the Pull-In 
voltage of MEMS beams by assuming the deflection functions of electrostatically actuated beams 
as polynomial or Trigonometric functions. 

Among the above-mentioned analytical models, a few literatures (Gupta 1997, Hu 2006) 
consider the curled beam induced by residual stress releasing. Based on the Euler-Bernoulli beam 
theory and Taylor’s series expansion, Hu derives three analytical models of a curled cantilever 
micro beam subjected to electrostatic loads, namely the full-order, the fourth-order and the 
third-order models, which are then solved by the energy method to obtain the corresponding 
closed form solutions for the pull-in voltages of curled micro beam subjected to electrostatic loads 
(Hu, 2006). The accuracy of the present models is verified through comparing with former 
analytical models and the experimentally measured data conducted in former works. Recently, 
considering the fringing fields, Hu and Wei (2007) derive a high precise analytical solution to 
determine the Pull-In voltages of a curled beam subjected to electrostatic loads. 

This paper is concerned with presenting an alternative approach to solve the nonlinear static 
response of curled cantilever micro beam actuator for the one-sided electrode configuration. The 
model is based on the nonlinear differential governing equation for micro beam structure. The 
analytical approximate solutions are established by choosing a shape of deflection of MEMS 
beam, and then employing the Galerkin method. These approximate solutions are brief and explicit  
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Fig. 1 Sketch of the curled cantilever micro beam for the one-sided electrode ground 
 
 

in expression and show excellent agreement with respect to the numerical solutions obtained by 
the shooting method (Yu and Sun 2012, Yu et al. 2012) and the experimental data measured by 
Gupta (1997), and they are valid for small as well as large free-end deflection of the beam. 

 
 

2. Analytical model 
   

A curled cantilever beam subjected to a uniform electrostatic field is considered. A typical 
sketch of the microbeam system for the one-sided electrode configuration is shown in Fig. 1. The 
micro beam is made of elastic material and electrostatically actuated by the electrode. It is 
assumed that the initial gap compared with the length of the beam is very small. As known, 
fringing field effects begin to influence for a very narrow width of the beam, which is the case of 
beam-width smaller than the gap between the beam and the ground (Pamidighantam et al. 2002). 
Since the MEMS structures considered in the present paper are generally outside of the case of 
very narrow beam-width, therefore, throughout the present paper, fringing fields are ignored. 
However, omitting fringing fields does not affect the nature of the considered electromechanical 
response. Based on the assumption of the Euler-Bernoulli beam and a uniform electrical field, the 
static equilibrium equation and boundary conditions of a cantilever micro beam could be presented 
as (Gupta 1997, Lee and Kim 2000, Hu 2006) 
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where L, E and I=bh3/12 represent the length of the beam, Young’s modulus and the second 
moment of cross-section, respectively, and b is the width and h is the thickness. Note that w is the 
deflection difference between the present state and the initial curled status of the beam (Hu 2006), 
as a function of the position x, please see Fig. 1. Moreover, V2, ε0, and εr represent the applied 
voltage, the permittivity of free space, the dielectric constant of the dielectric medium between the 
beam and the ground, respectively. The initial gap between the beam and the ground plane is 
presented by G . Because of the residual stress releasing, the cantilever beam would be curled, 
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and the initial gap between the beam and the ground plane can be expressed as 

0 1 cos
x

G g 

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 
                             (3) 

where g0 is the gap between the fixed end of the cantilever beam and the ground plane,    
represents the initial radius of curvature of the curled cantilever beam. For details of derivation in 
this section, we refer the readers to Hu (2006). 

For simple expression, the dimensionless nonlinear governing equation with boundary 
conditions in equilibrium can be expressed 
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The exact solution for the electrostatic-actuated beam is very difficult to obtain, since the 
nonlinear electrostatic force is coupled with the structural deflection. This paper is concerned with 
analytical approximate solutions to the nonlinear static response. These analytical approximate 
solutions are derived by using Galerkin method and the assumed shape of the micro beam 
deflection (Fang and Wickert 1994, Elata and Abu-Salih 2005, Gutschmidt 2010, Yu et al. 2012).  
 
 
3. Solution methodology 

 
In this section, Galerkin method (Shames and Dym 1985) is applied to derive the analytical 

approximate solutions. By the use of the Galerkin method, the deflection function w(s) is 
expressed as 

)()( scsW                                  (7) 

where ϕ(s) is the assumed deflection shape function satisfying the boundary conditions in Eq. (5) 
and the coefficient c is the amplitude of the associated shape. Furthermore, let c be the normalized 
free end deflection of the beam W(s)|s=π/2=c (i.e., w(x)|x=L=ζ=cg0). A reasonable and simple 
deflection shape function satisfying the conditions in Eq. (5) and W(s)|s=π/2=c can be taken as 
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Substituting Eqs. (7)-(8) into Eq. (4), multiplying Eq. (4) by (G−W)2 and ϕ(s), and then 
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integrating with respect to s from 0 to π/2 yield 
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From Eq. (9), the normalized approximate voltage is obtained  
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where the expressions for D0, D1, D2, D3, D4, D5, and Z are presented in Appendix.  
The applied voltage could be obtained by using Eqs. (6) and (10) 
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Where 

0c g  
In the next section, it will be shown that Eq. (11) is able to predict excellent analytical 

approximations to the nonlinear deformation for an example of MEMS.  
The normalized approximate Pull-In voltages and Pull-In free-end deflections could be 

obtained in terms of g0, by solving c from equation  
0


dc

cd . Likely, the actual approximate 

Pull-In voltages VP and Pull-In free-end deflections ζP can be obtained in terms of g0, by solving g0 

from equation  
0




d

dV . 

 

 
4. Results and discussion 

 
In this section, accuracy of the proposed analytical approximation is illustrated by comparison 

with numerical solution, as well as with experimentally measured result of Gupta (1997). The 
corresponding numerical solutions are obtained from Eqs. (1)-(2) by constructing extended 
systems and applying the shooting method (Yu et al. 2012). Note that the numerical approach 
above can be easily implemented for many electrostatically actuated microstructures described by 
non-linear ordinary differential equations. 

Consider a MEMS beam with the geometric and material parameters given in Table 1, which 
are the experimental samples conducted by Gupta (1997). Note that Gupta’s experimental beam 
samples are made of polysilicon and manufactured by the standard MUMPs 5 die process.  

For various beam length, Pull-In voltages of the present analytical approximate solution P
aV , 

the present numerical one P
eV obtained by shooting method, Hu’s result P

HV  (Hu 2006), and the 
experimental result P

GV  by Gupta (1997), are showed in Fig. 2. As seen in Fig. 2, the present  
numerical and analytical approximate results agree very well with Gupta’s measured results, no 
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Table 1 Material and geometrical parameters of a curled beam (Gupta 1997, Hu 2006) 

Variables Values 

Young’s modulus, E (GPa)  153 

Permittivity of free space, ε0 (F m-1) 8.85×10-12 

Dielectric constant between the beam and the ground, εr 1.2046 

Beam length, L (μm)  100-500 

Beam width, b (μm) 40 

Beam thickness, h (μm) 2.1 

Initial radius of curvature,   (μm)  40000 

Initial gap, g0 (μm)  2.4 

Note. The samples are made of polysilicon and manufactured by the standard MUMPs 5 die process. 
 

Fig. 2 Comparison of the present model with the former works and measured results 
(The material and geometrical parameters are given in Table 1) 

 
 

matter for longer or shorter beams. So the present theoretical model is sufficiently accurate, 
compared with experimental results. In the following discussion, only agreements of present 
approximate results with numerical ones are listed in the figures. Note that once the geometric and 
material parameters of the curled cantilever micro beams are given in Table 1(L is given special 
value, i.e., L=100 h=210 μm), Eq. (11) could be simply rewritten as follows 

3192148 105226319.2100699083.2102594133.4  V           (12) 

It is easy to investigate the relation of applied voltage and the free-end deflection of beam via 
Eq. (12), and Pull-In voltage VP and Pull-In free-end deflection ζP could also be obtained. A 
comparison of the numerical applied voltage Ve and the analytical approximate voltage Va in terms 
of the free-end deflection of beam ζ is shown in Fig. 3. Here, the stable and unstable solutions are 
represented by thick solid lines and thick dashed lines, respectively. As observed from this figure, 
Eq. (12) shows excellent agreement with the numerical voltages Ve.  
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Fig. 3 Variation of numerical and approximate applied voltages V with respect to the 
free-end beam deflection ζ (L=210 μm and other parameters given in Table 1) 

 

 
Fig. 4 Variation of numerical and approximate Pull-In voltages VP with respect to the gap g0 
(L=210 μm and other parameters given in Table 1) 

 
 
With geometric and material parameters given in Table 1 (L=100 h=210 μm and here, g0 not 

given), variations of the numerical and approximate Pull-In voltage VP and Pull-In free-end 
deflection ζP with respect to g0 are illustrated in Figs. 4-5, respectively. Excellent agreements are 
observed in these figures, Eq. (12) could thus be used to achieve very accurate approximations to 
the numerical Pull-In voltages and Pull-In free-end deflections for small as well as large nominal 
gap g0. 
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Fig. 7 Variation of the approximate applied voltage Va with free-end beam deflection ζ 
(L=210 μm, various values of the gap g0, and other parameters given in Table 1) 

 
 

beam and the ground plane g0, and other parameters given in Table 1. The stable and unstable 
solutions are represented by thick solid lines and thick dashed lines, respectively. It is observed 
that the deflection and voltage at the Pull-In (limit) point increase with increasing g0, as indicated 
by the red dots in these figures.  

The prediction of reliable Pull-In voltages and displacements is an important goal of 
MEMS/NEMS modeling. Using the brief and explicit expressions of post buckling voltage V, 
Pull-In parameters VP and ζP can easily be obtained for small as well as large beam-center 
deflection. Moreover, the effect of various parameters, such as gap g0, and thickness h of beam, to 
the post buckling voltage and Pull-In parameters, could also be expediently established by 
employing these analytical approximate solutions. Therefore, the present method and results could 
improve MEMS/NEMS understanding, reduce times of experiment for their designers and guide 
application of these devices. 

In this paper, the construction of the proposed analytical approximate solutions depends on the 
cantilever condition of the micro-beam. For micro-beams with other boundary conditions, such as 
the clamped-clamped boundary condition, the proper shape functions should be chosen. 
 
 
5. Conclusions 
   

In this paper, the analytical approximate solutions to the nonlinear static behavior of a curled 
cantilever actuator, modeled as a beam, subjected to the one-sided electrostatic field have been 
established, via choosing a proper deflection shape function and using Galerkin method to solve 
the equilibrium equation. Excellent agreement of these analytical approximate solutions with 
respect to numerical solution obtained by the shooting method and the experimental data measured 
by Gupta has been demonstrated. These approximate solutions are valid, no matter for longer or 
shorter beams. Their expressions are brief explicit functions for the applied voltage and are 
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accurate enough. Thus, they are very convenient and accurate enough for implementation in 
MEMS design.  
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