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Abstract.  This study examines the wavelet transform for output-only system identification of ambient 

excited engineering structures with emphasis on its utilization for modal parameter estimation of high-order 

and closely-spaced modes. Sophisticated time-frequency resolution analysis has been carried out by 

employing the modified complex Morlet wavelet function for better adaption and flexibility of the time-

frequency resolution to extract two closely-spaced frequencies. Furthermore, bandwidth refinement 

techniques such as a bandwidth resolution adaptation, a broadband filtering technique and a narrowband 

filtering one have been proposed in the study for the special treatments of high-order and closely-spaced 

modal parameter estimation. Ambient responses of a 5-story steel frame building have been used in the 

numerical example, using the proposed bandwidth refinement techniques, for estimating the modal 

parameters of the high-order and closely-spaced modes. The first five natural frequencies and damping ratios 

of the structure have been estimated; furthermore, the comparison among the various proposed bandwidth 

refinement techniques has also been examined. 
 

Keywords:  output-only system identification; modal parameter estimation; wavelet transform; high-order 
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1. Introduction 
 

Modal parameter estimation (e.g., natural frequencies, damping and mode shapes) from 

measured vibration responses is very important for the purpose of damage detection, model 

updating, structural control and dynamic assessment of engineering structures. A number of 

mathematical models, using output-only system identification methods, have been studied and 

have evolved into either parametric methods in the time domain or nonparametric methods in the 

frequency domain. The time-domain parametric methods, such as the Ibrahim time domain 

method, the eigensystem realization algorithm or the random decrement technique are preferable 
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for estimating modal damping, while the frequency-domain nonparametric methods, such as the 

“peak-picking” and the frequency domain decomposition are preferable for estimating natural 

frequencies and mode shapes. Since the wavelet transform was proposed in the context of the 

time-frequency analysis (Daubechies 1988), it has been employed for many applications and 

engineering computations due to the unique capacity of analyzing arbitrary signals simultaneously 

on the time-frequency plane. An advantage of the wavelet transform is to analyze arbitrary signals, 

from linear and stationary to nonlinear, transient and non-stationary signals. Some authors 

pioneered the use of the wavelet transform for output-only system identification of engineering 

structures (e.g., Staszewski 1997, Ruzzene et al. 1997). The wavelet transform was considered to 

analyze the measured responses on the time-frequency plane, in which the natural frequencies and 

the damping ratios can be extracted simultaneously from the time-frequency representation of the 

measured responses in the frequency domain and the time domain. The wavelet transform has been 

used for output-only system identification of simplified mechanical systems and engineering 

structures (e.g., Ladies and Gouttebroze 2002, Slavic et al. 2003, Kijewski and Kareem 2003, Meo 

et al. 2007). The wavelet transform has its own advantages in the output-only system identification 

of structures owing to the simultaneous representation of the measured response on the time-

frequency plane. However, computation of the wavelet transform is a complex and time-

consuming task, due to the following aspects: normalization in scale, smoothing in time and scale, 

time-frequency resolution analysis and so on. Wavelet analysis of vibration response data on the 

time-frequency plane also includes need for large computer data storage and redundancy of 

processing information. In the wavelet analysis, nevertheless, there is a trade-off between the 

frequency resolution and the time resolution; a fine frequency resolution corresponds to a coarse 

time resolution, and conversely. Thus, the time-frequency resolution analysis becomes an 

important practical issue for the wavelet transform-based system identification of engineering 

structures. Recent applications of the wavelet transform for output-only system identification of 

structures have been limited to the following theoretical and practical cases: (i) simple structures 

and simulated experimental response data with low damping and low level of noise (e.g., 

Staszewski 1997, Ruzzene et al. 1997, Ladies and Gouttebroze 2002, Peng et al. 2005), (ii) few 

low-order fundamental modes with clear and dominant power spectra (e.g., Slavic et al. 2003, 

Chen et al. 2008), and (iii) well-separated natural frequencies (e.g., Meo et al. 2007). Utilization of 

the wavelet transform for the modal parameter extraction with a focus on both high-order modes 

and closely-spaced ones has been investigated only to a limited extent (e.g., Tan et al. 2007, 

Caracoglia and Velazquez 2008). 

One of the most challenging issues in any output-only system identification method, including 

the wavelet transform, is to estimate the modal parameters of high-order, low-energy and closely-

spaced modes of practical engineering structures. Many factors such as the influence of external 

excitation and noises, the resolution analysis, the low level of energy, frequency filters, and mutual 

interference between two closely-spaced frequencies considerably affect the accuracy in the modal 

parameter estimation. Furthermore, smoothing operation of the wavelet analysis on the time-

frequency plane impairs the estimation of high-order frequencies and closely-spaced ones. 

Therefore, refinement techniques and a sophisticated time-frequency resolution analysis should be 

applied to enable high-order system and closely-spaced frequency identification. So far, real or 

traditional complex Morlet wavelets have been preferably employed for the modal identification. 

However, the traditional complex Morlet wavelet with only a central frequency parameter does not 

satisfactorily deal with the time-frequency resolution analysis in such special cases. Replacing the 

traditional complex Morlet wavelets with modified complex Morlet wavelets has been proposed in 
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some applications to provide a better adaptation and flexibility for the time-frequency resolution 

analysis (Yan et al. 2006). Moreover, similar to other output-only system identification methods in 

both time domain and frequency domain, the wavelet transform-based modal parameter estimation 

becomes a more difficult task with real ambient vibration data of full-scale engineering structures. 

Estimated modal parameters (especially for the damping ratios) are often considerably influenced 

by the effects of high-frequency noise, hypothesis on external “white noise” excitation, 

interference of the adjacent modes and so on (e.g., Ruzzene et al. 1997). Extraction of free-decay 

functions is usually preferable in the estimation of the modal parameters to reduce noise effects, 

the external excitations and the cross modal interference from the measured responses. Several 

refinement techniques, such as random decrement technique (e.g., Slavic et al. 2003, Kijewski and 

Kareem 2003, Yan et al. 2006, Meo et al. 2006), empirical mode decomposition (e.g., Peng et al. 

2006), filtering (e.g., Meo et al. 2006), pattern search (e.g., Tan et al. 2008) have been applied for 

the purposes of estimating the free-decay functions and removing perturbation of the noise, the 

external excitation and the cross modal interference. These afore-mentioned techniques are 

applicable to high-order and well-separated modes, but they do not work for closely-spaced 

modes. Both the modified complex Morlet wavelet, for analyzing the time-frequency resolution 

analysis, and the refinement techniques, for eliminating the perturbation, should be combined 

together to enable wavelet transform-based modal parameter estimation of high-order and closely-

spaced modes. This combination is proposed and investigated as the main objective of this study. 

This study examines the wavelet transform for output-only system identification of full-scale 

engineering structures with emphasis on modal parameter estimation for high-order and closely-

spaced modes. Sophisticated time-frequency resolution analysis has been implemented by 

employing the modified complex Morlet wavelet. Bandwidth refinement techniques have been 

proposed for the special treatment of high-order, low-energy modes and closely-spaced 

frequencies with the adaptive time-frequency resolution analysis. The ambient response data have 

been measured on a 5-story steel frame building in the numerical investigation. 

 

 

2. Wavelet transform  
 

The wavelet transform of a measured response X(t) is defined as the convolution operation 

between response X(t) and mother wavelet function ψτ,s (t) as (Daubechies 1992) 

 




 dtttXsWTC s

X )()(),( *

,  , (1) 

where ),(  sWTC X  is wavelet transform coefficient (WTC) at translation τ and scale s in the time- 

scale plane; the asterisk (*) denotes complex conjugate operator; ψτ,s (t) is the dilated and 

translated wavelet function at the translation τ and the scale s, derived from the “mother” wavelet 

function ψ(t) as 

 






 


s
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s
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
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1
)(,
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Due to the two fundamental parameters (translation τ and scale s) the wavelet transforms and 

the wavelet transform-based quantities can represent any signal simultaneously on the time-scale 

(frequency) plane. The mother wavelet function, designated as the “wavelet” for the sake of 
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brevity in the remainder of this study, satisfies the following conditions, which include an 

oscillatory behavior with fast decay toward zero, zero mean value, normalization and admissibility 

conditions 

 
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where Cψ
 
is the admissibility constant, )(ˆ f  is the Fourier transform of ψ(t) and f denotes the 

frequency variable. The inverse of the wavelet transform is obtained as (e.g., Daubechies 1992) 

  
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The wavelet transform coefficients can be interpreted as a correlation coefficient and a measure 

of similitude between the wavelet and the original signal on the time-frequency plane. 

 

 

3. Normalization, smoothing and ending effect treatment for wavelet transform  
 

Normalization in the scale (frequency domain) is needed for the accuracy in the estimation of 

the WTC. The purpose of the normalization is to ensure that the wavelet transforms of the analytic 

signal at each scale are comparable to the equivalent quantitates at other scales or for other signals, 

while the smoothing operation aims to obtain enhanced computing accuracy by removing noise 

and to convert the computational domain from a local WTC to a global WTC. Each value of the  

),(  sWTC X  is normalized by a factor s/1  on the whole scale domain (e.g., Daubechies 1998). 

Smoothing in both time and scale axes is important for estimating the wavelet transform-based 

quantities (e.g., wavelet auto spectra, wavelet cross spectra, wavelet coherence and wavelet phase 

difference). In the time-domain smoothing, the computed WTC is linearly averaged over a certain 

time segment, designated through the “time-shift” index i, or over the entire duration of the signal 

as (Torrence and Compo 1998) 

 


2

1

,)()/1()(
2

0
2 i

ii ii sWTCisWTC                       (5a) 







1

0

22 .)()/1()(
N

i ii sWTCNsWTC                       (5b) 

In the previous equation, i is a moving index between i1 and i2; i1, i2 are the beginning time and 

end time of the smoothing segment; i0 denotes the number of averaging points between i1 and i2, 

i0=i2−i1+1; N is the number of samples on the entire time domain. In this study, the smoothing over 

the entire time domain in Eq. (5b) has been employed. 

In the smoothing in scale, weighted scaled-averaged wavelet transform coefficients over a scale 

range between s1 and s2 have been proposed 

  


2

1

/)()/()( 22 j

jj jjitji ssWTCCsWTC                     (6) 

where j is a scale index between j1 and j2; t is the time interval; j is a scale interval; C is an 

empirical reconstruction factor of the Morlet wavelet. The empirical factor C is defined 
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(Torrence and Compo, 1998) as  


j

j jjtj ssWC
0

2/1
0

2/1 )](Re[))0(/(   , in which ψ0(0) is the 

Morlet wavelet at the initial time t=0; Wδ(sj) is the WTC of the delta function δ; Re denotes real 

part of the operator. Further information on the time-scale smoothing is available in Torrence and 

Compo (1998). 

Because the wavelet function with the finite window width is applied to a finite-duration 

random process, loss of accuracy will occur at the beginning and the end of the time interval in the 

wavelet transform coefficients. This is an end effect or a cone of influence of the wavelet 

transform. The cone of influence depends on the scale (the frequency); concretely, the cone of 

influence is larger at low frequency and smaller at high frequency. A way to reduce the end effects 

of the wavelet spectrum is to pad the two ends of the random process with zeroes before the 

wavelet spectrum is computed and then remove them afterward. In this study, a simplified 

treatment of the end effects has been employed by zero padding over 5-second intervals at the two 

ends of the numerically-estimated wavelet transform coefficients. The 5-second interval removal 

at the two ends does not influence the accuracy of the extracted modal parameters since the 

strongest energy in the measured response signals occurs much later in time (after 70 seconds in 

this study). More sophisticated approaches are available for eliminating the end effects of the 

estimated wavelet transform coefficients (e.g., Torrence and Compo 1998, Kijewski and Kareem 

2002). In the case of short-duration records, careful handling of the end effects should be 

considered. 

 

 

4. Modified complex Morlet wavelet 
 

The standard complex Morlet wavelet so far has been predominantly applied to wavelet 

transform-based output-only system identification. The main reason is that the complex Morlet 

wavelet contains harmonic components which are similar to the properties of the Fourier 

transform. The complex Morlet wavelet and its Fourier transform are given as (e.g., Kijeweski and 

Kareem 2003) 

    2/exp2exp)2()( 22/1 ttfit c    , (7a) 

   222/1 2exp)2()(ˆ
cfsfsf    , (7b) 

where )(ˆ),( sft  : complex Morlet wavelet and its Fourier transform coefficient, f : Fourier 

frequency variable, fc: wavelet central frequency. It is noted that only the central frequency fc is the 

fundamental parameter of the traditional complex Morlet wavelet in Eq. (7). 

The meaning of the central frequency in the complex Morlet wavelet is related to the number of 

waveforms in a time unit or window width of wavelet. The number of waveforms in the wavelet 

increases with the increment of central frequency. In the other word, the central frequency refers to 

the resolution of the wavelet; if the central frequency increases the resolution increases with a 

constant width of the window. However, there is no parameter to regulate the window width in the 

wavelet analysis with the standard complex Morlet wavelet. Therefore, the modified complex 

Morlet wavelet has been introduced in order to adapt the width of the computing window in the 

wavelet analysis as (Yan et al. 2006) 

 )/exp()2exp()()( 22/1

bcb fttfjft    , (8a) 
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 ))(exp()(ˆ 22

cb fsffsf   , (8b) 

where fb denotes bandwidth parameter, which is related to the width of wavelet window. In the Eq. 

(8), the central frequency fc and the bandwidth parameter fb are combined to determine the time-

frequency resolution at certain selected frequencies. 

A fixed bandwidth parameter fb=2
 
is used in the traditional complex Morlet wavelet. A given 

time-frequency resolution of the modified Morlet wavelet in Eq. (8) is determined by a balance 

between the width of the wavelet window and the number of waveforms in this window. A narrow 

window in time has good time resolution but poor frequency resolution, while a broad window has 

poor time resolution but good frequency resolution. 
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Fig. 1 Modified complex Morlet wavelets: (a) fc=1, fb=2; (b) fc=1, fb=5 

 

 

Fig. 1 shows real and imaginary parts of the modified Morlet wavelet with two sets of the 

parameters: fc=1 fb=2 and fc=1 fb=5. These Morlet wavelets have their spectral peaks at 1Hz, 

which corresponds to the central frequency parameter fc. In Fig. 1(a) the frequency of the wavelet 

is a unit (a waveform per time unit) and the width of window in the time domain is about [−2, 2], 

while in Fig. 1(b) the wavelet has unit frequency and the width of window in the time domain is 

[−5, 5]. If the window width is widened (larger fb), the window amplitude must be shortened to 

ensure equivalent energy for the same kind of the wavelets (and inversely, see Figure 1). It is noted 

that )(ˆ sf can be zero if f is zero, since the integral of the modified Morlet wavelet over the 

whole time domain is zero. This remark also results in the admissibility condition of Eq. (3) for the 

modified complex Morlet wavelet, which must be satisfied. 

The wavelet scale is related to the Fourier frequency. The relationship between the Fourier 

frequency and the wavelet scale in the wavelet transform can be approximated as follows 

 
s

f
f c , (9) 

where s, fc and f denote the wavelet scale, the wavelet central frequency and the Fourier frequency, 

respectively. 
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5. Modal parameters estimation  
 

Consider a linear damped MDOF structure superimposed by N-modes; the response of the 

structure due to external excitation as Gaussian distributed broad-band white noises can be 

expressed as follows 

 
p

N

j

idiiii XtftfAtX 
1

)2cos()2exp()(  , (10) 

where N: number of combined modes; i: index of mode; Ai: amplitude of i-th mode; θi: phase 

angle; fi, ζi: undamped frequency and damping ratio of i-th mode; 21 iidi ff  : damped natural 

frequency; Xp: perturbation due to external measurement noise or white noise (unmeasured) 

excitations. 

No convincing study on the effect of the external excitation on the accuracy of the output-only 

system identification methods is available; however, a “white noise-type” external excitation is 

generally accepted. It is noted that some authors (e.g., Ladies and Gouttebroze 2002, Slavic et al. 

2003, Kijewski and Kareem 2003) have used the random decrement technique (RDT) to reduce the 

effects of external white noise excitation, noise and cross modal interference, and to create impulse 

response functions of a measured structure, as damped free vibration responses, to which the 

wavelet transform is subsequently applied. It is argued that, however, the random decrement 

technique, operating as a conditional correlation function and averaging procedure, also damages 

high-order spectral components, which contain low energies in a practical response signal. In 

addition, the RDT cannot work in the case of the closely-spaced modes. Therefore, elimination of 

perturbation due to the measurement noise and external white noise excitation is unnecessary for 

the wavelet transform-based modal parameter estimation in many practical cases (e.g., Staszewski 

1997). It is noted that the proposed bandwidth refinement techniques, used in this study, play a 

similar role to the RDT in reducing the effects of high frequency noises, white noise external 

excitation and cross modal interference. 

Implementing the wavelet transform Eq. (1) of the theoretical response Eq. (10), one can obtain 

the wavelet transform coefficient as 

 



N

i

iii

X fA
s

sWTC
1

)2exp(
2

),( 
))2(exp())(exp( 22

idicib fjfsff   . (11) 

Because the wavelet transform coefficient is localized at a given fixed scale s=si, only the i-th 

mode is tuned to the wavelet scale si and predominantly contributes to Eq. (11), whereas the role 

of other modes can be negligible. Noting that from Eq. (11) one has si=fc/fi or si fi−fc=0, the term in 

Eq. (11) becomes exp(−π2 fb(sfi−fc)
2)=1. The wavelet transform coefficient at the scale si can be 

rewritten as an equivalent reduced SDOF system in the i-th mode 

 ))2(exp()2exp(
2

),( idiiii

i

i

X fjfA
s

sWTC   . (12) 

Substituting time t for translation τ, and expressing Eq. (12) in the form of the Hilbert 

transform’s analytic signal with instantaneous amplitude and instantaneous phase, we have 

 ))(exp()(),( tjtBstWTC iii

X   , (13) 
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where Bi(t), φi(t) denote the instantaneous amplitude and the instantaneous phase, which are 

determined as 

 )2exp(
2

)( tfA
s

tB iii

i

i  , (14a) 

 
idii tft   2)( . (14b) 

Using the logarithmic expression of the instantaneous amplitude, after differentiating the 

logarithmic amplitude and differentiating the phase angle, one obtains 

 
ii

i f
dt

tBd
2

)(ln
 ,  (15a) 

 212
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ii
i f

dt
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


 .  (15b) 

From Eq. (15), the i-th natural frequency and the i-th damping ratio can be estimated as follows 
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tBd

f

i

i

i
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2

1


  . (16b) 

For estimating the damping ratios from the wavelet logarithmic amplitude envelope, the linear 

fitting technique can be applied. The afore-mentioned wavelet transform-based output-only system 

identification procedure has been employed for extracting the natural frequencies and the damping 

ratios of the ambient responses of a steel frame building with emphasis on the refinement 

techniques in the wavelet analysis and to detect high-order and closely-spaced modal parameters. 

 

 

6. Time-frequency resolution analysis for closely-spaced frequencies 
 

Aptitude to the multi-resolution analysis is advantageous in the wavelet transform. There is 

always a tradeoff between frequency resolution and time resolution. Moreover, the uncertainty 

principle requires that the product between the frequency resolution and the time resolution must 

be bounded on the time-frequency plane. The time-frequency resolution changes with the 

frequency and the parameters of the modified Morlet wavelet. A fine frequency resolution 

corresponds to a coarse time resolution, and inversely. In the processing of full-scale vibration 

signals, fortunately, fine frequency resolution and coarse time resolution are often employed for 

analyzing low frequency band. An optimal Gaussian window has been proposed in the time-

frequency plane of the complex Morlet wavelet, containing the time-frequency resolution as 

(Ladies and Gouttebroze 2002, Kijewski and Kareem 2003) 

 
22

1


 f , (17a)  
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2

2
 t , (17b) 

where Δfψ, Δtψ
 
are two reference dimensions in the frequency and the time domains. The product 

between the two dimensions (width and length) of the Gaussian window has the optimal value of 

Δfψ Δtψ=1/4π; normally one has applied the relationship Δfψ Δtψ≥1/4π. 

In the modified complex Morlet wavelet, the bandwidth parameter fb or the width of the 

Gaussian window is added; therefore the dimensions of the Gaussian window are determined as 

 

bf
f




2

1
 , (18a) 

 
2

bf
t   . (18b) 

Using the inter-relation between the Fourier frequency and the wavelet central frequency, the 

wavelet scale, as shown in Eq. (9) with s=fc/f, one obtains the time resolution and the frequency 

resolution from the Gaussian window as follows 

 

bc ff

f
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f
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



2



 , (19a) 

 
f

ff
tst

bc

2
  . (19b) 

In order to separate two closely-spaced frequencies, fi, fi+1 with a difference of Δfi,i+1=(fi+1−fi)
 
at 

an averaged frequency of fi,i+1=(fi+1+fi)/2, the desired frequency resolution should be smaller than 

the corresponding frequency resolution, employed for the wavelet in Eq. (19); this can be 

determined as (Kijewski and Kareem 2003) 

 )2(
2

1,

1, 
 bc

ii

ii
ff

f
f



  , (20) 

where Δfi,i+1 is the desired frequency resolution for separating two closely-spaced frequencies fi, 

fi+1;  is a parameter defining overlapping of two adjacent Gaussian windows of the modified 

Morlet wavelet. If α=1, the two Gaussian windows, which are centered at two closely-spaced 

frequencies, almost overlap. For the traditional complex Morlet wavelet, Kijewski and Kareem 

(2003) suggested α=2, while Yan et al. (2006) used α=1.5. However, one should not take α larger 

(than 2) because it can produce very coarse time resolution at very fine frequency resolution, 

which may influence the damping estimation. In this study, we choose α=1.5. The central 

frequency and the bandwidth parameter must be selected to satisfy the following condition 

 

1,

1,

2
)2(








ii

ii

bc
f

f
ff


 . (21) 

As a result, one can adjust the wavelet central frequency fc and the bandwidth parameter fb to 

obtain the desired frequency resolution and the desired time resolution at a given frequency f to  
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Fig. 2 Response measurements of the building at various floor levels and the ground (X direction) 

 

 

extract high-order and closely-spaced frequencies. Furthermore, it must be noted that the selection 

of each set of frequency resolution and time resolution can differ at each given frequency and 

depends on the chosen modified Morlet wavelet function. 

 

 

7. Measurements, results and discussions  
 

Ambient vibration measurements were carried out on a 5-story steel frame building at a test site 

of the Disaster Prevention Research Institute (DPRI), Kyoto University (Kuroiwa and Iemura 

2007). Displacement data were recorded at all 5 floor levels and ground level, over a 5-minute 

interval, with 100Hz sampling rate. Dual-axis displacement sensors were placed at the center of 

each floor. Time series of the displacement responses in the dominant X-direction at the five floors 

and ground are shown in Fig. 2. 

Fig. 3(a) shows an example of power spectral density function (PSD) of the measured response 

on the top 5th floor at a high frequency resolution of 0.012 Hz, while 6 eigenvalues (also known as 

singular values) of all measured responses obtained by enhanced frequency domain decomposition 

(Brincker et al. 2001) are indicated in Fig. 3(b). In the enhanced frequency domain decomposition 

(EFDD), only the first eigenvalue (or the first singular value) is employed, while other higher-

order eigenvalues (2nd-6th eigenvalues) can be used as a support to separate two closely-spaced 

frequencies or for the purpose of eliminating the perturbation of external forces and noises. 

However, the utilization of the higher-order eigenvalues for separating two closely-spaced 

frequencies is only possible for high-energy and low-order modes (Brincker et al. 2001), while 

higher-order eigenvalues cannot be used to separate closely-spaced frequencies of the high-order 

modes. Natural frequencies in the X-, Y-directions of the steel frame building are determined from 

spectral peaks observed in either the PSD of the measured response or the EFDD’s first  
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Fig. 3 Natural frequency estimation of measured responses: (a) High-resolution power spectral density 

function (PSD), (b) enhanced frequency domain decomposition (EFDD) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

Fig. 4 WTC of 1st floor response: (a) PSD, (b) WTC using standard complex Morlet wavelet, (c) WTC using 

modified complex Morlet with fc=2, fb=2 

 

 
eigenvalue of all measured responses. The first five structural modes in the X-direction only along 

with the order of the modes of the steel frame building were indirectly estimated by using a finite 

element model; they are respectively: 1.73 Hz, 5.34 Hz, 8.85 Hz, 13.66 Hz and 18.12 Hz (see Fig. 

3(a)). 

Wavelet analysis has been used for the measured responses. Fig. 4 shows the WTC of the 

measured displacement at the 1st floor in 0-20Hz frequency band between 50 s and 150 s using the 

standard complex Morlet wavelet (fc=1) and the modified complex Morlet wavelet (fc=2, fb=2), 

while the PSD of the measured response is indicated in Fig. 4(a). It can be seen from the Fig. 4 

that only the WTC of the 1st mode of the steel frame building can be observed, while 3rd, 4th and 5th  
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Fig. 5 Time-frequency resolution analysis at closely-spaced frequencies: (a) PSD at closely-spaced 

frequencies, (b) resolution analysis at closely-spaced frequencies 

 

 

modes are missing. The 2nd mode appears in the WTC computed by the modified complex Morlet 

wavelet (Fig. 4(b)), while one cannot observe this mode in the WTC using the standard complex 

Morlet because of a very coarse frequency resolution (Fig. 4(c)). The plausible reasons for the 

omission of these higher-order modes from the computed WTC are: (i) WTC of the high-order 

modes is small and lost as a background effect after time-scale smoothing, (ii) frequency 

resolution, variable over a wide frequency band between 0 and 20 Hz, is adequate for low 

frequency but not appropriate for higher frequency. Furthermore, two closely-spaced frequencies 

at 13.68 Hz and 14.03 Hz are observed in the PSD of the response (see Fig. 4(a)), while the 13.68 

Hz is only discernable as the natural frequency of the 4th mode. In order to observe the higher-

order modes (3rd, 4th, 5th modes) in the WTC and separate the two close frequencies at the 4th 

mode, special treatments of time-frequency resolution analysis and the bandwidth refinement 

techniques have been applied. 

 

7.1 Treatment of closely-spaced frequencies  
 

One aims to separate the natural frequency of the 4th mode fi=13.68 Hz in the X direction from 

the adjacent frequency fi+1=14.03 Hz, the natural frequency in the Y direction. Time-frequency 

resolution analysis is carried out using the frequency fi,i+1=(13.68+14.03)/2=13.85 Hz as the 

centered frequency of the Gaussian window of  the wavelets in the frequency domain, and the 

resolution *fi,i+1=(14.03−13.68)=0.35 Hz as the minimum frequency interval between two 

adjacent Gaussian windows of the wavelets overlapping in the frequency domain (see Fig. 5(a)). 

The desired frequency resolution, needed to separate two adjacent frequencies, is much lower than 

the resolution *fi,i+1=0.35 Hz. However, the desired frequency resolution is determined by Eq. 

(20) as fi,i+1≤ 0.117 Hz with α=1.5. According to Eq. (21), in order for the two Gaussian windows 

of two wavelets to precisely overlap at fi,i+1=13.85Hz and *fi,i+1=0.35Hz, the central frequency fc 

and the bandwidth parameter fb of the modified complex Morlet wavelet must satisfy the condition 

9.18bc ff . 
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Table 1 Time-frequency resolution at fi,i+1=13.85 Hz with various pairs of central frequency fc and 

bandwidth parameter fb 

fc (Hz) 1 2 3 5 

fb 30 20 30 20 30 10 20 30 

bc ff  5.4 8.9 10.9 13.4 16.4 15.8 22.3 27.3 

f (Hz) 0.40 0.24 0.20 0.16 0.13 0.14 0.10 0.08 

t (s) 0.20 0.33 0.40 0.49 0.60 0.57 0.80 0.98 

 

  

Table 1 investigates the analyzing time and frequency resolutions at the frequency fi,i+1=13.85 

Hz, corresponding to some selected central frequency fc and bandwidth parameter fb of the 

modified Morlet wavelet. It can be seen that, if one increases the frequency resolution with the 

increment of both central frequency and bandwidth parameter to separate two adjacent 

frequencies, the time resolution accordingly decreases. However, the product between the 

frequency resolution and the time one is constant f.t=0.079. In the other words, the width (the 

frequency domain) and the depth of the Gaussian window of the modified Morlet wavelets are 

interchangeable, but the area under the Gaussian windows is the same. There is a tradeoff between 

fine frequency resolution and coarse time resolution. As can be seen from Table 1, only two sets of 

central frequency and bandwidth parameter (fc=5 fb=20, fc=5 fb=30) satisfy the conditions 

9.18bc ff  and fi,i+1≤0.117 Hz in order to completely separate the 4th modal frequency 

fi=13.68 Hz (in the X direction) from the adjacent modal frequency fi+1=14.03 Hz (in the Y 

direction). 

Fig. 5(b) shows the wavelet transform coefficients in the frequency domain between 12 Hz and 

16Hz, extracted from the WTC using the previously selected pairs of central frequencies and 

bandwidth parameters in Table 1. It is observed that one cannot separate two adjacent frequencies 

with the following selections of the wavelet parameters: fc=1, fb=30 (f=0.4 Hz); fc=2, fb=20 

(f=0.24 Hz); fc=2, fb=30 (f=0.20 Hz); fc=3, fb=20 (f=0.16 Hz); fc=3, fb=30 (f=0.13 Hz); and 

fc=5, fb=10 (f=0.14 Hz). In contrast, the two adjacent frequencies begin to be well separated 

using the sets of parameters: fc=5, fb=20 (f=0.10 Hz); fc=5, fb=30 (f=0.08 Hz), see Table 1 and 

Fig. 5(b). However, the time resolutions are coarse t=0.8s and t=0.698s, respectively, in the 

case of the last two sets fc=5, fb=20 and fc=5, fb=30. Furthermore, the two adjacent frequencies are 

not being completely separated. It is suggested that one selects low central frequency fc and high 

bandwidth parameter fb in the time-frequency resolution analysis for separation of the closely-

spaced frequencies. The reason for the low central frequency selection is to reduce the 

computational burden since the central frequency influences the number of waveforms in the 

Gaussian window of the wavelets. It is also advised that the proposed treatment of closely-spaced 

frequencies with very fine frequency resolution should be used within a given localized frequency 

band, which must contain the two adjacent frequencies; on the contrary, it should not be employed 

on the entire frequency domain to reduce the influence of the coarse time resolution on the 

accuracy of the modal parameter estimation. 

 

7.2 Examination of high-order modes  
 

In order to estimate the modal parameters of the high-order modes such as the 3rd, 4th and 5th 

modes in this study, we propose the bandwidth refinement treatments, which are adaptive for the  
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Fig. 6 WTC with bandwidth resolution adjustment: (a) bandwidth 0-5Hz (fc=2, fb=10), (b) bandwidth 5-

10Hz (fc=2, fb=10), (c) bandwidth 8-12Hz (fc=3, fb=10), (d) bandwidth 12-16Hz (fc=5, fb=10) 

 

 

time-frequency resolution analysis, for signal processing in a given frequency bandwidth and 

representation of the WTC. Possible strategies for the bandwidth refinement treatments are as 

follows: 

(1) Bandwidth resolution adjustment: Entire frequency domain is divided into several 

frequency bandwidths, which contain the desired natural frequencies. The modified complex 

Morlet wavelet with pre-selected wavelet parameters (fc, fb) is applied to each frequency 

bandwidth. In this study, the frequency domain between 0Hz and 20Hz is segmented into the 

five frequency bandwidths: 0-5Hz, 5-10Hz, 8-12Hz, 12-16Hz, and 16-20Hz. 

(2) Broadband filtering: measured responses are band-pass-filtered using several broad-banding 

bandwidths. The frequency bands containing the desired natural frequencies are maintained, 

while other undesired frequency bands are eliminated. The WTC is computed with each filtered 

broadband component at selected time-frequency resolution. Filtered broadband components 0-

3Hz, 3-6Hz, 6-12Hz, and 12-24Hz of the measured responses are employed in this study. 

(3) Narrowband filtering: similar to the broadband filtering treatment, the measured responses 

are band-pass-filtered in several narrowband components, which contain the natural 

frequencies. However, this narrowband filtering is localized around the identified natural 

frequencies. Contrary to broadband filtering, this narrowband treatment requires prior 

information on these natural frequencies. In this study, the measured responses are filtered at 

the narrowband components 1-3Hz, 4-6Hz, 8-10Hz, 13-15Hz, and 17-19Hz. 
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The crucial point of the proposed bandwidth refinement techniques is to divide the frequency 

domain of interest into several frequency bandwidths, in which different time-frequency 

resolutions are applied. Lower frequency resolutions are good for low frequency bands, whereas 

higher frequency resolutions are required for high frequency bands. These refinement techniques 

are employed for the modal parameter estimation of the high-order and closely-spaced modes of 

the 5-story steel frame building. The results are discussed in the following sub-section. 

 

7.3 Results and discussion 
 

Fig. 6 illustrates the WTC maps of the measured response, using the bandwidth resolution 

adjustment treatment with four pre-selected frequency bandwidths. 

The frequency bandwidths equal to 0-5Hz, 5-10Hz, 8-12Hz, 12-16Hz, and 16-20Hz have been 

processed, respectively, by modified complex Morlet wavelet and using the following pairs of 

parameters: fc=2, fb=10 (f=0.04 Hz, t=1.81s); fc=2, fb=10 (f=0.13 Hz, t=0.59s); fc=3 fb=10 

(f=0.15 Hz, t=0.53s); fc=5, fb=10 (f=0.13 Hz, t =0.57s), in which (f, t) are the resolutions 

determined at the corresponding natural frequencies. 

Obviously, one can observe the high-order natural frequencies at selected bandwidths and 

resolutions (see Fig. 6); moreover, the closely-spaced frequencies can be separated in the 

bandwidth between 12 Hz and 16 Hz (see Fig. 6(d)). Since no filtering process is needed in the 

bandwidth resolution treatment, the natural frequencies and the damping ratios can be successfully 

extracted from the WTC maps. 

In the broadband and narrowband filtering treatments, the band-pass filtering of the measured 

response at designed frequency bandwidths is initially required before the WTC is computed. Fig. 

7(a) illustrates the time series of the broadband components from the original response computed 

at several frequency bandwidths, while the narrowband time series are shown in Fig. 7(b). In Fig. 

7(a) the frequency bandwidths are gradually reduced by a factor of 2 from a 50 Hz-maximum 

frequency (due to the sampling of the signals at fs=100 Hz), while in Fig. 7(b) the narrow 

frequency bandwidths are pre-selected around the identified natural frequencies. 
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Fig. 7 Filtering components: (a) broadband components, (b) narrowband components 
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Fig. 8 WTC of broadband components: (a) bandwidth 0-3Hz ( fc=2, fb=20), (b) bandwidth 3-6Hz ( fc=2, 

fb=20), (c) bandwidth 6-12Hz (fc=2, fb=20), (d) bandwidth 12-24Hz ( fc=5, fb=40) 

 
 

Fig. 8 shows the WTC of the broadband components of the frequency bandwidths, respectively 

0-3Hz, 3-6Hz, 6-12Hz, and 12-24Hz using the following pairs of parameters: fc=2, fb=20 (f=0.03 

Hz, t =2.57s); fc=2, fb=20 (f=0.09 Hz, t =0.83s); fc=2, fb=20 (f=0.15 Hz, t =0.50s); and fc=5, 

fb=40(f=0.06 Hz, t =1.15s). It is noted again that frequency and time resolutions shown in 

parentheses (f, t) are computed at the corresponding natural frequencies. Moreover, we employ 

higher frequency resolutions and lower time resolutions in the WTC computations contrary to the 

bandwidth resolution adjustment treatment. 

The natural frequencies of all the modes can be estimated; the 4th mode cannot be identified in 

Fig. 8(c) with the time-frequency resolution f=0.06 Hz, t =1.15s, but it is clearly observed in 

Fig. 8(d) with the resolution f=0.03 Hz, t=2.57s (better frequency resolution). The 5th mode is 

also observed at approximate frequency 18Hz in the interval 12-24 Hz, Fig. 8(d).  

Fig. 9 illustrates the WTC of the narrowband components, evaluated at the frequency 

bandwidths 0-3 Hz, 4-6 Hz, 8-10 Hz, and 13-15 Hz and using the following pairs of parameters: 

fc=2, fb=20 (f=0.03 Hz, t =2.57s); fc=2, fb=20 (f=0.09 Hz, t =0.83s); fc=2, fb=20 (f=0.06 Hz, 

t =0.15s); and fc=4, fb=40 (f=0.08 Hz, t =0.92s). The frequency adjacent to the 4th natural 

frequency also is eliminated from the scalogram using the narrowband component (13-15 Hz) in 

Fig. 9(d). The WTC of the narrow bandwidths are visible much more clearly with the narrowband 

filtering treatment, since they are localized in the frequency domain but “stretched” in the time 

domain. This feature of the WTC is convenient for estimating the damping ratios. 
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Fig. 9 WTC of narrowband components: (a) bandwidth 1-3 Hz (fc=2, fb=20), (b) bandwidth 4-6 Hz 

(fc=2 fb=20), (c) bandwidth 8-10 Hz (fc=2, fb=20), (d) bandwidth 13-15 Hz (fc=4, fb=40) 

 

 
Fig. 10 shows the wavelet logarithmic amplitude envelopes of the WTC of the narrowband 

components for estimating damping of the 1st, 2nd, 3rd and 4th modes in the X-direction of the steel 

frame building. The logarithmic decrements can be estimated via linear least-squares fitting, 

shown as red lines in the same plots; the damping ratios are accordingly determined. The damping 

ratios of the first four modes are estimated as 0.52%, 1.07%, 2.07% and 1.75% in the case of the 

narrowband filtering treatment. Even though damping estimation has several uncertainties, one of 

most important aspects is to select the time window of the logarithmic amplitude envelopes 

adequately for damping ratio estimation. Since the Gaussian window simultaneously depends on 

the frequency and time resolutions, if the dimension of the frequency window is shortened to 

achieve fine frequency resolution, the dimension of the time window is consequently widened 

leading to a coarse time resolution. The selection of the time interval may significantly influence 

the accurate estimation of damping ratios, based on the wavelet transform. The following 

guidelines are proposed for modal parameter estimation using the WTC: (i) the initial time of the 

time window is close to the maximum value of the computed WTC at each natural frequency, (ii) 

short time duration is preferable for damping estimation, and (iii) a similar number of temporal 

cycles is employed for damping estimation at each expected natural frequency. 

439



 

 

 

 

 

 

Thai-Hoa Le and Luca Caracoglia 

87 87.5 88 88.5 89 89.5 90
-8.72

-8.7

-8.68

-8.66

-8.64

-8.62

-8.6

Time (s)

L
o

g
ar

it
h

m
ic

 a
m

p
li

tu
d

e

 

 

 

y=-0.033x-5.7

Amplitude envelope

Linear fitting

 

(a) 

72 73 74 75 76 77 78
-19

-18.8

-18.6

-18.4

-18.2

-18

Time (s)

L
o
g
ar

it
h

m
ic

 a
m

p
li

tu
d
e

 

 

 

y=-0.13x-8.6

Amplitude envelope

 Linear fitting

 

(b) 

83 84 85 86 87
-13.6

-13.5

-13.4

-13.3

-13.2

-13.1

-13

Time (s)

L
o
g
ar

it
h
m

ic
 a

m
p
li

tu
d
e

 

 

 

y=-0.13x-2.1

Amplitude envelope

 Linear fitting

 

(c) 

83 84 85 86 87
-17.6

-17.5

-17.4

-17.3

-17.2

-17.1

-17

Time (s)

L
o

g
ar

it
h

m
ic

 a
m

p
li

tu
d

e

 

 

 

y=-0.11x-7.9

Amplitude envelope

 Linear fitting

 

(d) 

Fig. 10 Damping ratio estimation via linear fitting of WTC amplitude envelopes: (a) mode 1, (b) mode 2, 

(c) mode 3, (d) mode 4 

 
Table 2 Estimated natural frequencies and damping ratios 

Methods Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

 Natural frequencies (Hz) 

PSD 1.74 5.35 8.84 13.68 18.13 

WT1 1.74 5.32 8.81 13.64 18.07 

WT2 1.73 5.34 8.82 13.59 18.0 

WT3 1.73 5.35 8.83 13.64 18.04 

 Damping ratios (%) 

EFDD 0.31 0.61 1.75 1.14 0.81 

WT1 0.35 1.30 2.71 2.32 2.70 

WT2 0.49 0.96 1.96 2.11 2.06 

WT3 0.52 1.07 2.07 1.75 1.22 

Note: PSD: Power spectral density method; WT1, WT2, WT3: Respectively, wavelet transform-based 

bandwidth resolution adjustment, broadband filtering and narrowband filtering treatments; EFDD: enhanced 

frequency domain decomposition method. 
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The natural frequencies and damping ratios of the first five modes, estimated by using the 

proposed frequency bandwidth treatments (denoted as WT1, WT2 and WT3 for the sake of 

brevity) are listed in Table 2. The estimated values are also compared to with other output-only 

system identification methods, concretely the PSD for the natural frequencies and the EFDD for 

the damping ratios. Adequate agreement among the estimated natural frequencies is observed in 

the results obtained using the various refinement techniques and in comparison with other 

identification methods. However, a considerable difference in the estimated damping ratios can be 

seen. The damping ratios obtained by WT1 and WT2 (with slightly lower frequency resolution and 

higher time resolution) seem to be larger than the values found by WT3 (with slightly higher 

frequency resolution and lower time resolution). In contrast, the damping ratios determined by 

WT3 are closer to those predicted by EFDD. This considerable difference in the damping ratio 

estimation might arise from a number of sources such as filtering process, fitting operation, time-

frequency resolution procedures, number of cycles, and possibly the identification methodology. 

 

 

8. Conclusions 
 

Output-only system identification of a steel frame building, using the wavelet transform with 

the modified complex Morlet wavelet, has been presented. The study examines several special 

treatments in the time-frequency analysis and the frequency bandwidth processing for the 

extraction of high-order and closely-spaced modal parameters. Bandwidth refinement techniques 

(i.e., the bandwidth resolution adjustment, the broadband filtering and the narrowband filtering) 

have also been investigated. Good agreement in frequency estimation and some differences in 

damping ratio estimation have been observed among the various identification methods. Some 

concluding remarks are:  

(1) Modal parameters of the high-order and closely-spaced modes can be estimated well by 

wavelet transform if the time-frequency resolution analysis is combined with frequency 

bandwidth treatments. 

(2) Entire frequency domain has been segmented into several smaller frequency bandwidths, in 

which an adaptive time-frequency resolution can be used.  

(3) Time-frequency resolution analysis is an important issue for modal parameter estimation 

using wavelet transforms, especially for high-order and closely-spaced modes.  

(4) The modified complex Morlet wavelet is advantageous for the adaptive time-frequency 

resolution analysis; a “low” central frequency fc and a “high” bandwidth parameter fb are 

recommended. 

(5) For better estimation of damping ratios via wavelet transform the following guidelines are 

suggested: initial point of the amplitude envelopes at the maximum value of the WTC, short-

duration amplitude envelopes with constant number of cycles. 

 

 

References 
 
Brincker, R., Ventura, C. and Andersen, P. (2001), “Damping estimation by frequency domain 

decomposition”, Proceedings of International Modal Analysis Conference (IMAC XIX), Kissimmee, 

USA. 

Chen, S.L., Liu, J.J. and Lai, H.C. (2008), “Wavelet analysis for identification of damping ratios and natural 

441



 

 

 

 

 

 

Thai-Hoa Le and Luca Caracoglia 

frequency”, Sound Vib., 323, 130-147. 

Caracoglia, L. and Velazquez, A. (2008), “Experimental comparison of the dynamic performance for steel, 

aluminum and glass-fiber-reinforced-polymer light poles”, Eng. Struct., 30(4), 1113-1123. 

Daubechies, I. (1992), Ten Lectures on Wavelets, CBMS-NSF.  

Kijewski, T.L. and Kareem, A. (2003), “Wavelet transforms for system identification: considerations for 

civil engineering applications”, Comput. Aid. Civil Infrast. Eng., 18, 341-357.   

Kuroiwa, T. and Iemura, H. (2007), “Comparison of modal identification of output-only systems with 

simultaneous and nonsimultaneous monitoring”, Proceedings the World Forum on Smart Materials an 

Smart Structures Technology (SMSST07), Chongqing & Nanjing, China. 

Ladies, J. and Gouttebroze, S. (2002), “Identification of modal parameters using wavelet transform”, J. 

Mech. Sci., 44, 2263-2283. 

Meo, M., Zumpano, G., Meng, X., Cosser, E., Roberts, G. and Dodson, A. (2006), “Measurement of 

dynamic properties of a medium span suspension bridge by using the wavelet transform”, Mech. Syst. 

Signal Pr., 20, 1112-1133.  

Peng, Z.K., Tse, P.W. and Chu, F.L. (2005), “A comparison study of improved Hilbert-Huang transform and 

wavelet transform: Application to fault diagnosis for rolling bearing”, Mech. Syst. Signal Pr., 19, 974-988. 

Ruzzene, M., Fasana, A., Garibaldi, L. and Piombo, B. (1997), “Natural frequencies and damping 

identification using wavelet transform: Application to real data”, Mech. Syst. Signal Pr., 11(2), 207-218. 

Tan, J.B., Liu, Y., Wang, L. and Yang, W.G. (2008), “Identification of modal parameters of a system with 

high damping and closed spaced modes by combining continuous wavelet transform with pattern search”, 

Mech. Syst. Signal Pr., 22, 1055-1060. 

Torrence, C. and Compo, G.P. (1998), “A practical guide to wavelet analysis”, Bull. Am. Meteorol. Soc., 

79(1), 61-78. 

Slavic, J., Simonovski, I. and Boltezar, M. (2003), “Damping identification using a continuous wavelet 

transform: application to real data”, J. Sound Vib., 262, 291-307. 

Staszewski, W.J. (1997), “Identification of damping in MDOF systems using time-scale decomposition”, 

Sound Vib., 203 (2), 283-305. 

Yan, B.F., Miyamoto, A. and Bruhwiler, E. (2006), “Wavelet transform-based modal parameter 

identification considering uncertainty”, Sound Vib., 291, 285-301. 

 

 

CC 

442




