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Abstract.  The fatigue damage problems are frequently encountered in the design of civil engineering 

structures. A realistic and accurate fatigue life prediction is quite essential to ensure the safety of engineering 

design. However, constructing a reliable fatigue life prediction model can be quite challenging. The use of 

traditional deterministic approach in predicting the fatigue life is sometimes too dangerous in the real 

practical designs as the method itself contains a wide range of uncertain factors. In this paper, a new fatigue 

life prediction method is going to be proposed where the residual strength is been utilized. Several 

cumulative damage models, capable of predicting the fatigue life of a structural element, are considered. 

Based on Miner's rule, a randomized approach is developed from a deterministic equation. The residual 

strength is used in a one to one transformation methodology which is used for the derivation of the fatigue 

life. To arrive at more robust results, fuzzy sets are introduced to model the parameter uncertainties. This 

leads to a convoluted fuzzy based fatigue life prediction model. The developed model is illustrated in an 

example analysis. The calculated results are compared with real experimental data. The applicability of this 

approach for a required reliability level is also discussed. 
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1. Introduction 
 

The consideration of fatigue failure is one of the most important issues in engineering structural 

design. It is widely believed that more than 80% of the steel structural failures are related to 

fatigue fractures (Zhu et al. 2012). As fatigue reliability is usually required for the safe operation 

of mechanical structures, an unexpected failure could lead to high consequences. For example, 

common failures in welds and pipelines can be found in Costa et al. (2012). Therefore, an accurate 

prediction of the fatigue life of structural components are particular critical in the engineering 

structure designs (Dai et al. 2013). 

Fatigue damage is different from common brittle or ductile fractures. The damage increases 

with the load cycles in a cumulative manner which finally result to fracture. With the effect from 

the cumulative damage, the remaining life becomes much more limited under certain further 

loading. Many studies on the cumulative fatigue damage have been conducted in the past. 

Generally, the basic damage theories can be classified into two categories: linear damage 

cumulative theories and nonlinear damage cumulative theories. The linear damage cumulative rule 
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(LDR) was initially proposed by Miner (1945). Because of its ease of use, it receives wide usage 

among the engineering designs (Zhang and Wang 2010). However, there are some drawbacks with 

the linear cumulative damage model. The main shortcoming of Miner's method is that the damage 

accumulation process does not account the effects from the load conditions. More specifically, the 

load sequence, interactions with the material properties as well as imperfections are not considered 

in the fundamental rule (Luo et al. 2014). Therefore, a plenty number of new techniques have been 

developed in the fatigue life predictions. These include, for example, damage curve based 

approaches (Manson and Halford 1981), mechanic model considering load interaction effects 

(Skorupa 1999), damage model based on energy entropy (Kim et al. 2013), continuum mechanic 

damage model (Fatemi and Yang 1998), a fuzzy set based Miner's method (Zhu et al. 2011) and 

ductility based methods (Cheng and Plumtree 1998). More comprehensive review on the fatigue 

life prediction methods can be found in Cunha et al. (2014). Nevertheless, it should be pointed out, 

the cumulative fatigue damage prediction problem is still a classic but not resolved case. 

The stochastic nature of fatigue damage process makes the formulation of a deterministic 

approach usually impossible. Various sources of uncertainties are associated with the fatigue 

damage process, such as external loading, materials properties, defects and elemental geometries. 

Generally, most of the stochastic variables in the fatigue problems can be classified as three 

categories (Sankararaman 2011, Sankararaman and Mahadevan 2013): (I) model uncertainty, or 

sometimes known as epistemic uncertainty, that is mainly due to the imperfect knowledge or errors 

in the realization of the mathematical model or uncertainty in the choices of statistical models for 

the variables, (II) inherent uncertainty, which is referring to the natural randomness of a quantity 

and (III) statistical uncertainty, one that is related to errors caused from statistical inferences, e.g., 

estimations from limited observed data. Therefore, based on these concerned parameters, many 

stochastic mathematical formulations have been proposed by former researchers for the fatigue 

damage process (Zhu et al. 2013a). A general methodology for predicting the stochastic fatigue life 

by utilizing nonlinear accumulation damage theory is proposed by Liu and Mahadevan (2007). Wu 

and Huang (1993) developed a fatigue life prediction model for the structural elements to 

undertake variable loadings which undergoes a Gaussian random process. The probabilistic 

modeling of the fatigue damage accumulation with single stress and multi-level stress loadings can 

be found in Rathod et al. (2011). Ductility based methods are also developed in recent years (Zhu 

et al. 2013b). However, most of these works require extensive data information for the establishing 

of the fatigue model. The detailed information of crack growth law, crack geometry, materials 

properties and other mechanisms could hardly be fully available. A robust fatigue life prediction 

model is therefore required to provide a proper treatment of associated imprecise information and 

knowledge. Based on these concerns, alternatively, fuzzy model might be implemented in the 

fatigue model to represent the imperfect information. As such, the significance of this work can be 

justified.   

In this paper, the fuzzy set theory is introduced in a fatigue life prediction method which 

utilizes the residual strength as an input parameter. The basic aim is to explore a way of handling 

the parameter uncertainties and thus improve the expected performance of the original method 

through the fuzzy concept. Recognizing that, the paper is organized as follows. The basic review 

of fatigue damage theory is introduced first. Then a simple approach which utilizes one to one 

transformation technique to model the relationship between the fatigue life and the residual 

strength is proposed. After that, a linear fuzzy model is introduced to offset the model uncertainties 

in the developed model. To facilitate the accuracy of this fuzzy model, a validation study is 

performed based on experimental data. The model is then tested in an example analysis to predict 
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the fatigue life of the structural elements which are then compared with the experimental data. 

Finally, the concluding remarks are provided. 

 
 
2. Basic theory of fatigue life and damage 
 

According to most published fatigue damage accumulation theories, Miner's rule is most 

widely applied in engineering applications (Miner 1945). The rule utilizes a damage function (D) 

to represent the accumulated damage of the structural component. It is assumed the rate of damage 

accumulation remains unchanged over the whole loading process and damage only occurs when 

loading exceeds the fatigue limit. The failure will occur when the cumulative damage, the value of 

D, reaches the unity. The value of fatigue damage function is usually related to a number of 

factors. A simplified form which includes the most significant parameters can be expressed as  

 , , , , , , ,D f n C m r S T M ,           (1) 

where n is the number of loading cycles, C and m denote the material properties, r is the stress 

ratio, S represents the cyclic loading intensity,  is the loading frequency, T is the temperature and 

M is the moisture which represent the current environment condition. Most commonly, the 

environment factors are assumed to be constant in fatigue analysis. This leads to a degenerated 

form as  

 , , , , ,D f n C m r S  .                            (2) 

The damage function represents the level of damage which is directly linked to the residual 

strength of a structure or specimen. The residual strength is initially the same as static strength and 

decreases with the increasing of loading cycles. Under the fatigue loading, the residual strength is 

referring to the maximum static stress to cause the ultimate failure in the post fatigue condition. 

Therefore, the residual strength can be regarded as a variable which is dependent on the damage 

function. Based on the results in Xiong and Shenoi (2011), the change rate of the residual strength 

R(n) in terms of the number of loading cycle n can be expressed as 

   
   1

' , , , ,

1
b

dR n f C m r S

dn R n







,          (3) 

where R(n) is the residual strength after n loading cycles, f'(C, m, r, S, ) represents the fatigue 

strength which is a function of C, m, r, S and . The value of R(n) can be measured using the X-

ray diffraction (Lu 1996). One should note the use of Eq. (3) must have the assumption that fatigue 

damage under multi-level stress loading conditions cumulates linearly. 

This reveals a fact that the change of the residual strength is inversely proportional to some 

power (b-1) of the residual strength itself. Thus, the number of loading cycles can be derived from 

Eq. (3) if the information of residual strength is known. By an integration of Eq. (3) from n0=0 to 

the current state value n, the following strength degradation equation can be obtained 

   0' , , , ,
b

n f C m r S R R n     ,       (4) 

where R0 is the initial fatigue strength which is commonly estimated as some fraction of ultimate 

tensile strength that is specific to a material type (for example, 35% is used for austenitic stainless 
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steels). Usually, for simplicity, the value of the stress ratio r and loading frequency  are assumed 

to be constant. Therefore, the damage function f'(C, m, r, S, ) can be simplified to f'(C, m, S) and 

Eq. (4) can be written as  

   0' , ,
b

n f C m S R R n    .           (5) 

Thus, Eq. (5) identifies the relationships among the residual strength R(n), fatigue loading S 

and the number of loading cycles n.  

The determination of the fatigue strength function f'(C, m, S) relies on quite a number of 

factors. Many forms of equations have been proposed to approach the exact value of this function 

(Kwofie and Rahbar 2013). In this paper, since the developed model does not require too many 

material properties, the well known S-N curve, which is used to express the relationship between 

fatigue life N and stress S, is used to approximate the fatigue strength. The S-N curve generally 

models the relationship between the fatigue life and stress with a nonlinear power function 

expression as follow 

 
m

C
N

S
 ,        (6) 

where C is the fatigue strength constant and m represents the slope of the S-N curve which is 

related to various material properties of the structural component, e.g., specimen configuration, 

material strength and etc. The values of Eq. (6) are usually determined from experiments. By 

combining Eqs. (5) and (6), the strength degradation equation can be further expressed as 

 0

b

m

C
n R R n

S
    .               (7) 

This equation is frequently used in the prediction of fatigue life while the residual strength is 

known. In case that only initial strength R0 is available, Eq. (7) can be rewritten to calculate the 

residual strength based on the available information. This is derived as  

 

1

0

m bS n
R n R

C

 
   

 
.               (8) 

Normally the value of initial strength R0 is determined based on a large number of test data. The 

variability of this value is represented by a probabilistic model. In the literature, Weibull 

distribution has been proved to be adequate in modeling the observed failure data of many 

different types of phenomenon and components. It has been used for various engineering 

applications, such as lifetime analysis and fatigue reliability analysis. Most works have adopted a 

two parameter Weibull model for modeling the initial strength of the material (Doudard et al. 

2005).   

   
0 0Prob 1 expR

x
F x R x





  
      
   

,        (9) 

where  is the shape parameter and  is the scale parameter. The theoretical mean and variance of 

this Weibull model can be estimated from the followings 
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0

1
1R 



 
   

 
,              (10)  

0

1
2 2

2 1
1 1R 

 

      
           

      

,             (11) 

where  is the gamma function. It is usually difficult to have a direct estimation of the Weibull 

model parameters. Therefore, more commonly, the calculated sample mean and variance from a set 

of tested experimental data are utilized to estimate the scale and shape parameters based on Eq. 

(10) and Eq. (11). 

By substituting Eq. (9) into Eq. (8), the cumulative distribution function (CDF) of the residual 

strength R(n) can be derived as following 

     

1

0

1

1

0

Prob[ ] Prob

Prob 1 exp

m b

R n

m b

m b

S n
F x R n x R x

C

S n
x

CS n
R x

C





 
  

      
   

 

  
   
     

                                  

.       (12) 

Therefore, it could be observed from Eq. (12), the residual strength is also following a Weibull 

distribution.  

If we assume the fatigue failure occurs at the time when residual strength equals the cyclic 

stress level (e.g., R(n)=S), then the fatigue life could be predicted from Eq. (7) and Eq. (12). For 

instance, the fatigue life would then be estimated as 

 0

b

m

C
N R S

S
  ,             (13) 

where N represents the estimated total fatigue life (the number of cycles) of the specimen under 

the cyclic stress S. Following the same way of deriving the distribution of residual strength, the 

CDF of the fatigue life can be obtained as 

  0

1

1

0

Prob[ ] Prob[ ]

Prob 1 exp

b

N m

m b

m b

C
F x N x R S x

S

xS
S

CxS
R S

C





      

  
   
                         

              

.     (14) 
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Thus, it could be seen the fatigue life N is following a three parameter Weibull distribution. 

However, it is clear that in reality, the fatigue damage can be accumulated from different stress 

levels. In order to assess the remaining life of the specimen under uncertain loadings, the 

distribution of the total damage value D is of great interest. According to Miner's rule (1945), the 

damage accumulation with a single stress level S is given by  

n
D

N
 ,     (15) 

where n and N have the same meanings as explained in Eq. (7) and Eq. (13). Based on the linear 

damage accumulation rule, for a load spectrum which includes stress levels S1,...,Sk, with the 

corresponding number of load cycles n1,...,nk, the fatigue life prediction under constant block 

loading can be computed as 

1

k
i

ii

n
D

N

 ,             (16) 

where N1,...,Ni represent the cycles to failure under each stress level which could be estimated 

from Eq. (13). With this help of Miner's rule, by combining the S-N curve model and the linear 

damage accumulation model, the relationship between the accumulated fatigue damage and the 

number of usage cycles at any given stress level can be derived as followings. 

For single stress level 

00

m m
i i i i i i

bb
i iiim

i

n n S n S n
D

CN AC R SR S
S

   
     

.        (17) 

For multiple stress levels 

1 1 10

m mk k k
i i i i i

b
i ii i ii

n S n S n
D

N AC R S  

  
  

   .            (18) 

Since 𝐶[𝑅0 − 𝑆𝑖]
𝑏 is independent of the usage cycles ni, it is convoluted into one term, e.g. 

𝐴𝑖 = 𝐶[𝑅0 − 𝑆𝑖]
𝑏. Generally, Eqs. (17) and (18) could be utilized to predict the expected damage 

accumulation value at any given point of time (usage cycles) with the given single stress level or 

multiple stress levels. For simplicity, a linear relationship between the damage accumulation 

measure and usage time can be established as follow 

m
i i

i i
i

S n
D h n

A
  ,          (19) 

where hi indicates the slope of the damage accumulation trend line. While at fatigue failure life 

(e.g., ni=Ni), Eq. (19) can be further written as 

m
i i

i i
i

S N
D h N

A
  .    (20) 

Since the fatigue life N is following a three parameter Weibull distribution (as given in Eq. 

(14)), the distribution of D can be directly obtained. By substituting Eq. (20) into Eq. (14), the 
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CDF of D can be derived as follow 

 

1

1 exp

m b

i

D

xS
S

h C
F x





  
   
           
  
      

.            (21) 

Eq. (21) is thus the distribution of the damage accumulation at the time when the fatigue failure 

occurs.  

 

 

3. Derived randomized approach 
 

The determination of fatigue life has to account for the random nature of strength degradations. 

This covers random process of time, random process of space and random properties of the 

environment. All of which should be added in the deterministic model as random disturbances. 

With this concern, a random differential equation is usually introduced to estimate the parameter 

values. Then the solution of the randomized equation, the parameter estimations, can take account 

of the random nature of the observed data as well. By considering the randomized model in the 

strength degradation equation, Eq. (7) can be rewritten as 

    0 1
b

m

C
n R R n n

S
     X ,    (22) 

where X(n) is a random process which represents the model errors and dependent on n 

(thermalelastic effect). Basically, in this randomized approach, X(n) is usually assumed to follow a 

log-Gaussian stochastic process with 0 mean and constant σ standard deviation (Meneghetti 2007). 

Therefore, by taking the logarithmic form of Eq. (22), the randomized equation can be further 

changed to 

0 1 1 2 2y a a x a x U    ,       (23) 

where y=log(n), a0=log(C), a1=-m, a2=b, x1=log(S), x2=log[R0-R(n)], U=log[1+X(n)]. Obviously, U 

is following a Gaussian distribution which has a mean value of 0.698 and a new variance of σ'
2
. 

Similarly, the derived linear equation for the random variable y is also expected to follow a 

Gaussian distribution with a mean value of a0+a1x1+a2x2+0.698 and variance of σ'
2
. This gives the 

probability density function of the random variable y as 

   
2

0 1 1 2 22

1 1
exp 0.698

22
f y y a a x a x

 

 
      

 
.           (24) 

Therefore, the parameter values in Eq. (22) can be determined by statistical parameter 

estimations based on Eq. (24). For example, the maximum likelihood estimation method can be 

applied. Here, the parameter values of a0, a1 and a2 are yet to be determined. The values of x1, x2 

and y are mainly obtained from the experimental tests. After the parameters in the strength 

degradation model are all estimated, the CDF for residual strength R(n), fatigue life N and damage 
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accumulation value D can be constructed from Eqs. (12), (14) and (21).   

However, this randomized approach is limited to cases in which probabilistic models can be 

specified for all the variables with sufficient confidence. Although the implementation of the 

stochastic variables can help to capture the randomness of the model (e.g., the use of X(n)), several 

problems can still occur in the following situations: 

• Limited number of experimental data set (available data set of x1, x2 and y are too small); 

• Difficulties in specifying the distribution types (distribution of X(n) could be non-Gaussian); 

• Imprecise uncertainties exist in the relationship between input and output variables 

(coefficients a0, a1 and a2 may contain dubious uncertainties); 

• Inadequate assumptions and distortion introduced by linearization (derived Eq. (23) can be 

misleading).  

Therefore, alternatively, non-probabilistic methods could be applied to provide a framework for 

uncertainty quantification for the randomized model. Among the developed non-probabilistic 

concepts, fuzzy variables showed the most attractive properties in handling these imprecise 

information (Möller and Beer 2008, Beer et al. 2013). Thus, a fuzzy set based fatigue life 

prediction model is proposed herein. The fundamental concepts and ideas of this fuzzy based 

model is elucidated in the following sections. 

 

 
4. Fuzzy modeling and fuzzy regression model 

 

The fuzzy set provides a mathematical way for describing the uncertain data in which the 

information can only be described by a set of intervals and their associated gradual assignment 

(Walley 1991). The estimated interval values for a parameter a, e.g., a∈[al, au], can be assessed 

with the aid of membership values 𝜇𝑎(𝑎). The membership value ranges from 0 to 1 and can be 

used to represent different meanings in real practice, for example, the similarity between different 

categories, preference from the decision maker and degree of uncertainty in the collected 

information (Zhang 2015a). In this paper, we propose to use it for representing a degree of 

epistemic possibility. In other words, the uncertainties of the parameters (the width of the 

intervals) are modeled as changes in the membership value, or so called membership function. 

More specifically, a fuzzy set can be described with its uncertain proposition by 

  ,1)(0,)(,~  aaaaa aa              (25) 

where 𝑎̃ is referred to as the fuzzy set on the domain of a, 𝜇𝑎(𝑎) is the membership function of 

the fuzzy set. In the modeling of uncertain quantities, fuzzy set can be more useful in cases where 

only possible bounds are known. These are due to various kinds of reasons, for example, lack of 

enough data, fluctuations, linguistic or vagueness (Zhang 2015b). Therefore, we propose to 

implement this concept into the fatigue life prediction model to offset the shortcomings as 

discussed in the previous section.  

In the fuzzy modeling process, more commonly, the fuzzy components are assumed to be 

triangular fuzzy numbers (TFNs). The reason that TFN is so widely used is because it can be 

simply specified by three parameters. A fuzzy triangular number is determined by specifying the 

left spread and right spread as well as the value of mode (mean value). An illustration of the salient 

features of a TFN is shown in Fig. 1. Following the idea proposed by Tanaka et al. (1987), we 

propose to use the TFN model in characterizing the uncertainties in the developed fatigue model as  
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Fig. 1 Triangular fuzzy number 

 

 

given in Eq. (23). In that sense, a fuzzification is applied to all the coefficients of the linear 

regression equation to account the uncertainties described in Section 3. This leads to a general 

fuzzy linear equation as 

Uxaxaay  22110
~~~~ ,                           (26) 

where 𝑎0̃, 𝑎 ̃, 𝑎 ̃ represent the fuzzy coefficients and  ̃ represent the estimated fuzzy output. 

For the ease of simplicity, the Gaussian noise term U can be integrated into the fuzzy coefficient 

𝑎0̃. Then Eq. (26) can be changed to a short form as 

22110
~~~~ xaxaay  .                             (27) 

Therefore, the former parameter estimation method could not be applied anymore. Instead, the 

determination of the fuzzy model coefficients need to be conducted through a fuzzy regression 

analysis. Many previous works have been done to address the approaches in evaluating the values 

for the fuzzy regression (Peters 1994, Friedman et al. 1998). Most approaches tried to minimize 

the fuzziness of the linear model by minimizing the total spread of the fuzzy coefficients, subject 

to including all the observations.  

To simplify matter, one of the most direct and convenient parameter estimation method, the 

least-squares method, is employed in this work (Friedman et al. 1998). This approach is primarily 

focusing on the minimization of distance between the output of the model and the observed data. 

Conceptually, the determined fuzzy coefficients should make the predicted model value deviate 

from the observed data as small as possible. This brings the fuzzy regression in line with the 

statistical regression.  

μa(a) 

0 Space of a 

1 

Mode aj  

(arg μa(a) =1) 

 

Left spread ca
L
 

 

Right spread ca
R
 

 

Support 

 

aj - ca
L
 aj + ca

R
 

209



 

 

 

 

 

 

Yi Zhang 

By definition, from a least square perspective, the problem is to minimize the difference 

between a set of observed values yi for i=1,...,n and a set of predicted fuzzy values   ̃ for i=1,...,n  

which can be expressed as 





n

i

ii yy
1

)~(min .       (28) 

However, the measure of the distance between a fuzzy number and a crisp value has many 

different definitions (Möller and Beer 2004). The most commonly applied distance measure 

concept is the L
2
-metric d(.,.)

2
 which is proposed by Diamond (1988). In Diamond's theory, the 

measure of the distance between two fuzzy numbers can be calculated based on their modes, left 

spreads and right spreads. A general formulation for measuring the distance between two fuzzy 

numbers can be given as below 

             
2 22 2

1 1 1 2 2 2 1 2 1 1 2 2 1 1 2 2, , , , ,L R L R L L R Rd c m c c m c m m m c m c m c m c         
 

(29) 

where c
L
 and c

R
 represent the left and right spreads, m represents the mode. Therefore, by 

combining Eqs. (27), (28) and (29), the fuzzy coefficients in the fatigue life prediction model can 

be estimated by 

  2
22110~,~,~

),~~~(min
210

yxaxaad
aaa

.           (30) 

Since Eq. (27) is a linear and monotonic function, it would be easier to obtain the spreads and 

mode of  ̃ by the following equations 
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22110
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Then, for a set of observed values of x1, x2 and y, Eq. (30) can be derived as 
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 (34) 

By solving Eq. (34), the values of  𝑎 ̃
   𝑎 ̃

   𝑎 ̃
   𝑎 ̃

   𝑎 ̃
   𝑎 ̃

   𝑎 ̃   𝑎 ̃   𝑎 ̃ are estimated and 

thus the fuzzy coefficients of the linear equation can be finally determined. However, the 

procedures in calculating the parameter values may require a robust optimization approach.  
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Fig. 2 Schematic diagram of the validation process 

 

 

Detailed calculation steps in calculating the parameter values in Eq. (34) are provided in Appendix 

A. However, we should point out that the membership functions of fuzzy set should be determined 

empirically. The membership functions must be determined based on the continuous correction 

through practice and feedback. Most often, the membership functions are constructed based on 

statistical data or expert knowledge. Obviously, the accuracy of fuzzy fatigue life prediction 

depends upon the selection of membership function. For the actual analysis, whether the proposed 

model can accurately predict the fatigue life or not will be evaluated and compared with 

experimental data. These are further discussed in the later part of this paper. Nevertheless, the 

current work aims to demonstrate the usage of fuzzy set in the fatigue life predictions. The 

Start. 

Step 1: Conduct the experiments to obtain the 

probabilistic distribution of initial strength R0 of the 

material. 

Step 3: Perform the experimental test to obtain the 

residual strength R(n) of the specimens which have 

been subjected to the fatigue loading. 

Step 2: Choose a stress level S, and 

let the specimen to take n cycles of 

fatigue loading at S.  

Step 4: Calculate x1 and x2 based on the 

equation x1=logS, x2=log(R0-R(n)). 

Change value of  

S and n. 

Step 5: Aggregate all the calculated x1, x2 and n, 

perform the fuzzy linear regression method as 

proposed in Section 4. Estimate the fuzzy 

coefficient in the developed linear model. Based on 

the fuzzy coefficient, construct the fuzzy 

probabilistic model for the total fatigue life. 

Step 6: Validate the developed model for predicting 

the total fatigue life. Compare the predicted total 

life with the experimental results. 

1st Experimental 

Data group  

3rd Experimental 

Data group  

2nd Experimental 

Data group  
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concepts and idea can be generalized to any types of fuzzy models. 

To demonstrate the applicability of the proposed fuzzy approach, a validation study which 

compares the experimental results and predicted model value will be provided in the following 

section. 

 

 

5. Model validation with experimental results 
 

In this work, we utilize a set of experimental values measured in Zuo et al. (2014) for the 

model validation study. The tested material is 45 steels. There are three groups of measurements 

for the specimens. The first group of specimens were tested statically to obtain the distribution of 

the initial strength (R0). The second group of specimens were subjected at various maximum stress 

levels (S) with certain number of cycles (n). Then the residual strengths (R(n)) were measured. The 

third group of specimens were used for validation purpose. These specimens are subjected to 

different stress levels to obtain the total fatigue life cycles (N). The detailed steps of the validation 

process are shown in Fig. 2. This is very similar with the design process in offshore engineering 

(Zhang et al. 2015). 

Based on the first tested data group, the Weibull model is constructed for the initial strength R0. 

Maximum likelihood method is used to estimate the statistical parameters in this work. Fig. 3 

shows the empirical CDF of R0 and the fitted Weibull model. A p-value less than 0.05 in the KS 

test indicates the adopted Weibull model is a valid option. 

In establishing the fuzzy fatigue model, the second group of tested residual strength data are 

been used. To account for the measurement errors, the observed data set are assumed to have a 5% 

errors (e.g., the ratio of spread/mode for   ̃,   ̃, and  ̃ equals to 0.05). Based on the proposed 

method and the derived parameter estimation methods (as provided in Section 4 and Appendix A), 

the modes and spreads of the fuzzy coefficients in Eq. (27) are computed. Figure 4 plots the results 

of 𝑎0̃, 𝑎 ̃ and 𝑎 ̃ with membership values from 0 to 1. It is now easy to see how the model 

parameter values vary with respect to the change of data imprecision. The ratios of the spread over 

mode are quite close to 5% for all the coefficients. This told us the uncertainties associated with  

 

 

 

Fig. 3 Fitted Weibull model for the initial strength R0 
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Fig. 4 Estimated model coefficients ((a) a0; (b) a1 and (c) a2) in the linear fatigue life prediction model 

 

 

Fig. 5 Comparison of the proposed approach to the randomized approach and experimental results 

 

 

the observed data are directly transferred to each of the coefficients. In order to have a better 

understanding of the fuzzy approach, the coefficient values are also determined by the randomized 

approach which was derived in Section 3. The results are also plotted in Fig. 4 (dotted lines). It can 

be observed from Fig. 4 that the estimated parameter value from the randomized approach is quite 

close to the mode values calculated from the fuzzy approach. This implies when the data 

imprecision (e.g., the fuzziness of y) is minimal the fuzzy approach can converge to the 

(a) (b) 

(c) 
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randomized approach. However, realizing the knowledge can never be perfectly known in real 

practices, the fuzzy coefficients possess more practical meanings. Normally, the case in which the 

membership value is quite close to 1.0 can rarely occur. In fact, for most cases, the membership 

value lies in the range from 0.2 to 0.7 (Zhang and Cao 2015). The interpretation of the results are 

more important and reasonable for the feasible range of membership values for the coefficients.  

By using the estimated fuzzy coefficients, the prediction of the total fatigue life under a fixed 

stress level can be calculated from Eq. (13). This produces a fuzzy result for the predicted total 

fatigue life. To validate the proposed fuzzy approach, the results calculated from the fuzzy model 

are compared to three experimental data sets. These include specimens been subjected to three 

individual stress levels which are 348 MPa, 389 MPa and 418 MPa. The results of the total fatigue 

life (total loading cycles to failure) include the experimental tests and predicted values from fuzzy 

and randomized approaches which are computed and illustrated in Fig. 5. 

As shown in the figure, the experimental values deviate quite a lot with each other (large 

spreads). For example, the spread of the experimental results is around 4∙10
4
 cycles for different 

loading intensity. Therefore, it should be realized that using only one set of these experimental data 

in determining the total fatigue life is quite bias and uncertain. Moreover, it should be pointed out 

the sample size of the measured data is quite small which may create large difficulties for the 

probabilistic approach (large statistical errors in the parameter estimations). This is particularly 

true and common in most material strength analysis since conducting fatigue test is usually quite 

expensive and takes a long time. However, the fuzzy model does not need to account these 

drawbacks. One could see that the tested fatigue life based on experiments are within the interval 

range of the predicted fuzzy result for membership value equal to 0. Moreover, the fuzzy 

membership values expresses a degree of uncertainty associated with the observed data set. For 

example, the membership function value can be used to represent a degree of data scarceness. The 

use of the fuzzy model is therefore more conservative and realistic as it contains the consideration 

of the dubious errors. From the plot in Fig. 5, it is clearly to see the randomized approach gives 

smaller values in the predictions for the fatigue life compared to the experimental tests. However, 

when the stress level rises (e.g., S=418 MPa), the predicted fatigue life from the randomized 

approach is quite close to the experimental results. The major reason is the data set been used in 

constructing the randomized approach (the second group of data) are based on specimens 

subjected to high stress levels (around 400 MPa). Therefore, the determined coefficients in the 

fatigue model can reflect the material behavior more realistically within the high stress level 

ranges. For lower range of stress levels, the prediction would become less reliable. This reveals a 

fact that the quality of the constructed fatigue life model based on randomized approach largely 

relies on the tested data set properties. Thus, the applicability of randomized approach may be 

constrained within certain stress level value due to the limited experiment data sample. Besides, 

the assumption of random process may not be appropriate (e.g., X(n) in Eq. (22) may not be log-

normal). Such inappropriate  assumptions in the randomized approach may introduce some 

subjective uncertainties through the modeling of errors. Thus, the randomized approach should be 

used with caution. 

A further extension from the current approach is to establish the CDF of the total fatigue life N. 

According to Eq. (14), the CDF can be constructed based on the estimated coefficients from the 

linear fatigue model. However, since certain parameters are modeled as fuzzy numbers, the 

imprecision in the probabilistic model is realized through the fuzzy set. As such, a fuzzy set of 

probabilistic models can be regarded as a set of probabilistic models, namely imprecise 

probabilities. For instance, Fig. 6 plots out the developed imprecise probability model for N while  
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Fig. 6 Comparison of predicted model for the number of cycles to failure at stress level S=418 MPa 

 

 

the model parameters C, m and b are modeled as fuzzy numbers which are determined from the 

above studies. For comparison purpose, the CDF based on the randomized approach is also 

included and compared with the experimental results. It would be easy to see that the probability 

of the total fatigue life N is bounded by the upper and lower probabilities in the imprecise 

probability model (e.g., the shaded area in Fig. 5). Compared to the randomized approach, the 

fuzzy based imprecise model is more robust in identifying the bounds of errors that could made in 

the predictions. For example, the bounds of the predicted cycles are ranging from 1000 cycles to 

100000 cycles. This reflects the influence of the coefficient uncertainties (a0, a1 and a2) to the 

finally predicted life cycles. The reason for having such a wide interval is because of the high 

conservatism in the modeling of uncertainty for the input parameters (e.g., the estimated 

coefficients in Fig. 4 are quite large).  

A very good feature of the constructed imprecise probability is the identification of bounds on 

probabilities for the total fatigue life; the uncertainty of the predicted total fatigue life is 

characterized with two measure values-an upper probability and a lower probability. The width 

between the probability bounds reflects the indeterminacy in the fuzzy linear regression model. As 

discussed in Section 4, this imprecision is the concession for not using the probabilistic models. 

That is, the expert knowledge or data availability are often too limited, which is too difficult to use 

a crisp value in the model. However, this problem can be circumvented by implementing the 

imprecise probabilities which can provide set-valued descriptions in the probabilistic model. 

Although the imprecise probability introduces less information compared with a specific 

subjective distribution function, it reflects in the result in a form of a set of probabilities which 

contain the true probability. It is particular important when the calculated probabilities are been 

used for making critical decisions. The engineering analysis based on the imprecise probabilities 

can help to obtain a set of relevant results and associated decisions. Therefore, it reduces the errors 

in making engineering decisions due to artificial restrictions in the modeling.  

More specifically, in reliability engineering, such fuzzy probabilistic analysis can be utilized to 

identify sensitivities of the failure probability with respect to the imprecision in the probabilistic 

model specification. Sensitivities of failure probability can be represented when the interval size of 

calculated failure probability grows strongly with a small increase in the interval size of the input 

parameters. If this is the case, we have to pay particular attention to the interval sizes in the input, 
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Fig. 7 Fuzzy analysis as a design process (Beer et al. 2013) 

 

 

which may cause large intervals of failure probability. Then, a further investigation can be 

conducted to verify the reasoning for having such large interval sizes. And certain techniques can 

be performed to possibly exclude these critical cases. Such fuzzy probabilistic analysis can also 

provide interesting features for decision makings in the design process. The analysis can be 

performed with coarse specifications (e.g., large intervals for the input) for design parameters. 

From the results of the fuzzy analysis, acceptable intervals for the design parameters can be 

determined directly from the failure probability calculations without a repetition of the fuzzy 

analysis. Indications are provided in a quantitative manner for people to decide whether collecting 

additional specific information or applying certain design measures to reduce the input imprecision 

to an acceptable magnitude. A detailed procedure of conducting such fuzzy based design process is 

shown in Fig. 7. 

The developed model regarding the evaluation of total fatigue life may not be generalized to all 

the other materials. For example, if the material contains large defects or minor cracks, the fuzzy 

based fatigue model may not lead to accurate predictions. Further advanced fatigue model is 

required to handle more complicated problems. However, the proposed method provides a general 

basis to assess the fatigue problem for any newly produced simple materials with respect to the 

considered model uncertainty. The influence of the fatigue model uncertainty to the total life 

prediction can be interpreted in a comprehensive way. This provides a deeper view for the 

engineering design works to decide whether a re-analysis is necessary (Beer et al. 2013). 

While this work endeavor to develop a fuzzy approach for accurate modeling of parameter 

uncertainties for the prediction of fatigue life, many simplifications were made in the analysis. The 

environment conditions, including the temperature and moisture condition, for the steel elements 

are not considered. The current analysis only focus on the loading intensity and material 

parameters and the complex behavior of steel elements under different environment will not be 

analyzed in detail. The fatigue strength function is simplified to follow the S-N curve in the fuzzy 

analysis. With regards to the cumulative damages due to different stress levels, only linear damage 

accumulation law is considered. Besides, the separation of inherent, model and statistical 

uncertainties are not addressed in this study. Rather, the key focus is on quantification of total 

uncertainties in the prediction of fatigue life by using fuzzy concepts. The investigated fuzzy 

model in this work is only based on the collected data which is independent of the structural types. 

Therefore, other types of steel elements may need a further analysis. The conclusions drawn from 

this study should be seen in the light of these limitations. The influence of these limitations to the 

reliability results may need further investigations in the future. 
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6. Conclusions 
 

In this paper, fuzzy theory is utilized in the regression analysis for the fatigue life prediction. 

The uncertainties associated with the parameters in the fatigue S-N curve are modeled by the 

triangular fuzzy numbers. The least square method is utilized to estimate the parameters in the 

fuzzy regression analysis. Detailed calculation steps in determining the fuzzy numbers are derived 

and discussed in the paper. Furthermore, the applicability of this technique is demonstrated 

through a validation study which is based on an comparison between the predicted values and 

experimental values. The randomized approach is also compared with the proposed approach in 

predicting both the fatigue damage and fatigue life. It is shown that the developed approach can 

provide a comprehensive understanding of the influence of model uncertainties in the fatigue life 

predictions. Compared to the traditional deterministic approaches, the fuzzy approach is also 

proven to be more robust and conservative in evaluating the fatigue life of materials. The fuzzy 

model has the flexibility to allow the consideration of different degrees of indeterminacy of the 

model information. This provides the opportunity to meet at optimal engineering decisions where a 

level of accuracy is required. 
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Appendix A. Detailed parameter estimation steps for fuzzy linear equation 
 

Finding the estimate of parameters  𝑎 ̃
   𝑎 ̃

   𝑎 ̃
   𝑎 ̃

   𝑎 ̃
   𝑎 ̃

   𝑎 ̃   𝑎 ̃   𝑎 ̃  for a set of 

observed values x1, x2 and y in Eq. (34) looks rather daunting. The minimization of Eq. (34) first 

requires taking the partial derivative of the equation with respect to each of the parameter. In that 

sense, the following equation set provide the detailed derivations 
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To complete the minimization procedure for the target function, the equation is set to zero and 

solved for each of the parameter. Since Eqns. (A.1)-(A.9) are all linear equations, we can 

implement a matrix to solve the system of linear equations. Therefore, the parameter values can be 

estimated by solving the following linear system 
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