
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 56, No. 2 (2015) 169-188 

DOI: http://dx.doi.org/10.12989/sem.2015.56.2.169                                                                                       169 

Copyright ©  2015 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8               ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Evaluating the spread plasticity model of IDARC for inelastic 
analysis of reinforced concrete frames 

 

Mehdi Izadpanaha and AliReza Habibi

 

 
Department of Civil Engineering, University of Kurdistan, Sanandaj, Iran 

 
(Received April 5, 2015, Revised October 2, 2015, Accepted October 5, 2015) 

 
Abstract.  There are two types of nonlinear analysis methods for building frameworks depending on the 

method of modeling the plastification of members including lumped plasticity and distributed plasticity. The 

lumped plasticity method assumes that plasticity is concentrated at a zero-length plastic hinge section at the 

ends of the elements. The distributed plasticity method discretizes the structural members into many line 

segments, and further subdivides the cross-section of each segment into a number of finite elements. When a 

reinforced concrete member experiences inelastic deformations, cracks tend to spread form the joint 

interface resulting in a curvature distribution. The program IDARC includes a spread plasticity formulation 

to capture the variation of the section flexibility, and combine them to determine the element stiffness 

matrix. In this formulation, the flexibility distribution in the structural elements is assumed to be the linear. 

The main objective of this study is to evaluate the accuracy of linear flexibility distribution assumed in the 

spread inelasticity model. For this purpose, nonlinear analysis of two reinforced concrete frames is carried 

out and the linear flexibility models used in the elements are compared with the real ones. It is shown that 

the linear flexibility distribution is incorrect assumption in cases of significant gravity load effects and can be 

lead to incorrect nonlinear responses in some situations. 
 

Keywords:  lumped plasticity; distributed plasticity; reinforced concrete; flexibility distribution; gravity 

load effects 

 
 
1. Introduction 
 

The plasticity models are generally divided in two categories: lumped plasticity and spread 

plasticity. In the former, there are some proposed models such as “two component model”, “one 

component model”. The two component model is one of the first models proposed by Clough and 

Johnston (1966) and consists of a linear elastic member in parallel with an elastic perfectly plastic 

member. The most important lack of this model is that it cannot consider stiffness degradation. 

Aoyama and Sugano (1968) extended this model. In their proposed model, each element is divided 

into four parallel elements which consists of an elastic member and three elastoplastic members in 

parallel. The model is able to consider different cracking and yielding characteristics at the two 

critical end sections. Giberson (1967, 1969) suggested a one-component model. This model 
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consists of an elastic element with one nonlinear rotational spring at each end. The location of the 

springs is considered in places that yielding is expected. The inelastic deformation of each element 

is condensed into these rotational end springs. A major advantage of the model is that inelastic 

member-end deformation depends solely on the moment acting at the end so that any moment-

rotation hysteretic model can be assigned to the spring. The weak spot of this model is ignoring the 

curvature distribution effects on the member-end rotation. The above mentioned model was 

amended by changing the location of the plastic hinges at the ends of the members to consider the 

effects of rigid end zones (Al-Haddad and Wight 1986).The performance of the one-component 

model is expected to be reasonably good for a relatively low-rise frame structure in which the 

inflection point of a column locates reasonably close to mid-height (Otani 1980). Giberson (1967) 

compared the one component model with the two-component model and showed that the one 

component model was more proper than the two-component model. Kunnath and Reinhorn (1989) 

proposed a concentrate plasticity model that was used in IDARC2D (Park et al. 1987) as an option 

for concentrated plasticity. 

Although simplicity and computability are two advantages of the above listed lump plasticity 

models, due to their intrinsic zero-length plastic-zone assumption, they does not accurately 

represent the distribution of plasticity within individual members of the frame. To overcome this 

problem, discrete element models were proposed. In these models, the member can be subdivided 

into short line segments along the length, with each short segment assigned a nonlinear hysteretic 

characteristic. Each short segment is allocated a nonlinear hysteric stiffness characteristic. The 

nonlinear stiffness can be assigned within a segment, or at the connection of two adjacent 

segments. Wen and Janssen (1965) presented their models in this category. They introduced a 

multi-spring model for dynamic analysis of a plane frame. Powell (l975) put forward a degrading 

stiffness hysteresis model. In this model, shorter segments were recommended in a region of high 

moment, and longer segments in a low-moment region. These discrete element models are more 

accurate but they require more computational effort than other plasticity models. The latter model 

used for nonlinear behavior is the spread plasticity model. The spread plasticity models provide a 

more general framework for nonlinear structural analysis.  

Against to the above mentioned discrete plasticity models, there are some continues models 

developed based on prescribed distribution pattern of flexural flexibility along the length of 

member. The parabolic-inflection distribution (Takizawa 1973) and linear-inflection distribution 

(Park et al. 1987) are in this category. In parabolic-inflection model, an elastic flexibility at the 

infection point is taken into account. This is an interesting concept for analyzing an inelastic 

member. However, the parabolic-inflection flexibility distribution may not describe the actual 

concentration of deformation at critical sections due to flexural yielding and deformation 

attributable to slippage of longitudinal reinforcement within a beam-column connection 

(Otani1980). The linear-inflection proposed by Park et al. (1987) was introduced in the original 

version of IDARC2D developed by Reinhorn et al. (2009).  Although the parabolic-inflection and 

linear-inflection models can be efficient for some members, one of their defects is that they are 

dependent on location of inflection point. To solve this problem and improve the plasticity models, 

two spread plasticity models based on a linear flexibility distribution and a uniform flexibility 

distribution were proposed that in these two models, the flexibility varies only in inelastic zones 

while the rest of the member is elastic with constant flexibility (Kunnath and Reinhorn 1989). 

Recently, Hajjar et al. (1998) put forward a distributed plasticity model for cyclic analysis of 

concrete-filled steel tube beam-columns and composite frames. They presented the constitutive 

formulation and cyclic analysis capability of a three-dimensional fiber-based distributed plasticity  
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Fig. 1 Deformation of reinforced concrete beam under gravity and earthquake loads (Otani1980) 

 

 

finite element for square or rectangular concrete-filled steel tube (CFT) beam-columns. They also 

used a distributed plasticity model for concrete filled steel tube beam-columns with inter layer slip 

(Hajjar et al. 1998). Kim and Kurama (2008) used the spread plasticity model to reflect flexural 

nonlinearity. The column and beam members were modeled using nonlinear beam-column 

elements. Alva and de Cresce El Debs (2010) applied a lumped dissipation model in nonlinear  

analysis of reinforced concrete structures. They considered the dissipation of energy of the 

reinforced concrete members as a consequence of concrete damage and steel reinforcement  

plasticity. As a simplification, it was supposed that the energy dissipation was restricted to plastic 

hinges at the ends of the member, while the rest of the member remains elastic. He and Zhong 

(2012) used the fiber section model to derive the nonlinear relation of section deformations and 

internal forces and their interaction. Birely et al. (2012) presented a model to simulate the 

nonlinear response of planar reinforced-concrete frames including all sources of flexibility. They 

modeled nonlinearity by introducing a dual-hinge lumped-plasticity beam element comprised two 

rotational springs in series; one spring simulates beam flexural response and one spring simulates 

joint response. Roh et al. (2012) proposed a power spread plasticity model for inelastic analysis of 

reinforced concrete structures and compared their plasticity model with linear plasticity model 

used in IDARC2D. Kucukleret et al. (2014) extended their stiffness reduction, to capture fully the 

detrimental influence of the spread of plasticity, residual stresses and geometrical imperfections on 

the capacity of columns and beam-columns. Nguyen and Kim (2014) presented a displacement-

based finite element procedure for second-order spread-of-plasticity analysis of plane steel frames 

with nonlinear beam-to-column connections under dynamic and seismic loadings. 

Since the assumed flexibility distribution pattern in the IDARC is violated when stress levels 

due to initial loads are relatively large, the main objective of this study is to evaluate the accuracy 

of this model for nonlinear analysis of reinforced concrete structures. To do so, the real flexibility 

of several structural elements with different load levels is determined and results are compared 

with the assumed plasticity model. 

 

 

2. Reinforced concrete plasticity model 
 

As it was mentioned, the proposed plasticity models are divided to two main categories: lump 

plasticity and spread plasticity. Now the main question is that which one is suitable for reinforced 

concrete members? Inelastic deformation of reinforced concrete structural elements does not 
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concentrate in a place and rather spread along the member as shown in Fig. 1. So it seems that the 

proposed lumped plasticity models cannot simulate the real distribution of stiffness within a 

reinforced concrete member.  

Another choice in plasticity models is “discrete element method”.  In this model, the member is 

subdivided into short line segment with assigned a nonlinear hysteretic characteristic for each 

short segment. The nonlinear stiffness can be assigned within a segment, or at the connection of 

two adjacent segments as shown in Fig. 2. 

The accuracy of this model is enhanced when the number of segments rises; although the 

computational effort increases too. Choosing shorter segments should be based on moment 

distribution along the member and places with high moment but this selection is difficult when the 

moments are different at various load steps during nonlinear analysis. The other plasticity models 

are “spread plasticity models”. In this regard, one of the most popular models is the linear 

plasticity model used in IDARC2D (Reinhorn et al. 2009) (Fig. 3). This model has been used for 

inelastic analysis of reinforced concrete structures by many researchers. In fact, the main problem 

of these kinds of models (spread plasticity models) is that the flexibility distribution along the 

element is assumed to be merely based on lateral load apart from the gravity load effects. This 

assumption can lead to incorrect results in cases of significant gravity load moments. 

 

 

  

Fig. 2 Discrete element model (a) multi-spring model (Birely et al. 2012)  (b) multi-section model (Wen 

and Janssen1965) 

 

 

Fig. 3 Linear flexibility distribution model 
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Fig. 4 Tri-linear moment curvature curve 

 
 
3. Moment curvature curve 

 

The moment-curvature relation of every RC structural element has a definitive effect on the 

behavior of the structure. The flexural stiffness of each member depends on moment curvature 

relation directly. So in this study, the tri-linear moment curvature relation, as shown in Fig. 4, is 

used to express the nonlinear behavior of reinforced concrete sections. 

As it is evidence in the Fig. 4, the flexural stiffness can has three values based on the amount of 

bending moments. The moment curvature relation of a structural element highly depends on its 

cross-section. In this study, the column sections are limited to rectangle and that of beams can 

assume rectangle, T or L shaped. The moment-curvature relations used in the present study are 

similar to those utilized by Habibi and Moharrami (2010). The flexibility of each branch in the 

Fig. 4 can be specified as follows 

                 

M1 cr=
EI φcr0

-1
 
 
 

  (1a) 

                 

-1
M - M1 y cr

=
EI φ - φcr y cr

 
 
 
 

  (1b) 

                 

-1
M - M1 u y

=
EI φ - φy u y

 
 
 
 

 (1c) 

Where Eqs. (1a)-(1c) are used for zones of 1, 2 and 3 of M-φ curve, respectively. In Eq. (1) EI0, 

EIcr 
and EIy are the flexural stiffness of different zones of moment curvature curve in Fig. 4 Mcr, 

My and Mu are the cracking, yielding and ultimate moments; and φcr, φy and φu 
are corresponding 

curvatures. 
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Fig. 5 The considered member to extract formulation 

 

 

4. Real flexibility distribution for reinforced concrete members 
 

Since sections along a reinforced concrete element exhibit different flexibility characteristics 

depending on the degree of inelasticity, in this study, the flexibility distribution assumed in the 

IDARC program (Fig. 3) is evaluated. For this purpose, real flexibility distributions of elements 

are determined and compared with those resulting from the IDARC. Real distribution is 

determined considering uniform distributed load that is the most probable kind of gravity loads in 

the building frames. In Fig. 5, the member under subjected loads and moments are taken into 

account to develop the formulation. 

For the member shown in Fig. 5, the amount of moment in each section can be calculated by 

Eq. (2). 

       
2

M(x) = V x + M - 0.5Wx1 1  (2) 

Where, M(𝑥) is the moment in the section at a distance x from the left end. M1 is the bending 

moment at the left end of the member. W is the amount of uniform distributed gravity load. V1 is 

the shear force at the left end of the member and is determined according to the following equation 

       

 M + M1 2
V = 0.5WL -1 L

 (3) 

Where, M2 is the bending moment at the right end of the member. L is the length of the 

member.Now, to obtain the real plasticity of member, it is necessary that the flexibility of each part 

of member be determined. To do so, by considering moment curvature relations in section (3) and 

solving the following equations, different parts of member with various behaviors are specified.  

(a) Locations of cracking moments in the length of the member 

       
2

V x + M - 0.5Wx = Mcr+ cr+ cr+1 1  (4) 

       
2

V x + M - 0.5Wx = Mcr- cr- cr-1 1  (5) 

(b) Locations of yielding moments in the length of the member 

       
2

V x + M - 0.5Wx = My+ y+ y+1 1  (6) 

       
2

V x + M - 0.5Wx = My- y- y-1 1  (7) 
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Fig. 6 The process for determining real flexural flexibility 

 

 

(c) Locations of zero moments in the length of the member 

       
2

V x + M - 0.5Wx =1 0 1 0 0  (8) 

Where, xcr+ and xcr− are the locations of positive and negative cracking moments (Mcr+, Mcr-), xy+ 

and xy- are the locations of positive and negative yielding moments (My+, My-), respectively. x0 is the 

location of zero moments. It should be noted that each equation from 4 to 8 can have zero, one or 

two roots. 
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Fig. 7 Distribution of the flexural flexibility (a) step nth (b) step (n+1)th with neglecting the 

previous step (c) step (n+1)th with considering the previous step (d) final distribution of 

flexibility in which parts beside with same flexibility are assembled one 

 

 

After determining the cracking and yielding points, the structural element is divided to several 

parts. Flexibility of each part depends on the moments in two ends of it. To determine the real 

flexural flexibility of each subdivided part, the following steps need to be performed: 

1. Determining the number of zero moments in the moment diagram arranging from 0 to 2. 

This step specifies the general shape of moment diagram and is used to assign flexibility of each 

part. 

2. Solving the equations 4 and 6 to assign the locations of positive cracking and yielding 

moments. 

3. Solving the equations 5 and 7 to assign the locations of negative cracking and yielding 

moments. 

4. Specifying the points determined in the two previous steps on the length of member and 

delimiting the length of the member between two successive points as a part. 

5. Determining the flexural flexibility for internal subdivided parts based on the amount of 

moments in two ends. For the first part, the flexibility depends on M1 and the moments in its right 

end; for the last part, the flexibility is related to M2 and the moments in its left end. For example, if 

Mcr+≤M1≤My+ and the first limiting point corresponds with positive yielding moment and the 

number of zero points is 1, the flexural flexibility would be 
1

crEI
. To better explain the core steps 

for determining the real flexural flexibility of each subdivided part, a flowchart is presented in Fig. 

6. Since several different states can be occurred, to take all of them into account, a computer 

program called Real Flexibility Model (RFM) was prepared. In this program, all various 

conditions for flexural flexibility of a part of the member that can experience based on the 

moments of its two ends are forecast.  

It should be noted that in step by step nonlinear analysis of reinforced concrete structural 

elements, the flexural flexibility in each step completely depends on the previous steps. Therefore, 

in this study two main assumptions are considered: 1. The cracked part of member does not 

change to a part with no crack 2. The yielded part of member does not change to a part with no 

crack and no yield. To consider the above mentioned matter, the current state of each member is 

compared with its previous state and then the flexural flexibility is obtained. Given that the 

176



 

 

 

 

 

 

Evaluating the spread plasticity model of IDARC for inelastic analysis of reinforced concrete frames 

flexibility distributions of a member in two consequence steps of its analysis be like Figs. 7(a) and 

7(b) (independent of previous steps); therefore, considering previous steps, the (n+1)th distributed 

flexibility will be similar to Fig. 7(c). The last but not the least (Fig. 7(d)) is the final flexibility 

distribution in which the parts with the same flexibility are taken as one part. 

 

 

5. Evaluating the linear flexibility model of IDARC 
 

Part In this section, the accuracy of the linear plasticity model used by the program IDARC is 

assessed. In this regard, two building frames that have been previously studied by Habibi (2007) 

and Habibi and Moharrami (2010) are chosen. Pushover analysis is carried out on these frames by 

applying monotonically increasing lateral loads along with constant gravity loads. At each load 

step, the base shear increment is applied to the structure with a predefined profile over the height 

of the structure. The incremental lateral load vector can be computed as 

     

cv,1

cv,2ΔP = ΔV . = ΔV .CvE b b
M

cv,ns

 
 
 
 
 
 
 

 (9) 

Where ΔVb is the incremental base shear and Cv is the vector of lateral load distribution factors Cv,s 

(s=1,…, number of stories), which is determined from FEMA273 

     

nsk k
c = W H W H ,s = 1,...,nsv,s s s s s

s=1
  (10) 

Where Ws is the portion of the building seismic weight at story level s; Hs is the vertical distance 

from base of the building to story level s; ns  is the number of stories; and k is a parameter that has 

been recommended by FEMA273 as follows 

     

1 T 0.5

k = 0.5T + 0.75 0.5 T 2.5

2 T 2.5

 







 (11) 

Where T is the fundamental period of the building. This analysis is done by IDARC software 

(Valles et al. 1996). Since the main objective of this research is evaluating the accuracy of linear 

flexibility model (LFM), it is necessary that all required input parameters for each member in 

IDARC2D and the proposed method of this study be same. To do so, after pushover analysis by 

IDARC, the end moments of each member are obtained and are used to calculate the real 

flexibility by the proposed method. To consider various performance levels, the states of frames 

are taken into account regarding to overall drifts 0.5,1,2 and 4 percent in pushover analysis. The 

former frame is a three-story, two-bay planar asymmetric frame of Fig. 8. The concrete is assumed 

to have a cylinder strength of 20 Mpa, a modulus of rupture of 2.82 Mpa, a modulus of elasticity 

of 22360 Mpa, a strain of 0.002  at maximum strength and an ultimate strain of 0.003. The steel 

has a yield strength of 300 Mpa and a modulus of elasticity of 200,000 Mpa. A uniformly 

distributed gravity load of 20 KN/m is applied on the beams of each story. Reinforcements have 

the cover to the steel centroid of 50 mm. It is assumed that columns and beams have rectangular 

cross sections Habibi (2007). 
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Fig. 8 The three-story frame 

 
Table 1 The moment-curvature properties of members chosen in example 1  

Member 
𝑀𝑐𝑟(+) 

(KN.m) 

𝑀𝑐𝑟(-) 

(KN.m) 

𝑀𝑦(+) 

(KN.m) 

𝑀𝑦(-) 

(KN.m) 

EI(+) 

(KN.m2) 
EI(-) 

(KN.m2) 
𝐸𝐼𝑐𝑟(+) 

(KN.m2) 
𝐸𝐼𝑐𝑟(-) 

(KN.m2) 
𝐸𝐼𝑦(+) 

(KN.m2) 

𝐸𝐼𝑦(-) 

(KN.m2) 

Column           

C12 

C33 

28.4 28.4 80.7 80.7 17795 17795 5013 5013 135.4 135.4 

17 17 55 55 17795 17795 4238 4238 200 200 

Beam           

B12 

B21 

15 15 49 49 17795 17795 4100 3993 204 204 

15 15 49 49 17795 17795 4100 3993 204 204 

 

  

  

Fig. 9 LFM and RFM for B12 (a) overall drift is 0.5%  (b) overall drift is 1% (c) overall drift is 2%  (d) 

overall drift is 4% 
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Fig. 10 LFM and RFM for B21 (a) overall drift is 0.5%  (b) overall drift is 1% (c) overall drift is 2% (d) 

overall drift is 4% 

 

 
As shown, numbering of elements in each story is from left to right. Therefore, the name of 

each member consists of two indices (like Cij for columns and Bij for beams) the former shows the 

story of the member and the latter corresponds to its place in each story. To cover varied situations 

in the three story frame, two beams and two columns are chosen (C23, C33, B12, B21) The moment-

curvature properties of members chosen are presented in Table 1. 

The linear and real flexibility distributions are shown in Figs. 9-12. In the Fig. 13, all the 

bending moment curves resulting from pushover analysis for each member in drift 4% are shown 

to express the range of end moments, cracked and yielded points and shape of moment diagrams. 

Since the number of curves is too many and marked points are not clear in the Fig. 13; to explain 

more, the bending moment curves of the first member (B12) is exhibited for some moments 

(approximately 5 percent of moment diagrams (Fig. 13(a))). In Fig. 13, asterisk points are related 

to moments that are equal to positive or negative cracked moments. Diamond shapes show the 

location of positive or negative cracked moments and the circles are taken into account as the 

place of zero moments. The parameters of plasticity models are explained in Table 2. In the 

mentioned Table, there are two amounts for linear plasticity model presenting the yield penetration 

coefficients (Fig. 3). For the real flexibility model, there are some coefficients expressing the 

transformation points. It should be noted that these mentioned points are calculated from the left 

side and all these lengths are divided to the length of members. 
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Fig. 11 LFM and RFM for C12 (a) overall drift is 0.5% (b) overall drift is 1% (c) overall drift is 2%  (d) 

overall drift is 4% 

 

  

  
Fig. 12 LFM and RFM for the element  C33 (a) overall drift is 0.5% (b) overall drift is 1% (c) overall drift 

is 2%  (d) overall drift is 4% 
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Fig. 13 The bending moment diagrams for the selected members in example 1 (a) the 5 percent of all 

moment diagrams for B12. (b-e) all of moment diagrams for B12, B21, C12 and C33 respectively 

 

 

As shown in Figs. 9-12, in all the members at various performance levels, the linear plasticity 

model could not reflect the real flexibility of them. For B12, it is clear that the linear flexibility 

model (LFM) is more flexible than the real one. This can lead to more rotation in the right side of 

member which directly affects the performance levels. It seems that for the right side of this 

member, the power spread plasticity model proposed by Roh et al. (2012), may model the 

flexibility more proper than LFM. As evident for B21, LFM in the end right side of the length of 

member is stiffer than RFM. In the left side, the flexibility of LFM is lower than RFM in the part 

near the end but, in the middle part, the flexibility is more. For the right side of this element, it 
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seems that the power plasticity model with high power will be more accurate than LFM as long as 

the length of the yielded part is restricted; but as shown, when the length of the yielded part 

increases like the left side of B21 in drift 4%, the power plasticity model with low power can model 

the flexibility well. The results presented for beam elements in the first example are completely 

different in linear and real flexibility models. Since LFM does not take the gravity loads into 

account, this model can make egregious errors. What is manifest for beam elements is that 

although power spread plasticity can increase the accuracy of flexibility, the main problem is 

neglecting gravity loads; therefore, for beams, the places of cracked and yielded points are 

different from real locations. Also, the power in power spread plasticity simply depends on the end 

moments and cannot consider the effects of gravity loads in the middle parts of the beam elements. 

The flexibility models for C12 are different as well. Although for the overall drift 0.5%, LFM is 

stiffer than RFM, for the other performance levels it is more flexible except for the yielded part 

narrowed in the end of left side. For the last member C33, the LFM is stiffer than RFM in the two 

prime performance levels. Unlike first and second performance levels, the linear flexibility 

distribution for the both of last performance levels is more flexible than real flexibility distribution 

except in the small end yielded part of right side that is stiffer. As shown, the LFM even the 

column members that are just subjected to lateral loads, cannot reflect the real flexibility of them. 

It seems because of lack of gravity loads on the column elements, the power flexibility model can 

model the flexibility more accurately. 

In this example, some performance levels were assessed and the accuracy of them was 

challenged. It should be noted that the effect of errors occurred is noticeable in some analyses like 

dynamic, cyclic and pushover methods because the stiffness or softness matrix of a structure 

depends on the flexibility models used in them. The errors of the flexibility models accumulated in 

the steps of the analysis are not negligible. This matter will be described more in the next example. 

The latter example is a ten-story, two-bay planar frame of Fig. 14. For this example, the 

concrete is assumed to have a cylinder strength of 30 Mpa, a modulus of rupture of 3.45 Mpa, a 

modulus of elasticity of 27,400 Mpa, a strain of 0.002 at maximum strength and an ultimate strain 

of 0.004. The other material properties are same with the first example. A uniformly distributed 

gravity load of 20 KN/m is applied on the beams of each story. Reinforcements have the cover to 

the steel centroid of 50 mm. It is assumed that columns and beams have rectangular cross sections 

(Habibi and Moharrami 2010). 

 

 
Table 2 Yield penetrations coefficients for LFM and the transformation points for RFM in example 1 

Overall 

drift % 

Linear flexibility model Real flexibility model 

𝐶12 𝐶33 𝐵12 𝐵21 𝐶12 𝐶33 𝐵12 𝐵21 

0.5 0.46,0 
0.03, 

0.42 
0.5, 0.5 

0.34, 

0.38 
0.47 

0.036,     

0.58 

0.08,0.16, 

0.77, 

0.86,0.998 

0.018,0.56, 

0.78, 0.986 

1 0.54,0 
0.04, 

0.58 
0.5, 0.5 

0.35, 

0.38 
0.025,   0.54 

0.037,     

0.41 

0.08,0.14, 

0.77, 

0.86,0.99 

0.11,0.56, 0.77, 

0.97 

2 0.54,0 
0.04, 

0.71 
0.5, 0.5 

0.36, 

0.38 
0.06,    0.54 

0.037,0.28, 

0.97 

0.08,0.10, 0.772, 

0.844,0.97 

0.19,0.56, 0.76, 

0.94 

4 0.54,0.03 
0.04, 

0.75 
0.5, 0.5 

0.37, 

0.38 

0.08,0.54, 

0.96 

0.037,0.24, 

0.92 

0.08,0.082, 

0.772, 

0.833,0.96 

0.22,0.56, 0.76, 

0.94 
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Fig. 14 The ten-story frame 

 
Table 3 The moment-curvature properties of members chosen in example 2 

Member 
𝑴𝒄𝒓(+) 

(KN.m) 

𝑴𝒄𝒓(-) 

(KN.m) 

𝑴𝒚(+) 

(KN.m) 

𝑴𝒚(-) 

(KN.m) 

EI(+) 

(KN.m2) 
EI(-) 

(KN.m2) 
𝑬𝑰𝒄𝒓(+) 

(KN.m2) 
𝑬𝑰𝒄𝒓(-) 

(KN.m2) 

𝑬𝑰𝒚(+) 

(KN.m2) 

𝑬𝑰𝒚(-) 

(KN.m2) 

Column           

C21 

C72 

91.4 91.4 719 719 339230 339230 200771 200771 2825 2825 

49.1 49.1 240 240 45705 45705 24820 24820 363 363 

Beam           

B32 

B91 

87 87 474 474 217340 217340 97943 99473 1618 1618 

13.7 13.7 88.3 88.3 17207 17207 7642 7809 284 284 

 
Table 4 Yield penetrations coefficients for LFM and the transformation points for RFM in example 2 

Overall 

drift % 

Linear flexibility model Real flexibility model 

𝑪𝟐𝟏 𝑪𝟕𝟐 𝑩𝟑𝟐 𝑩𝟗𝟏 𝑪𝟐𝟏 𝑪𝟕𝟐 𝑩𝟑𝟐 𝑩𝟗𝟏 

0.5 0.129, 0 0.36, 0.32 0.26, 0.38 0.5,  0.5 0.126 0.35,0.67 
0.38,        

0.726 
0.998 

1 0.37, 0.13 0.40, 0.36 0.31, 0.42 0.5,  0.5 0.36,    0.87 0.40,0.63 
0.4,            

0.66 
0.98 

2 0.44, 0.20 0.43, 0.362 0.34, 0.42 0.5,  0.5 0.43,    0.79 
0.005, 0.43, 

0.63 

0.42,          

0.65 
0.96 

4 0.48, 0.25 0.43, 0.363 0.35, 0.43 0.5,  0.5 0.46,    0.74 
0.015, 0.43, 

0.635 

0.426,        

0.64 
0.95 

 

 

In this frame, four members including two beams and two columns just like the first frame (B32, 

B91, C21, C72) are chosen. The moment-curvature properties of the members are expressed in Table 

3.  

The plasticity models are presented in Figs. 15-18 and the related plasticity parameters are 

described in Table 4.  
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Fig. 15 LFM and RFM for B32 (a) overall drift is 0.5% (b) overall drift is 1% (c) overall drift is 2%  (d) 

overall drift is 4% 

 

  

  
Fig. 16 LFM and RFM for B91 (a) overall drift is 0.5% (b) overall drift is 1% (c) overall drift is 2% (d) 

overall drift is 4% 
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Fig. 17 LFM and RFM for C72 (a) overall drift is 0.5% (b) overall drift is 1% (c) overall drift is 2%  (d) 

overall drift is 4% 

 

  

  
Fig. 18 LFM and RFM for C21 (a) overall drift is 0.5% (b) overall drift is 1% (c) overall drift is 2% (d) 

overall drift is 4% 
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Fig. 19 LFM and RFM for B91

 
(a) overall drift is 0.05% (b) overall drift is 0.1% (c) overall drift is 0.2% 

 

 

As can be seen, in the second example, also, the highest difference between the real and linear 

flexibility models is related to the beam elements. Neglecting the gravity loads in LFM brings 

about errors in the location of the cracked and yielded moments (this problem exists in other 

models like the power plasticity model disregarding the effect of gravity loads). For B32, the linear 

flexibility model is stiffer than real one. The gap between the models for B91 is very large and the 

LFM is more flexible than RFM. Occurring yield in the left side of C72 leads to a large contrast 

between the two models. For the last member C21, in all the overall drifts, LFM is more flexible 

than RFM. As noted, the accumulated errors of the flexibility models severely affect the outcomes 

of analysis. For more explanation, several steps of pushover analysis of B91 are presented. These 

steps are regarding the 0.05, 0.1 and 0.2 percent overall drifts. These drifts are chosen to show the 

influence of neglecting the gravity loads (Fig. 19).  

As shown, in the 0.05, 0.1 and 0.2 percent overall drifts, middle part of the beam is cracked. 

The gap between LPM and RPM is very large. None of the plasticity models when ignoring the 

gravity loads cannot correctly simulate the flexibility of beams in most steps of analyses. This 

occurs in the steps in which the effect of gravity loads overcomes the lateral moments. Although in 

some analyses like pushover analysis, the effect of lateral loads dominate the gravity loads by 

increasing the overall drift, the stiffness matrix depends on the plasticity models in all steps of 

analysis; therefore, the accumulated errors in initial steps of analysis can lead to big errors in the 

next steps.  

It should be noted that despite improving the accuracy of some models like “multi segment 

model” when increasing the number of segment, these models have some problems. In the 
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mentioned model, the more accurate flexibility is obtained when shorter segments are chosen. 

These shorter segments require more computational effort that is time consuming. Moreover, in 

some steps of analyses, it is possible that the behavior of elements still is elastic or experience 

crack in the small parts of elements and therefore it is not necessary that they be subdivided into 

shorter segments.  

 

 

6. Conclusions 
 

In this study, the spread plasticity model of IDARC for reinforced concrete elements was 

evaluated. For this purpose, first, a real spread plasticity model was developed that takes the 

influence of gravity loads into account. In the proposed model, the flexibility of each member is 

determined based on the locations of positive and negative yielded and cracked flexural moments 

in current step of analysis and also by considering history of flexibility in previous steps. Then, the 

real plasticity model was compared with the linear plasticity model used in IDARC that is one of 

prevalent models for reinforced concrete elements. To do so, pushover analysis was carried out on 

a 3-story frame and a 10-story frame. To cover wide range of behavior of the frames, the plasticity 

models are compared in the 0.5%, 1%, 2% and 4% of overall drifts. The outcomes exhibit that the 

linear plasticity model has glaring errors in modeling reinforced concrete elements and can model 

the member stiffer or softer than real model. Some of these errors may be eliminated by using 

other plasticity models like the power or the uniform spread plasticity. Meanwhile other ones like 

the locations of cracked and yielded bending moments in beam elements subjected to gravity 

loads, cannot be omitted by existing models in which the gravity load effects are ignored. 
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