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Abstract.  Postbuckling of thick plates made of functionally graded material (FGM) subjected to in-plane 

compressive, thermal and thermomechanical loads is investigated in this work. It is assumed that the plate is 

in contact with a Pasternak-type elastic foundation during deformation. Thermomechanical non-

homogeneous properties are considered to be temperature independent, and graded smoothly by the 

distribution of power law across the thickness in the thickness in terms of the volume fractions of 

constituents. By employing the higher order shear deformation plate theory together the non-linear von-

Karman strain-displacement relations, the equilibrium and compatibility equations of imperfect FGM plates 

are derived. The Galerkin technique is used to determine the buckling loads and postbuckling equilibrium 

paths for simply supported plates. Numerical examples are presented to show the influences of power law 

index, foundation stiffness and imperfection on the buckling and postbuckling loading capacity of the plates. 
 

Keywords:  functionally graded materials; postbuckling; higher order shear deformation theory; elastic 

foundation; imperfection 

 
 
1. Introduction 
 

Buckling and post-buckling behaviors of functionally graded (FG) plates as a major branch of 

solid structures is of interest in design and has attracted the attention of the researchers in recent 

years (Talha and Singh 2010, Akavci 2013, Chakraverty and Pradhan 2014, Pradhan and 

Chakraverty 2015, Mantari and Granados 2015). Eslami and his co-workers employed analytical 

formulation, classical and higher order plate theories in conjunction with adjacent equilibrium 

criterion to study the buckling of FG plates with and without imperfection under thermal and 

mechanical loads (Javaheri and Eslami 2002a, b, Samsam Shariat and Eslami 2006, 2007). Lanhe 

(2004) used the first order shear deformation theory to determine the critical buckling temperatures 

for simply supported FG plates. Zhao et al. (2009) investigated the mechanical and thermal 

buckling of FG plates using element-free Ritz method. Tung and Duc (2010) developed a simple 
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analytical solution to predict the buckling and post-buckling behavior of thin FG plates. Duc and 

Tung (2011) presented an analytical investigation on the buckling and post-buckling responses of 

thick FG plates resting on elastic foundations and subjected to in-plane compressive, thermal and 

thermo-mechanical loads. El Meiche et al. (2011) proposed a new hyperbolic shear deformation 

theory for buckling and vibration of FG sandwich plate. Bourada et al. (2012) presented a novel 

four-variable refined plate theory for thermal buckling analysis of FG sandwich plates. Bachir 

Bouiadjra et al. (2012) presented a four-variable refined plate theory for buckling analysis of FG 

plates. Bachir Bouiadjra et al. (2013) investigated the nonlinear thermal buckling behavior of FG 

plates using an efficient sinusoidal shear deformation theory. Sobhy (2013) examined the vibration 

and the buckling responses of exponentially graded sandwich plates resting on Pasternak elastic 

foundation. Ait Amar Meziane et al. (2014) developed an efficient and simple refined theory to 

study the buckling and free vibration responses of exponentially graded sandwich plates under 

various boundary conditions. Khalfi et al. (2014) presented a refined and simple shear deformation 

theory for thermal buckling of solar FG plates resting on elastic foundation. Swaminathan and 

Naveenkumar (2014) presented a higher order refined computational models for the buckling 

analysis of FG sandwich plates. Akil (2014) presented a higher order theory for the buckling and 

post buckling response of sandwich beams having functionally graded faces. Bennai et al. (2015) 

developed a new refined hyperbolic shear and normal deformation beam theory for the free 

vibration and buckling of FG sandwich beams under various boundary conditions. 

 These structural components like plates supported on an elastic foundation often find 

applications in the construction of nuclear, mechanical, aerospace, and civil engineering structures 

(Houari et al. 2013, Bessaim et al. 2013, Hebali et al. 2014, Zidi et al. 2014, Fekrar et al. 2014, 

Bousahla et al. 2014, Ramu and Mohanty 2015, Hamidi et al. 2015, Ait Yahia et al. 2015, Mahi et 

al. 2015). To describe the interaction between the plate and foundation, several foundation models 

have been developed. The simplest one is the Winkler or one-parameter model (Winkler, 1867) 

which models the foundation as a series of separated springs without coupling effects between 

each other. This model was improved by Pasternak (1954) by considering a shear spring to 

simulate the interactions between the separated springs in the Winkler model. The Pasternak or 

two-parameter model is widely used to describe the mechanical behavior of structure–foundation 

interactions and will be used here to simulate the interactions between the plate and foundation. 

Consequently, it is necessary to account for effects of elastic foundation for a better understanding 

of the postbuckling response of structures such as plates and shells. Librescu and Lin have 

extended previous works (Librescu and Lin 1997, Lin and Librescu 1998) to consider the 

postbuckling behavior of flat and curved laminated composite panels resting on Winkler elastic 

foundations (Librescu and Lin 1997, Lin and Librescu 1998). However, investigation on FG plates 

and shells supported by elastic foundation are limited in number. Bouderba et al. (2013) studied 

the thermo-mechanical bending response of thick FG plate resting on two-parameter elastic 

foundations. Duc and Tung (2011) presented an analytical formulation for the buckling and post-

buckling responses of thick FG plates resting on elastic foundations and subjected to in-plane 

compressive, thermal and thermomechanical loads. Yaghoobi and Torabi (2013a) studied the 

buckling behavior of FG plates supported by two-parameter Pasternak’s foundations under thermal 

loads. An analytical approach was applied for solving the problem. Moreover, Yaghoobi and 

Yaghoobi (2013) investigated the buckling response of symmetric sandwich plates with FGM face 

sheets resting on an elastic foundation based on the first-order shear deformation plate theory and 

subjected to mechanical, thermal and thermo-mechanical loads. Yaghoobi and Torabi (2013b) 

analyzed post-buckling and nonlinear vibration behavior of geometrically imperfect FG beams 
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resting on nonlinear elastic foundation subjected to axial force.  

This work presents an analytical formulation to study the buckling and post-buckling response 

of simply supported FG thick plates resting on two-parameter elastic foundations and subjected to 

in-plane compressive, thermal, and thermo-mechanical loads. Shi’s higher order shear deformation 

theory (Shi 2007) is employed to establish governing equations considering into account 

geometrical nonlinearity and initial geometrical imperfection. Analytical expressions of buckling 

loads and post-buckling load–deflection curves for simply supported FG plates are determined by 

Galerkin technique. Numerical examples are presented to show the influences of geometrical and 

material properties, in-plane restraint, foundation stiffness and imperfection on the response of the 

FG plates.  

 

 

2. Theoretical formulations 
 

2.1 Kinematics 
 

In this work, the Shi’s higher order shear deformation plate theory (Shi 2007) is used. Shi 

(2007) employed the improved third order shear deformation theory based on a more rigorous 

kinematics of displacements defined as TSDT to investigate static analysis of isotropic and 

orthotropic beams and plates. The author concluded that the proposed new higher order shear 

deformation theory provided more accuracy than other higher order shear deformable theory, 

especially when the transverse shear plays a very important role. Because of the kinematics of 

displacement in TSDT derived from an elasticity formulation rather than the hypothesis of 

displacements, it is interesting to use this theory for the buckling and post-buckling of the FG 

plates. The displacement field can then be expressed as 
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where u0, v0 and w0 are generalized displacement at the mid-plane of the plate in the x, y, and z 

directions, respectively; ϕx, ϕy are the slope rotations in the (x, z) and (y, z) planes, respectively; 

and h is the plate thickness. 

The non-linear von Karman strain–displacement equations are as follows 
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Fig. 1 Coordinate system and geometry for FG plates on Pasternak elastic foundation 
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2.2 Constitutive equations 
 

Consider a ceramic-metal FG plate of length a, width b and thickness h resting on an elastic 

foundation as shown in Fig. 1. The properties of FG plate (P) are assumed to vary through the 

plate thickness with a power law distribution of the volume fraction of the two materials as 

(Benachour et al. 2011, Ould Larbi et al. 2013, Tounsi et al. 2013, Belabed et al. 2014, Bourada et 

al. 2015, Al-Basyouni et al. 2015, Zemri et al. 2015, Bouchafa et al. 2015)  

N

CMM
h

z
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2

1
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where PM and PC are the corresponding properties of the metal and ceramic, respectively, and N is 

the power law index which takes the value greater or equal to zero. In the present work, we assume 

that the elasticity modules E, thermal conductivity K, and the thermal expansion coefficient  , are 

described by Eq. (4). 

The linear constitutive relations of a FG plate can be expressed as 
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where ΔT is temperature rise from stress free initial state or temperature difference between two 

surfaces of the FG plate. 

By employing the virtual work principle to minimize the functional of total potential energy 

function result in the expressions for the nonlinear equilibrium equations of a perfect plate resting 

on two parameters elastic foundation as 
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where kw is the Winkler foundation stiffness and kg is a constant showing the effect of the shear 

interactions of the vertical elements. The force and moment resultants (N, Q, S and M) of the FG 

plate are determined by 
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Substitution of Eqs. (2) and (5) into Eqs. (7) yields the constitutive relations as 
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The last three equations of Eqs. (6) may be rewritten into two equations in terms of variables w0 

and ϕx,x+ϕy,y by substituting Eqs. (3) and (8) into Eqs. (6c)-(6e). Subsequently, elimination of the 

variable ϕx,x+ϕy,y from two the resulting equations leads to the following system of equilibrium 

equations 
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For an imperfect FG plate, Eq. (10) are modified into form as 
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in which ),(*

0 yxw  is a known function representing initial small imperfection of the plate. Note 

that the terms 0

6w  and 0

4w  are unchanged because these terms are obtained from the  

expressions for bending moments Mi and higher order moments Si and these moments depend not 

on the total curvature but only on the change in curvature of the plate (Samsam Shariat and Eslami 

2006). Also, f(x, y) is stress function defined by 
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The geometrical compatibility equation for an imperfect plate is expressed as 
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From the constitutive relations (8) and Eq. (13) one can write 
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Substituting Eq. (15) into Eq. (14), the compatibility equation of an imperfect FG plate 

becomes 
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It is noted that Eqs. (12) and (16) are nonlinear equations employed to study the stability of 

thick FG plates resting on elastic foundations subjected to mechanical, thermal and thermo-

mechanical loads. 

Three cases of boundary conditions are considered in this work, referred to as Cases 1, 2 and 3 

(Librescu and Lin 1997, Lin and Librescu 1998).  

• Case 1: Four edges of the plate are simply supported and freely movable (FM). The 

associated boundary conditions are 

         
axNNSMNw xxxxyxy  ,0at          ,0 0    (17a) 

         
byNNSMNw yyyyxxy  ,0at          ,0 0    (17b) 

• Case 2: Four edges of the plate are simply supported and immovable (IM). In this case, 

boundary conditions are  

             
axNNSMuw xxxxy  ,0at          ,0 00    (18a) 

             
byNNSMvw yyyyx  ,0at          ,0 00    (18b) 

• Case 3: All edges are simply supported. Two edges x=0, a are freely movable and subjected 

to compressive load in the x direction, whereas the remaining two edges y=0, b are unloaded and 

immovable. For this case, the boundary conditions are defined as  

             
axNNSMNw xxxxyxy  ,0at          ,0 0    (19a) 

             
byNNSMvw yyyyx  ,0at          ,0 00    (19b) 
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where Nx0, Ny0 are axial compressive loads at movable edges (i.e., Case 1 and the first of Case 3) or 

are fictitious compressive edge loads at immovable edges (i.e., Case 2 and the second of Case 3). 

The proposed solutions of w and f respecting boundary conditions (17)-(19) are considered to 

be (Librescu and Lin 1997, Lin and Librescu 1998)  

        
)sin()sin() ,(),( * yxhWww nm   (20a) 

        2
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2

0

321

2

1

2

1
                            

)sin()sin()2cos()2cos(
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yxAyAxAf

yx

nmnm



 

 (20b) 

)cos()sin(   ),sin()cos( 21 yxByxB nmynmx  
 (20c) 

where λm=mπ/a, δn=nπ/b, m, n are odd numbers, W is amplitude of the deflection and μ is 

imperfection parameter. The coefficients Ai (i=1, 2, 3) are determined by substitution of Eqs. 

(20a), (20b) into Eq. (16) as 
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 (21) 

Using Eqs. (3) and (8) in Eqs. (6d), (6e) and substituting Eqs. (20a), (20c) into the resulting 

equations, the coefficients B1 and B2 are determined as 
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 (22) 

in which 
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22313 mnnnmmDaa    (23b) 

Then, setting Eqs. (20a), (20b) into Eq. (12) and employing the Galerkin method for the 

resulting equation yield 
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(24) 

This equation will be employed to investigate the buckling and post-buckling responses of 

thick FG plates under mechanical, thermal and thermomechanical loads. 
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2.3 Mechanical post-buckling analysis 
 

A simply supported FG plate with all movable edges is considered and this plate is supported 

by elastic foundations and subjected to axial edge compressive loads (Fx, Fy) uniformly distributed 

on edges x=0, a and y=0, b, respectively. In this case, prebuckling force resultants are (Samsam 

Shariat and Eslami 2007) 

hFN xx 0 , hFN yy 0                                                    (25) 

and Eq. (24) leads to 
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in which 
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For a perfect FG plate, Eq. (26) reduces to an equation from which buckling compressive load 

may be determined as 1

1eFxb  . 

 

2.4 Thermal post-buckling analysis 
 

A simply supported FG plate with all immovable edges is assumed here. The plate is also 

rested by an elastic foundation and exposed to temperature environments or subjected to through 

the thickness temperature gradient. The in-plane condition on immovability at all edges, i.e., u0=0 

at x=0, a and v0=0 at y=0, b, is given in an average sense as (Tung and Duc 2010, Shen 2007) 
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b a

dxdy
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0 0
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a b

dydx
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v

0 0

0 0                                             (29) 

From Eqs. (3) and (8) one can determine the following expressions in which Eq. (13) and 

imperfection have been included 
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Introduction of Eqs. (20) into Eqs. (30) and then the result into Eq. (29) give 
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(31b) 

When the deflection dependence of fictitious edge loads is ignored, i.e., 0W , Eqs. (31) 

becomes  

         



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1
00 yx NN  (32) 

Substituting Eqs. (31) into Eq. (24) yields the expression of thermal parameter as 
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2.4.1 Uniform temperature rise 
The FG plate is subjected to temperature environments uniformly raised from stress free initial 

state Ti to final value Tf, and temperature change ΔT=Tf−Ti is assumed to be independent from 

thickness variable. The thermal parameter Ф1 is obtained from Eq. (9b), and substitution of the 

result into Eq. (33) yields 
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where 
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(35) 

in which 
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By Setting μ=0, Eq. (34) leads to an equation from which buckling temperature change of the 

perfect FG plates may be obtained as 2
1eTb  . 

 
2.4.2 Nonlinear temperature 
The metal-rich surface temperature TM is maintained at reference value while ceramic-rich 

surface temperature TC is enhanced and steadily conducted across the thickness direction 

according to one-dimensional Fourier equation 
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Using K(z) according to Eq. (4), the solution of Eq. (37) may be found in terms of polynomial 

series, and the first seven terms of this series gives the following approximation (Duc and Tung 

2011, Shahrjerdi et al. 2011) 
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where r=(2z+h)/2h and, in this case of thermal loading, ΔT=TC−TM is defined as the temperature 

difference between two surfaces of the FG plate. 

Substitution of Eq. (38) into Eq. (9b) and setting the result Ф1 into Eq. (33) yield a closed-form 

expression of temperature–deflection curves which is similar to Eq. (34), providing L is replaced 

by H defined as 
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2.5 Thermo-mechanical post-buckling analysis 
 

The FG plate supported by the elastic foundation is uniformly compressed by Fx on two 

movable edges x=0, a and simultaneously exposed to elevated temperature environments or 

subjected to nonlinear temperature distribution. The two edges y=0, b are considered to be 

immovable. In this case, Nx0=−Fxh and fictitious compressive load on immovable edges is obtained 

by setting the second of Eq. (30) in the second of Eq. (29) as 
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Then, Nx0 and Ny0 are placed in Eq. (24) to give 
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where the coefficients 3

1e ; 3

2e ; 3

3e  are defined as follows 
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and L is replaced by H in the case of the FG plates subjected to combined action of uniaxial 

compressive load and temperature gradient. 

Eqs. (26), (34) and (41) are explicit expressions of load–deflection curves for thick FG plates 

supported by Pasternak elastic foundations and subjected to axial compressive, thermal and 

thermo-mechanical loads, respectively.  

 

 

3. Results and discussion 
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Fig. 2 Comparisons of thermal post-buckling load-deflection curves for isotropic plates 
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Fig. 3 Effects of the power law index on the post-buckling of FG plates under uniaxial 

compressive load (all movable edges) 

 

 

For the validation purpose, the thermal post-buckling of a simply supported square thick 

isotropic plate is examined. The plate is subjected to uniform temperature field with all immovable 

edges and without elastic foundation. The thermal post-buckling load-deflection curves for perfect 

and imperfect isotropic plates (v=0.3) obtained using the present formulation are compared to 

those of Shen (2007) in Fig. 2. In general a good agreement is observed in this comparison. 

However, for high values of the thermal load, significant differences between the results from the 
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proposed method and Shen's method are appeared. These differences are due to the used methods. 

In the following, we consider a square ceramic-metal plate with the following properties 

(Javaheri and Eslami 2002b, Samsam Shariat and Eslami 2006, 2007, Lanhe 2004, Duc and Tung 

2011): 

• 70ME GPa,  3.0M , 61023 M °C
-1

,   204MK W/mK 

• 380CE GPa, 3.0C , 6104.7 C °C
-1

,   4.10CK W/mK 

It is noted that the buckling of perfect plates occurs for m=n=1, and these values of half waves 

are also employed to plot load-deflection equilibrium paths for both perfect and imperfect plates. 

In graphs, W/h presents the dimensionless maximum deflection and the FG plate-foundation 

interaction is ignored, unless otherwise stated. 

Fig. 3 proves that the increase of the power law index (N) causes the decreasing trend of 

postbuckling curves of the FG plates with movable edges under uniaxial compressive load. It can 

be also seen that when N is varied from 0 to 1, both critical buckling loads and post-buckling 

carrying capacity are strongly dropped. However, a slower variation is remarked when N is greater 

than 1. 

Fig. 4 compares the postbuckling response of compressed FG plates under two types of in-

plane boundary restraint. The plate is considered to be freely movable (FM) on all edges (Case 1) 

and immovable (IM) on two unloaded edges y=0, b (Case 2). As can be observed, in spite of lower 

critical buckling loads, the postbuckling equilibrium paths for Case 2 become higher than those for 

Case 1 in deep region of postbuckling response.  

Figs. 5 and 6 show the variation of thermal postbuckling load-deflection curves for FG plates 

with all immovable edges subjected to uniform temperature rise and nonlinear temperature 

distribution, respectively, with various values of N. It can be seen that, the reduction of volume 

fraction percentage of ceramic constituent leads to a decrease in the capability of temperature  
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Fig. 4 Effects of in-plane restraint on the post-buckling of FG plate under uniaxial compression 
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Fig. 5 Effects of the power law index on the post-buckling of FG plates under uniform 

temperature rise (all IM edges) 
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Fig. 6 Effects of the power law index on the post-buckling of FG plates under nonlinear 

temperature distribution (all IM edges) 

 

 

resistance of the plates. In addition, it can be deduced that when N varies from 0 to 5, the variation 

tendency of temperature-deflection curves is not identical for two cases of thermal loading.  

The influences of the elastic foundations on the post-buckling response of the FG plates under 

two types of thermal loads are illustrated in Figs. 7 and 8. As expected, both buckling loads and 

postbuckling loading bearing capability are amplified because of the presence of elastic 

foundations. Indeed, for the effect of spring constant factors (Kw, Kg) of the elastic foundation on  
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Fig. 7 Effects of the elastic foundations on the post-buckling of FG plates under uniform 

temperature rise (all IM edges) 
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Fig. 8 Effects of the elastic foundations on the post-buckling of FG plates under temperature 

gradient (all IM edges) 

 

 

the stability of the plate, it is found that decreasing the spring constant factors leads to the 

reduction in the stability of the plate for every considered case. This is because the system 

becomes stiffer when the springs are harder. Furthermore, the shear layer stiffness Kg of Pasternak 

model has more pronounced effects in comparison with foundation modulus Kw of Winkler model.  

The effects of thickness ratios (a/h) on the post-buckling behaviour of the FG plates under two 

types of thermal loads are depicted in Figs. 9 and 10. It can be demonstrated from Figs. 9 and 10  
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Fig. 9 Effects of the thickness ratios on the post-buckling of FG plates under uniform 

temperature rise (all IM edges) 
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gradient (all IM edges) 

 

 

that the increase of thickness ratios makes the capability of temperature resistance of the plates to 

be decreased.   

The thermo-mechanical post-buckling behaviour of FG plates with different values of thickness 

ratios (Kw) and subjected to uniaxial compression is demonstrated in Fig. 11. It can be seen again 

that the capacity of mechanical load bearing of the FG plates is more reduced with the increase of 

the thickness ratios.    
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Fig. 11 Effects of the thickness ratios on the post-buckling of FG plates under uniaxial 

compression (immovable on y=0, b) 
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Fig. 12 Effects of the temperature field on the post-buckling of FG plates under uniaxial 

compression (immovable on y=0, b) 

 

 

The thermo-mechanical post-buckling response of FG plates exposed to temperature field and 

subjected to uniaxial compression is illustrated in Fig. 12. As can be seen, the capacity of 

mechanical load bearing of the FG plates is more reduced because of the enhancement of pre-

existent thermal load.  

Finally, interactive influences of elastic foundations and temperature gradient on the post- 
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Fig. 13 Interactive effects of elastic foundation and nonlinear temperature distribution on the 

post-buckling of FG plates under uniaxial compression (immovable on y=0, b). 

 

 
buckling of the FG plates subjected to uniaxial compressive loads are shown in Fig. 13. As can be 

remarked, in spite of the increase of ceramic-rich surface temperature, Pasternak type foundations 

have very beneficial effects on the improvement of thermo-mechanical loading capacity of the FG 

plates. It is also observed that the spring constant factors have significant impact on the stability of 

the plates, particularly when Kg is included. 

 

 

4. Conclusions 
 

In this work, an analytical formulation is proposed to study the mechanical, thermal and 

thermomechanical buckling and post-buckling responses of thick FG plates supported by elastic 

foundations. The developed approach is based on the Shi’s higher order shear deformation theory 

to determine accurate predictions for buckling loads and postbuckling loading carrying capacity of 

thick plates. The obtained analytical expressions of load–deflection curves have practical 

contribution in analysis and design. The results prove that elastic foundations have a beneficial 

effect on the stability of FG plates. In addition, it is concluded also that the power law index, in-

plane boundary restraint, imperfection and temperature conditions have significant influences on 

the response of the plates. 
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