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Abstract.  Any rational approach to define the configuration and size of viscous fluid dampers in a 

structure should be based on the dynamic properties of the system with the dampers. In this paper we 

propose an alternative representation of the complex eigenvalues of multi degree of freedom systems with 

dampers to calculate new equivalent natural frequencies. Analytical expressions for the dynamic properties 

of a two-story building model with a linear viscous damper in the first floor (i.e. with a non-proportional 

damping matrix) are derived. The formulas permit to obtain the equivalent damping ratios and equivalent 

natural frequencies for all the modes as a function of the mass, stiffness and damping coefficient for 

underdamped and overdamped systems. It is shown that the commonly used formula to define the 

equivalent natural frequency is not applicable for this type of system and for others where the damping 

matrix is not proportional to the mass matrix, stiffness matrix or both. Moreover, the new expressions for the 

equivalent natural frequencies expose a novel phenomenon; the use of viscous fluid dampers can modify the 

vibration frequencies of the structure. The significance of the new equivalent natural frequencies is 

expounded by means of a simulated free vibration test. The proposed approach may offer a new perspective 

to study the effect of viscous dampers on the dynamic properties of a structure. 
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1. Introduction 
 

Viscous fluid dampers are one of the most popular alternatives among the currently available 

passive seismic protection devices. They are relatively economical, easy to install, efficient, and 

invasiveness issues can be minimized. These devices can be attached to a new or existing structure 

and its applications experienced a rapid growth since the mid-1990s (Symans et al. 2008). Some 

studies demonstrated that viscous fluid dampers are the second most efficient passive protective 

system in terms of response reduction, after seismic base isolation (Mayes and Naguib 2005). 

The design of a system of viscous fluid dampers for a specific structure involves the selection 

of the sizes and locations of the dampers, and thus several methods were proposed to determine 
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the optimal location of the dampers in a structure (Pettinga et al. 2013). For example, a 

comprehensive comparison of five methods for optimal placement of viscous dampers is presented 

by Whittle et al. (2012). However, when optimal damper systems are sought, usually only dampers 

localized between adjacent floors are considered, and other arrangements technically and 

physically implementable did not receive the same attention (Trombetti and Silvestri 2006). 

With regard to the size of the dampers, the manufacturers usually recommend that the dampers 

should be such that the fundamental mode (the first mode for buildings subjected to seismic or 

wind loads) has a 25% damping ratio as a practical upper limit (Lee and Taylor 2001). In practice 

and for several reasons (lack of familiarity with the theories, inadequate computer programs, etc.) 

the selection of the size and position is frequently done by trial and error. For instance, the 

structure with dampers is modeled with structural engineering software and the seismic response 

under different earthquake scenarios is obtained until the designer is satisfied with the results. 

Thus, target damping ratios attained for the dominant modes and the change in frequencies are not 

taken into account, at least in the initial stages of the design. 

A more rational method for the design of a system of linear viscous dampers is estimating the 

damping level achieved for a specific position and size of the dampers. Several researchers 

proposed approaches to accomplish this goal (e.g., Constantinou and Symans 1993, Soong and 

Dargush 1997, Occhiuzzi 2009, Pierson et al. 2013). The method is based on rewriting the 

equations of motion of the structure with dampers in the state space form (Antsaklis and Michel 

2007) and from the eigenvalue analysis associated with free vibrations one can obtain accurate 

information on equivalent natural frequencies and damping ratios for all the modes of interest 

(Charney and McNamara 2008). 

There are situations where the state space approach is not applicable. This is the case for 

dampers in which the damping forces are a function of the velocity elevated to an exponent less 

than 1. Another example is when the seismic force-resisting system undergoes inelastic 

deformations during a strong earthquake event (Cheng et al. 2010). Nevertheless, even in these 

cases a linear analysis is usually done to begin the design process. This type of linear analysis but 

using energy-based and optimization approaches was also used in recent studies to determine the 

optimal damper locations (Lewandowski 2008, Lin et al. 2013). 

A noteworthy application of the state space approach was presented by Trombetti and Silvestri 

(2006, 2007). They investigated the modal damping ratios of shear-type buildings, characterized 

by constant lateral stiffness and floor mass, and equipped with viscous dampers in a Rayleigh 

damping disposition, i.e. the dampers were installed in a mass proportional damping (MPD) or 

stiffness proportional damping (SPD) configuration. The results show that the first modal damping 

ratio of a structure with the MPD system is always larger than the first modal damping ratio of a 

structure with the SPD system. Morzfeld et al. (2009) studied the non-classically damped systems 

ignoring the off-diagonal elements of the modal damping matrix. Via numerical examples it was 

shown that the error due to the decoupling approximation increases monotonically while the modal 

damping matrix becomes more diagonally dominant. Ma et al. (2010) used a previously developed 

method called phase synchronization (Ma et al. 2009) to decouple viscously damped linear system 

in non-oscillatory free vibration and in forced vibration. They proposed and validated a general 

methodology that requires the solution of a quadratic eigenvalue problem. Charney and McNamara 

(2008) compared the modal strain energy method using the undamped mode shapes, free vibration 

log decrement, and complex eigenvalue-eigenvector analysis for determining the equivalent 

viscous damping ratios in a linear-elastic one-story shear building model. The modal strain energy 

approach consistently yielded increasing effective damping with increased damper size, while the 
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other two methods predicted the opposite results. As an alternative to state-space based 

approaches, Adhikari (2011) proposed an iterative method to obtain the eigenvalues and 

eigenvectors of nonproportionally damped systems based on the undamped eigenproperties. The 

method needs to satisfy a sufficient condition for its convergence and due to its iterative nature is 

limited to numerical analysis. More recently, Lewandowski and Pawlak (2011) studied the 

dynamic response of frames with viscoelastic dampers (VE) modeled with the fractional derivative 

Kelvin and Maxwell models. They proposed a new state space formulation to write the equations 

of motions and an associated nonlinear eigenvalue problem was solved with the continuation 

method. In a following paper Lewandowski et al. (2012) compared the dynamic properties of 

frames equipped with VE dampers represented with classical rheological models, a fractional order 

derivative model, and the complex modulus approach. The dynamic behavior predicted by each 

approach was compared in the frequency domain. The dynamic characteristics of structures with 

VE dampers are further studied by Pawlak and Lewandowski (2013). The dynamic behavior of 

these structures is characterized by the natural frequencies and damping factors which are 

determined from a nonlinear eigenvalue problem. The nonlinear eigenvalue problem is solved 

using the continuation method. Although the dimension of the eigenvalue problem is the same for 

a structure with and without dampers, it requires an incremental-iterative procedure for its 

solution. In a following paper Pawlak and Lewandowski (2014) evaluated the qualitative 

differences in the dynamic characteristics of a system equipped with dampers modeled with the 

Kelvin and fractional models. For a two story shear frame they found that the non-dimensional 

damping ratios are limited for several or all modes of vibration whereas bifurcation point in the 

frequencies of the system takes place. The previous conclusion is in agreement with the results 

reported by Krenk (2005) for a viscous tuned mass damper. He used the classical dynamic 

amplification analysis considering the dynamic amplitude of the relative motion of the damper. 

Krenk demonstrated that for the classic tuning of the damper frequency, the complex locus of the 

natural frequencies has a bifurcation point corresponding to maximum damping of the modes. 

Despite of the valuable aforementioned studies, an analytical investigation of the fundamental 

dynamic properties (i.e. equivalent natural frequencies and damping ratios) of shear-type buildings 

with a non-proportional damper arrangement is not available. This is important because most real 

structures with added viscous fluid dampers are not proportionally damped (Charney and 

McNamara 2008), i.e., the dampers are reduced in size or suppressed in the upper floors (e.g., 

Lewandowski 2008, Miyamoto and Gilani 2008). 

This paper is a first step in the quest for an analytical and rational framework to select the non-

proportional damper configuration and size based on the properties of the structure. Because of the 

complicated algebraic nature of the problem, the procedure is presented for a regular 2-story 

building with a single damper in the lower floor. Closed form formulas that permit to define the 

equivalent natural frequencies and damping ratios are derived. The structure is modeled as a linear 

elastic shear building and the dampers are assumed to have a linear, purely viscous behavior. The 

equations derived permit to determine in closed form the damping ratios that can be attained for 

each mode for a given value of the damping coefficient and structural properties. Very interesting 

and so far unreported phenomena occur when the variation of the dynamic properties with the 

damping coefficient are studied. It is shown that the usual definitions of the equivalent damping 

ratios and natural frequencies (Soong and Dargush 1997, Occhiuzzi 2009) do not apply for this 

case and a new way to characterize the complex eigenvalues of damped multi degree of freedom 

system is proposed. The case of overdamped systems is also studied. The physical interpretation of 

the equivalent natural frequencies is discussed. Also, the implications in the seismic response are 

1243



 

 

 

 

 

 

Luis E. Suarez
 
and Carlos A. Gaviria 

presented by means of a simple numerical example. 

 

 

2. Free vibration response of non-classically damped linear systems 
 

A brief introduction to the analysis of non-classically damped linear systems will be presented. 

Although this is not the object of this paper, it is necessary to understand the concepts and 

formulation presented later.  

We are interested in solving the following equations of motion of a structure with viscous fluid 

dampers and n degrees of freedom in free vibration 

     
          0M u C u K u  

 
(1) 

where [M] and [K] are, respectively, the mass and stiffness matrices, and [C] is the real, symmetric 

damping matrix formed by assembling the coefficients of the viscous dampers. It is well known 

that because of the presence of the matrix [C], the Eq. (1) cannot be decoupled with the 

conventional (real) modes of vibration (Pawlak and Lewandowski 2013). An exception occurs 

when the damping matrix is a linear combination of the mass and/or stiffness matrix, and thus the 

system is classically damped (Humar 2012). To solve the equations with the modal analysis 

technique, it is necessary to rewrite the equations of motion in state space form, i.e. as a system of 

2n first order differential equations (Constantinou and Symans 1993, Veletsos and Ventura 1986, 

Antsaklis and Michel 2007, Charney and McNamara 2008) 

         
 

 
       
   

 

 

1 1

0

u uM C M K
z A z

u uI

         
       

        

 (2) 

where {z} and [A] are the state vector and the non-symmetric system matrix, respectively. Eq. (2) 

is not the only way to express the equations of motion in state space form. However, they are all 

equivalent and we selected the simplest one. 

To decouple the equations of motion in the state space form we need to solve the associated 

eigenvalue problem 

     
     ; 1,2, ,2jj j
A j n   

 
(3) 

where the eigenvectors {ψ}j and eigenvalues λj are, in general, complex quantities, but as the 

damping in the system increases they could also to be real. If the eigenproperties are complex, they 

occur in complex conjugate pairs, and if they are real there is always an even number of them. 

Introducing in Eq. (2) the coordinate transformation {z}=[Ψ]{η} where [Ψ] is the matrix with 

2n eigenvectors {ψ}j, and premultiplying by its inverse one obtains a set of 2n decoupled first 

order ordinary differential equations. By this transformation, the state vector (Eq. (2)) in terms of 

real quantities is obtained as 

     

 

 
    

2

1

cos sin j j

n
t

j d j j d j

j

u
A t B t e

u

 
 





  
  

  
  (4) 

where and {Bj} are vectors with real constants, ωdj = ωj√1- ξj
2
, ωj and ξj are, respectively, the 

damped equivalent natural frequency, the equivalent natural frequency and the equivalent modal 
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damping ratio of the j
th
 mode. Furthermore, Eq. (4) can be written in a form similar to the 

expression that defines the response of classically damped systems. In order to do this, the 

following crucial assumption is done. Following the theory of the response of a damped single 

degree of freedom system, the complex eigenvalue is expressed as 

     
21j j j j ji       

 
(5) 

It is easy to verify that the equivalent frequencies and modal damping ratios are 

     j j 
 

(6a) 

     
Real( )j j j   

 
(6b) 

More details about the state space representation can be found in Constantinou and Symans 

(1993). 

 

 

3. The eigenvalue problem of a building model with a single damper 
 

We will now consider a 2-story regular building modeled as a shear building with one degree of 

freedom per floor (Suarez and Gaviria 2014). The shear building model under study is shown in 

Fig. 1(a). The mass lumped at each of the two floors is m, the total lateral stiffness of each story is 

k and the damper coefficient of the viscous dashpot at the first floor is c. The equations of motion 

(Eq. (1)) of this multi degree of freedom system (mdof) in free vibrations are 

     

1 1 1

2 2 2

0 0 2 0

0 0 0 0

u u um c k k

u u um k k

            
              

            

 (7) 

where u1 and u2 are the lateral displacements of the floors. By solving the associate eigenvalue 

problem of the undamped system, we can obtain the undamped natural frequencies 

     
   1 20.618 ;5 1 2 5 1 1.6182n n         

 
(8) 

where Ω is a frequency parameter equal to the natural frequency of a single degree of freedom 

system (sdof) with the same mass and lateral stiffness of one floor 

 

 

  
(a) with a single damper (b) with dampers on each floor 

Fig. 1 Two-story shear building model   
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 k m

 
(9) 

We are interested in the eigenproperties of the damped structural system. To obtain the 

complex eigenvalues λj and modes of vibration {ψ}j the equations of motion are rewritten in state 

space form and the associated eigenvalue problem is formed. To simplify the ensuing equations it 

is convenient to introduce a dimensionless damping coefficient x defined as follows 

     
 x c k m c m  

 
(10) 

It can be shown that the eigenvalue problem in Eq. (3) can now be written as 

     

2 2
1

2 2
2

3

4

0 2 0

0 0

1 0 0 0

0 1 0 0

jj

jj

jj

jj

x 







         
     

                 
        

 

(11) 

and its fourth order characteristic polynomial associated with the eigenvalue problem is (Suarez 

and Gaviria 2014) 

     
       

4 3 2
( ) 3 1p x x            

 
(12) 

The roots of the characteristic polynomial can be found in closed form using the computer algebra 

system Mathematica (Wolfram 2012) 

       

1 2 2 2

2

ˆ
4 2 10 4 4

ˆ
x x x x x





 
       

 
  (13a) 

        

3 2 2 2

4

ˆ
4 2 10 4 4

ˆ
x x x x x





 
       

 
  (13b) 

The magnitudes of the eigenvalues in non-dimensional form, ˆ
i /Ω, are plotted in Fig. 2(a). 

The eigenvalues plotted in Fig. 2(a) show that once x reaches a value of 2, the moduli of all the 

eigenvalues become for a certain range of x. The value of the non-dimensional coefficient x=2 is 

associated to a particular damping coefficient cc1, which will be denoted as the “first critical 

damping coefficient” and is defined in Eq. (14a). The fact that all eigenvalues converge to the 

same absolute value |λi|=Ω is an unusual and interesting phenomenon in its own right, but its 

discussion will be postponed for now. The absolute value of the eigenvalues remains constant 

between the values of x=2 (the first critical damping coefficient) and x=2.5. The latter value of x 

corresponds to a value of c=cc2 and it will be referred to as the “second critical damping 

coefficient” defined in Eq. (14b). 

       1 2 2cc m k m  
 

(14a) 

        2 2.5 2.5cc m k m  
 

(14b) 
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(a) Magnitudes of the unordered eigenvalues (b) Imaginary parts of the ordered eigenvalues 

Fig. 2 Variation of eigenvalues 

 

 

It is called attention to the fact that the eigenvalues shown in Fig. 2(a) are not in any specific 

order, which is a potential shortcoming to carry out modal analysis. The ordering of the 

eigenvalues is a trivial issue for undamped systems because they are all real and positive and thus 

they are sorted in ascending order. Nevertheless, in the case of damped structural systems, the 

eigenvalues are complex (when their associated modes are underdamped, otherwise they become 

real). After trying with several schemes, it was decided to order the eigenvalues according to the 

absolute value of the imaginary parts, i.e., |Im(λ1)|< |Im(λ2)|< |Im(λ3)|< |Im(λ4)|. For a complex 

conjugate pair, the eigenvalue with the negative imaginary part was ordered after the one with the 

positive part. Fig. 2(b) shows the imaginary parts of the ordered eigenvalues in non-dimensional 

form, i.e., |Im(λi)|/Ω. As it was expected, the figure shows that initially the pair Im(λ1)/Ω and 

Im(λ2)/Ω , and the pair Im(λ3)/Ω and Im(λ4)/Ω have equal magnitudes but opposite signs. However, 

after a value of x=2.5 (i.e., for c≥cc2), the imaginary parts of λ1 and λ2 become zero implying that 

the corresponding modes become overdamped, as it is evident from Eq. (5) for ξj 1. 

For comparison purposes, a shear building with a stiffness proportional damping system is 

considered (see Fig. 1(b)). The building has two dampers with coefficients c/2 on each of the two 

floors (so that the sum of the two damping coefficients is equal to c of the building with one 

damper). Fig. 3(a) shows the variation of the equivalent natural frequencies (i.e., the modulus of 

the eigenvalues) as a function of the dimensionless damping coefficient x. It can be seen that the 

moduli of all the eigenvalues remain constant while the modes are underdamped. The eigenvalue 

of the first mode λ1 and its complex conjugate λ2 are underdamped regardless of the value of c, 

whereas the moduli of the second mode eigenvalue λ3 and its complex conjugate λ4 diverge when 

the mode becomes overdamped (and the eigenvalues become real).  

 

3.1 Closed form of the complex eigenvalues 
 

Fig. 2(b) permits to identify the correct sequence of the eigenvalues presented in Eqs. (13) 

obtained from the roots of the characteristic polynomial. Eqs. (15a)-(15g) display the expressions 

for the ordered eigenvalues. In most cases the eigenvalues must be defined by two different 

expressions depending on the value of the parameter x (or equivalently the damping coefficient c). 

The only exception is the first eigenvalue which is defined by a single expression (Eq. (15a)). 
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2 2 2

1 4 2 10 4 4 ; for all x x x x x c
 

        
 

 
(15a) 

     

2 2 2

2 14 2 10 4 4 ; cx x x x x c c
 

         
 

 
(15b) 

     

2 2 2

2 14 2 10 4 4 ; cx x x x x c c
 

         
 

  
(15c) 

     

2 2 2

3 14 2 10 4 4 ; ccx x x x x c c
 

         
 

 
(15d) 

     

2 2 2

3 14 2 10 4 4 ; cx x x x x c c
 

         
 

  
(15e) 

     

2 2 2

4 14 2 10 4 4 ; cx x x x x c c
 

         
 

  
(15f) 

     

2 2 2

4 14 2 10 4 4 ; cx x x x x c c
 

         
 

  
(15g) 

 
 
4. Variation of the equivalent natural frequencies with the damping coefficient 
 

It was shown in Fig. 2(a) how the magnitudes of the complex eigenvalues change with the 

damping coefficient for the case of a building with a single damper. On the other hand, Fig. 3(a) 

corroborated that for a building with a damper on each story, the equivalent natural frequencies 

(i.e., the magnitudes |λi|) remain constant until the modes become overdamped. 

 

 

  
(a) A building with equal dampers in the two floors (b) A building with single dampers at the first floor 

Fig. 3 Equivalent natural frequencies 
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It is also interesting to examine how the equivalent natural frequencies vary with the damping 

coefficient. The equivalent natural frequencies were defined in Eq. (6a) as the absolute values (or 

moduli) of the eigenvalue, i.e., ω1 = |λ1|; ω1
*

 = |λ2|; ω2 = |λ3| ; ω2
*
 = |λ4|, where ω1

*
 and ω2

*
 denote 

the frequencies from the complex conjugate eigenvalues. Fig. 3(b) depicts the variation of the 

equivalent natural frequencies in non-dimensional form ωi/Ω with the dimensionless damping 

coefficient x. This figure is similar to Fig. 2(a) but now the ordered eigenvalues given by Eqs. 

(15a)-(15g) are used. It can be seen that while the modes are underdamped, ω1
*
 and ω2

*
 are equal 

to ω1 and ω2, respectively. 

The behavior of the equivalent natural frequencies displayed in Fig. 3(b) is unexpected. For 

instance, according to Eqs. (5) and (6a) ω1 should be constant and equal the first undamped natural 

frequency designated as ωn1 in Eq. (8). That is, it was expected that the first natural frequency 

would be 

     
   

2
2 2

1 1 1 1 1 1 11n n n          
 

(16) 

However, according to Fig. 3(b) the equivalent natural frequency ω1 (and ω1
*
) is equal to the 

undamped natural frequency only for x=0 (i.e., c=0) and then starts increasing until x=2 (i.e., 

c=cc1). We can then conclude that Eq. (16) is never valid. Also in the zone 0<x≤2 the natural 

frequency ω2 (and ω2
*
) decreases as x (or c) increases. The incongruity arises because the 

assumption that led to Eq. (5) does not always hold. Probably the equation stemmed from the case 

of a building with dampers in all floors, where it is always applicable as long as ξj is less than 1. 

This can be clearly seen in Fig. 3(a), which shows that the moduli of the eigenvalues (or 

equivalent natural frequencies) of the building with two dampers are equal to the undamped 

frequencies while the modes are underdamped.  

Going back to the behavior of the equivalent natural frequencies depicted in Fig. 3(b), note that 

when the damping coefficient c reaches cc1 (x=2), the equivalent frequencies attain a plateau. The 

imaginary parts of the eigenvalues are not zero yet (see Fig. 3) meaning that the equivalent 

damping ratios are still less than 1. In the region 2≤x≤2.5, or in terms of the damping coefficient 

when cc1 ≤ c ≤ cc2, all the equivalent natural frequencies fuse into a single frequency Ω 

     
 * *

1 1 2 2 1 2; c ck m c c c         
 

(17) 

For values of c>cc2, the frequency ω1 starts to decrease and ω1
*
 grows as c→∞. For these 

values of c, the first mode is overdamped (the damping ratios will be examined in a following 

section). Moreover, as it is discussed later, the definition of equivalent natural frequency based on 

the combination of Eqs. (5) and (6) cannot be applied in this region. As a matter of fact, for an 

overdamped system the concept of equivalent natural frequency is not applicable, since the 

structure will not oscillate when given initial conditions and set in free vibrations. This issue will 

be further discussed in a following section. Also, note that there are no changes in the behavior of 

ω2 and ω2
*
 when c>cc2: they remain constant and equal to Ω. 

 

4.1 An alternative way to represent the complex eigenvalues 
 

It was shown in the previous section that Eq. (5) is not always valid, at least for buildings 

without dampers uniformly distributed in all floors. To circumvent this problem, we propose the 

following more general expression to represent the complex eigenvalues, instead of the classical 
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form in Eq. (5) 

     
21 ; 1,2, ,2j j j j ji j n        

 
(18) 

Eq. (5) is now a special case of Eq. (18) and it is easy to verify that the definitions of the 

equivalent frequencies (Eq. (6a)) and modal damping ratios (Eq. (6b)) are still valid. Moreover, 

this definition is valid for any mdof system and the response of system can still be obtained with 

Eq. (4). However, it is important to call attention to the fact that the frequency ωj in Eq. (4) should 

not be the undamped natural frequency but rather the equivalent frequency equal to |λj|. The 

implications and physical meaning of the new equivalent natural frequency (ωi=|λi|) will be given 

later. 

 

4.2 Analytical expressions of the equivalent natural frequencies of underdamped 
systems  

 

It would be interesting and useful to have closed form expressions for the equivalent 

frequencies in terms of the properties of the structural system. To do this, we need to identify the 

real and imaginary parts of the expressions in Eq. (15). In particular, the real parts are useful to 

define the equivalent damping ratios in closed form.  

We will begin by examining the first eigenvalue. Although the complex eigenvalue λ1 is defined 

by Eq. (15a), it is not evident which parts of these expressions define the real and imaginary parts. 

To reveal them, we begin by rewriting λ1 in Eq. (15a) as 

     
 1 i 2i i 4x a b x a     

 
(19) 

where a=4–x
2 
and b=x

2
–10 are real-valued constants. Also, the complex number ib x a  in the 

third square root in Eq. (19) can be written in polar form as |z| e
iθ
 with the modulus and phase 

angle respectively given by: 2 2z b x a   and  1tan x a b  . With this notation the 

complex eigenvalue becomes 

     

2 2 2 2

1 2 sin 2 cos 4
2 2

x b x a i a b x a
 


  

        
 



 (20) 

Substituting back the constants a and b, and using Eq. (6a), the analytical expression of the first 

equivalent natural frequency ω1 can be written as 

     
   

1/4
* 2 2 2

1 1 11 25 4 25 4 sin 4 cos ;
2

cx x x x c c   


        
 

(21a) 

where  1 2 20.5 tan 4 10x x x    . Note that in the region c≤c1 considered, the natural 

frequencies ω1 and ω1
*
 are equal (see Fig. 3(b)). In the range cc1≤c≤cc2 the values of ω1 and ω1

*
 are 

defined by Eq. (17).  

Turning the attention to the eigenvalue of the second mode, denoted as λ3, it is recalled that it is 

defined by two expressions, Eqs. (15d) and (15e), depending on the value of c. The expression 

derived will be valid in the first region (i.e., c≤cc1). Following a procedure similar to that applied to 
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λ1, it can be shown that the second equivalent frequency ω2 (and ω2
*
) can be defined as follows 

   
1/4

* 2 2 2

2 2 11 25 4 25 4 sin 4 cos ;
2

cx x x x c c   


           (21b) 

Here again in the range cc1≤c≤cc2 the values of ω2 and ω2
*
 are defined by Eq. (17). 

Although the values of the first cc1 and second critical damping coefficient cc2 specified in Eqs. 

(14a) and (14b) were obtained by examining Fig. 2, they can be defined in an analytical way. This 

can be done by noticing from Fig. 2(b) that when the damping coefficient is equal to the first 

critical value (c=cc1 or x=2), the imaginary parts Im(λ1) and Im(λ3) are equal. The imaginary part of 

λ1 is given in Eq. (20) and there is a corresponding expression for λ3. Subtracting the imaginary 

parts of λ1 and λ3, equating the resulting expression to zero, and solving for x leads to 

      2

1 3Im Im 4 0 2
2

x x 


           (22) 

which means that the first critical damping coefficient is cc1= 2 k m .  

To verify the value of the damping coefficient cc2 at the end of the second region (i.e., the zone 

where all the equivalent natural frequencies are equal) we can make use of the fact that the 

imaginary part of λ1 (and λ2) becomes zero there (see Fig. 3). Examining the expression for the 

first eigenvalue in Eq. (15a) for the case where x>2 (c>cc1), it is possible to identify the imaginary 

part of the eigenvalue λ1. Setting this imaginary part to zero and solving for x we obtain 

2 210 4 0 2.5x x x x                  (23) 

and therefore the second critical damping coefficient is cc2 = 2.5 k m . 

 

 

5. Analytical expressions for the equivalent damping ratios 
 

It was mentioned that with the proposed Eq. (18) to characterize the eigenvalues, Eq. (6b) can 

still be used to calculate the modal damping ratios. In theory, the damping ratios in the first region 

(c≤cc1) can be calculated by simply substituting Eq. (15a) or Eq. (15b) and Eq. (15d) or Eq. (15f) 

in Eq. (6b). Although this will yield an exact closed form expression, the resulting formula is too 

complicated to be useful. Therefore, as an alternative the following approximate expression is 

proposed 

     
3

1 2 10.2236 0.0045 ; cx x c c    
 

(24) 

The formula was obtained by applying a Taylor series expansion to the exact expression around 

c=0. To verify its accuracy, Eq. (24) is compared in Fig. 4 (continuous line) with the exact closed 

form expression (dashed line).  

The equivalent damping ratios ξ1 and ξ2 for c > cc1 can be obtained by replacing Eqs. (15c) and 

(15e) in Eq. (6b). The resulting expressions are given in Eqs. (25a) and (25b). Note that the range 

of application of Eq. (25a) is different from Eq. (25b). This is so because when c>cc2 the imaginary 

part of λ1 (and λ2) is zero (see Fig. 3), and thus the first mode is overdamped and Eq. (6b) will 

always yield 1. Therefore, Eq. (25a) is only valid in the second region (cc1<c<cc2). On the other 

hand, the eigenvalue λ3 (and λ4) remains complex when c>cc2 (see Fig. 2(b)) and thus Eq. (25b) is  
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Fig. 4 Comparison between the exact and approximate damping ratio for the 1
st
 mode 

 

 

also valid in this third region while ξ2≤1. 

     2

1 1 24 ;4 c cx x c c c          (25a) 

 2

2 14 4 ; ccx x c                   (25b) 

To obtain the damping ratio for the first mode in the third region (i.e., where c≥cc2), we propose 

to write the pair of real eigenvalues λr and λr+1 of the r
th
 and (r+1)

th
 modes as 

  2 2

11 ; 1r r r r r r r r r r                  (26) 

where Ωr is an unknown frequency parameter. This parameter can be found by subtracting Eq. (26)  

which leads to 
1r r r    . Similarly, the supercritical damping ratio ξr can be obtained by  

adding Eq. (26), yielding ξr=(λr+λr+1)/2 Ωr. When these expressions are applied to the 2-story shear 

building with a single damper, the frequency parameter and the damping ratio for the first mode 

become 

     
 1 k m  

 

(27a) 

     
 2

1 24 ;4 ccx cx   
 

(27b) 

Note that Eq. (27b) is equal to Eq. (25a) for the damping ratio ξ1 in the second zone when the 

mode is still underdamped.  

The damping ratios can be expressed in closed form for any value of c by means of Eqs. (24), 

(25) and (27b). The damping ratios calculated with the proposed equations are plotted in Fig. 5(a). 

Fig. 5(a) reveals interesting features about the damping added to the system by a single damper in 

the first floor. First, when the damping coefficient is less than cc1 (or x<2), the equivalent damping 

ratios of the two modes are equal. When the damping coefficient c reaches the first critical 

damping coefficient cc1, the damping of the two modes begins to diverge: the first mode damping 

ratio increases whereas that of the second mode decreases. The fact that the equivalent damping 

ratios decrease with increased damper capacity is unexpected and it has also been reported recently 

(Charney and McNamara 2008). When the value of c reaches cc2 (or x=2.5), the first mode  
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(a) A building with single dampers at the first floor (b) A building with equal dampers in the two floors 

Fig. 5 Equivalent damping ratios 

 

 

damping ratio ξ1 becomes 1, i.e., the mode becomes overdamped. 

For comparison purposes, the damping ratios of a shear building with dampers with equal 

coefficients c/2 on each of the two floors (i.e., with stiffness proportional damping) are displayed 

in Fig. 5(b). As expected, here the damping ratios of the first and second mode also increase with 

the damping coefficient, but opposite to those in Fig. 5(a) they have different values. Moreover, 

the damping ratio of the second mode is higher than the one of the first mode and it reaches faster 

the critical damping ratio ξi=1. The damping ratio for ξ2>1 plotted in this figure was calculated 

using the pair of real eigenvalues in Eq. (26). 

 

5.1 The meaning of the frequency parameter for the overdamped case 
 

We mentioned that for ξ≥1 the concept of equivalent natural frequency is misleading because 

the structural system will not exhibit oscillations when it is set in free vibrations. According to the 

previous results (i.e., see Fig. 5(a)) the second mode is always underdamped but the first mode 

becomes overdamped when c>cc2  (i.e., x>2.5). It was proposed to express the eigenvalues of the 

two overdamped modes in the form of Eq. (26) in terms of the damping ratio and a variable that 

was referred to as the frequency parameter Ωr. It is called a “frequency” because it has the units of 

a circular frequency, i.e. rad/time. A physical meaning can be given to this parameter by examining 

the free vibration response of the damped system written in terms of real quantities, Eq. (4). This 

equation is valid for underdamped modes but if there is a pair of overdamped modes, say the r
th
 

and (r+1)
th
 modes, it can be modified as follows 

 

 
         

2

1
, 1

cos sin cosh sinhj j r r

n
t t

j d j j d j r d r r d r

j
j r r

u
A t B t e C t D t e

u

   
  


 

  
      

  
  (28) 

where 
1r r r     is the frequency parameter and 2 1dr r r    is a damped frequency 

parameter defined in terms of Ωr and the damping ratio ξr≥1. For a shear building with one 

damper, the frequency parameter for r=1 is given by Eq. (27a). 

The vectors {Cr} and {Dr} are defined by the pair of real eigenvectors {ψ}r and {ψ}r+1 and the 

initial values of the modal coordinates associated with these two modes (Pierson et al. 2013).  
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Fig. 6 Equivalent natural frequencies with underdamped and overdamped regions 

 

 

According to Eq. (28), the values of the damping ratio ξr and the frequency parameter Ωr specify 

how fast the overdamped modes tend to rest whereas Ωdr in the hyperbolic sine and cosine affects 

the peak displacement and velocity. The overdamped modes play an important role in the 

structural response. They have a significant influence on the absolute acceleration and the response 

of the structure is underestimated when the modes are not properly considered (Chu et al. 2008). 

The plot of the equivalent natural frequencies is updated in Fig. 6 and although Ωr is not an 

equivalent natural frequency, the range where ω1=Ω1 was included to explain the results of the 

numerical examples in the following section. 

 

 

6. Validation and interpretation of the equivalent natural frequency 

 

We will verify through a numerical example the accuracy of the proposed equations that define 

the equivalent natural frequencies, Eqs. (17), (21), and (27a), and the equivalent damping ratios, 

Eqs. (24), (25) and (27b). A regular shear building with lateral stiffness coefficient k=18,000 kN/m 

(1,000 k/in) and a lumped mass m=19,600 kg (0.4 k.s
2
/in) is considered. Four values of the 

damping coefficient at the first floor are used: 1) less than cc1 (c=594 kN.s/m), 2) equal to cc1 

(c=1188 kN.s/m), 3) between cc1 and cc2 (c=1336 kN.s/m), and 4) higher than cc2 (c=1782 kN.s/m). 

The simulated free vibration response of this structural system was evaluated by solving the 

equation of motion via direct integration with the Average Acceleration Method (Humar 2012). 

The sampling frequency was 500 Hz (Δt=0.002 s) and the accelerations at the first and second 

floor were computed. From this data, the frequencies and the damping ratios were estimated using 

various signal processing techniques, i.e. Fourier, wavelet and Hilbert transforms (Gaviria and 

Montejo 2015a, b). All these procedures were implemented in Matlab (Matlab-7.14 2012). It is 

important to bear in mind that for the numerical simulations (the response calculations and signal 

processing of the response) neither the complex eigenvalues and eigenvectors, nor the equivalent 

natural frequencies and damping ratios were used. The objective is to compare the dynamic 

properties calculated using the proposed equations (i.e., those based on the state space formulation 

with complex quantities) with the natural frequencies and the damping ratios identified from well-

established signal processing techniques. 

Fig. 7(a) shows 0.5 s of the free vibration response of the first floor for the four damping 

coefficients. The Fourier spectra of the free vibration acceleration records are depicted in Fig 7(b).  
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(a) 

 
(b) 

Fig. 7 (a) Free vibration responses; (b) Fourier spectra of the accelerations 

 
Table 1 Verification of the expressions for the equivalent natural frequency and damping ratios 

Case x 

ωeq/Ω 𝜉 

Mode 1 Mode 2 Mode 1 Mode 2 

Eqs. Ident. Eqs. Ident. Eqs. Ident. Eqs. Ident. 

c < cc1 1.00 0.65 0.66 1.54 1.55 0.228 0.223 0.228 0.235 

c = cc1 2.00 1.00 1.00* 1.00 1.00* 0.500 
 

0.500 
 

cc1 < c  < cc2 2.25 1.00 
 

1.00 0.99 0.820 
 

0.305 0.310 

c  > cc2 3.00 1.00 
 

1.00 0.99 1.309 
 

0.191 0.189 

* This value was computed using the damping ratio from Eq. (24). 

 

 

It can be seen in this figure that for the first case (c≤cc1), there are two peaks in the Fourier 

spectrum, form which vibration frequencies can be extracted. On the other hand, in the other cases 

(c≥cc1) only one frequency can be identified. Also, this latter frequency has a value between those 

frequencies of the first case (c≤cc1). The foregoing observations are in agreement with the variation 

of the equivalent frequencies described by Eqs. (17), (21) and (27a) that were displayed in Fig. 6. 

Table 1 compares the identified dynamic properties using signal processing procedures (Ident) and 

the values calculated with the proposed equations for the equivalent natural frequencies and 

damping ratios (Eqs). An empty cell indicates that the signal processing methods did not identify 

the dynamic property. The values of the identified equivalent natural frequencies (ωj) are 

computed using the identified damped frequencies and damping ratios (i.e., ωj=ωj/√1-ξj
2
). This 

table shows that the identified properties are very close to the values calculated with the proposed 
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equations for all the cases examined. Therefore, it is confirmed that the structure vibrates with the 

equivalent natural frequencies rather than the undamped natural frequencies, i.e., Eqs. (6a) and (8). 

The concept of equivalent natural frequency presented here could be considered in design 

procedures like the response spectrum analysis in FEMA 450 (2004) and ASCE 7-05 (2006). 

 
 
7. Dynamic characteristics of a 2-story building with a damper in the 1st floor: a summary 
 

The equations and figures describing the dynamic properties were presented in non-

dimensional form in order to be valid for any 2-story shear building model with regular mass and 

stiffness distribution. From Figs. 2(a) and 2(b) we identified two damping coefficients where the 

dynamic behavior of the system changes; they were called the first and second critical damping 

coefficients. Figs. 5(a) and 6 summarize the variations of the damping ratios and equivalent natural 

frequencies with the dimensionless damping coefficient. A highlight of the findings is listed next: 

• For values of the damping coefficient less than the first critical damping coefficient 

(c<cc1=2√km), the equivalent natural frequencies are a function of c, k, and m (Eq. (21)). Also, the 

two modes share the same damping ratios for the entire region. Therefore, the building with one 

damper can be more effective than that with one damper per floor because the former dissipates 

the same energy in all the modes. Similar results have been reported in a particular analysis of the 

seismic retrofit of a historic concrete building where viscous dampers were only installed in the 

first floor (Miyamoto et al. 2003). Lewandowski (2008) also recommended that the dampers in 

shear building models must be located in a few appropriate stories. Additionally, for economic 

reasons it is usually recommended to limit the damping ratios achieved with viscous fluid dampers 

to 25% (Lee and Taylor 2001). However, since it was shown that a single damper is sufficient to 

obtain higher damping levels, this limitation may be rescinded. 

• An interesting situation occurs if the damping coefficient is equal to the first critical damping 

coefficient: the structure vibrates as a single dof system because their equivalent natural frequency 

and equivalent damping ratios for both modes become equal (the modes are fused). 

• Between the first and second critical damping coefficient (cc1<c<cc2) the equivalent natural 

frequencies of both modes remains equal to Ω, i.e., the frequency of a single dof system with the 

mass m and lateral stiffness k of one floor (Eq. (9)). However, the two modes contribute to the 

structural response because their associated equivalent damping ratios are different (Fig. 5(a)). The 

effectiveness of the damper is reduced in this zone because the damping ratio of the second mode 

decreases as the damping coefficient increases (Eq. (25b)). 

• When the coefficient c becomes equal to cc2, the equivalent damping ratio of the first mode 

turns >1 and the first mode becomes overdamped (Fig. 5(a)). Thus, the first equivalent natural 

frequency dies out and the response is mostly due to the contribution of the second mode (see Fig 

7(b) and Table 1). 

 

 

8. Numerical example of seismic response 

 

Although it is not the main objective of paper, in order to present some implications of the 

proposed formulation we will examine the variation with the damping coefficient of the seismic 

response of the sample 2-story building. The bare structure has an inherent damping ratio of 0.02 

for all the modes. Five accelerograms representing ground motions with different frequency  
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(a) (b) 

  
(c) (d) 

Fig. 8 Maximum drifts for the Coalinga earthquake: (a) building with one damper; (b) with two equal 

dampers. Variation of ratios V/W for five earthquakes: (c) building with one damper; (d) with two equal 

dampers 

 

 

content, from narrow band to broad band signals were used. The records were obtained from the 

Next Generation Attenuation of Ground Motions (NGA) project (PEER 2006).To limit the number 

of variables all accelerograms were scaled to a PGA of 0.3g. The peak drift variations of the two 

building levels exhibit an interesting behavior. Fig. 8(a) presents the case for the 1983 Coalinga 

earthquake: note that once the damping coefficient exceeds a certain value, the drift of the second 

floor starts to increase slowly and for other earthquakes is almost constant. There is also a point 

(c=6,157 kN.s/m =35 k.s/in in this case) where the two drifts are identical. This particular value of 

c depends on the earthquake and its average for all the ground motions considered is 8,400 kN.s/m 

(48 k.s/in). This damping coefficient is close to the first critical damping coefficient cc1=2√km 

=7,005 kN.s/m (40 k.s/in) beyond which the second mode damping ratio starts to decrease as the 

damping coefficient c increases (see Fig. 5(a)). Therefore, for this configuration it is recommended 

to use a damper with a coefficient c≤cc1. 

The ratio between the maximum base shear and the total weight of the building V/W (known as 

the seismic coefficient) is plotted in Fig. 8(c) as a function of the damping coefficient for the five 

earthquakes. Note that the pattern of variation is the same for all the ground motions. When the 

damping coefficient is equal to cc1, the average ratio V/W for the 2-story building with one damper 

is 0.280 whereas when c=0, it is 1.149. 
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It is noteworthy to compare the seismic response of the same 2-story building but with equal 

dampers in all floors. The sum of the two damping coefficients is taken equal to the shear building 

with one damper. The maximum drifts as a function of the damping coefficient for the 1983 

Coalinga record are displayed in Fig. 8(b): note that the drifts of the two floors always decrease as 

the damping coefficient increases. Fig. 8(d) shows the ratios V/W as a function of the damping 

coefficient for the five ground motions. The response of the building with a single damper is 

somewhat smaller than the one with two dampers. This could be to the fact that when the damping 

coefficient is smaller than the first critical value, the two modes of the building with one damper 

have the same damping ratio. 

 
 
9. Conclusions 
 

A procedure to obtain closed-form expressions for the dynamic properties of structural systems 

with a non-proportional damping matrix was presented. The procedure is applied to the simple 

case of a 2-dof shear building model with a single damper in the first floor. The dynamic 

properties, i.e. the equivalent natural frequencies and damping ratios, were obtained in closed form 

as a function of the stiffness and mass coefficients of the structure and the damper coefficient. 

These equations show that the expressions available in the literature to calculate the equivalent 

natural frequency and damping ratio are not applicable for systems with dampers placed such that 

the damping matrix becomes arbitrary. New formulas were provided to circumvent the problem, 

which also account for the case of overdamped systems. It is shown that the damper not only 

contributes to the energy dissipation but it also changes one of the most important dynamic 

characteristics of system: its vibration frequencies. 

An insight into the meaning of the equivalent natural frequency is provided via the numerical 

simulation of the free vibration response of a building. It is shown that when the structure with 

dampers is set in free vibration, it oscillates with the equivalent natural frequency and not with the 

damped natural frequency. 

The variation of the equivalent natural frequencies and damping ratios with a non-dimensional 

parameter that considers the damping coefficient, the mass and stiffness of the building model is 

studied. Depending on the value of the damping coefficient, three distinct zones can be observed, 

separated by two values referred to as the first and second critical damping coefficient. Before the 

damping coefficient reaches the first critical coefficient, all the modes share the same damping 

ratio. From that point on, the damping ratio of the first mode increases whereas the one of the 

second mode decreases.  

The response of the damped building to several earthquakes with different characteristics was 

examined. It was found that not every response quantity always decreases as dampers with larger 

coefficients are used. This is the case of the maximum drift at the second level of the building, 

which reaches a minimum and then increases or remains constant (depending on the earthquake). 

Therefore, for this structural system it is recommended to select a damper with a coefficient 

smaller than the first critical value. 

All the formulas and graphs of the dynamic properties were presented in non-dimensional form 

so that they are valid for any 2-story shear building model with uniform mass and stiffness. Similar 

to the design of a based isolated system, one can define target values for the equivalent natural 

frequencies and damping ratios, and then use graphs such as those in Figs. 5(a) and 6 to determine 

the required damping coefficient. It may not be possible to obtain closed form expressions for the 
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equivalent frequency and damping ratios of systems with more than 2 dof with dampers in a non-

proportional arrangement because there is no general algebraic solution to polynomial equations of 

fifth degree or higher (Jacobson 2012). However, the procedure presented is valid for other mdof 

systems for which a numerical evaluation of the structures with dampers can be used to build 

dimensionless curves similar to Figs. 5(a) and 6. 

Because the formulas presented are limited to a simple structural system, it is not presumed that 

they will have direct applications, nor they were intended for that purpose. However, the 

formulation can be useful to understand unexpected results that may occur in similar cases, e.g. 

when a single damper is placed in a regular structure. For instance, it can help to explain why the 

damping ratios of several modes become equal, why the damping ratio of a certain mode decreases 

as larger dampers are used (Charney and McNamara 2008), or why the higher modes have an 

important contribution to the seismic behavior of a building with dampers (Chu et al. 2008).  

The equivalent natural frequency can be incorporated in design procedures for structures with 

dampers, such as the response spectrum analysis presented in FEMA 450 (2004) and Chapter 18 of 

ASCE 7-05 (2006). As previously reported (Symans et al. 2008), the results presented here 

corroborate that the introduction of energy dissipation devices in a structural system introduces 

several analysis problems that must be considered but which are not directly incorporated in 

design codes and guides. 
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