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Abstract.  In this paper, a new intensity measure of earthquakes for probabilistic seismic analysis is 

presented for skewed highway bridges. Three different cases of skewed bridges with different skew angles 

(0
o
, 30

o
 and 45

o
) are considered. Well-known intensity measures (e.g., PGA, Sa) are evaluated and critically 

discussed based on sensitivity analysis: efficiency, practically, proficiency and sufficiency of intensity 

measures are considered in detail. The analyses demonstrated that the intensity measures have to take into 

account structural acceleration on a wide range of periods so that a new seismic intensity measure is 

proposed showing that it has less dispersion compared to others. Since the proposed intensity represents the 

average value of the Sa (between a lower and upper structural period) it has been called Averaged Spectral 

Acceleration (ASA). Based on performed incremental dynamic analysis (IDA), the seismic analytical 

fragility curves of typical skewed highway bridges have been evaluated for different states of damage 

controlling the low dispersion of the ASA index as well as its proficiency and sufficiency. 
 

Keywords:  skewed highway bridges; analytical fragility curve; spectral intensity measures; incremental 

dynamic analysis (IDA) 

 
 
1. Introduction 
 

Due to limitations caused by curved roads, skewed bridges frequently allow for the use of 

various geometrical bridge deck shapes. Despite the recognized utility of this bridge typology_ as 

discussed in the scientific and technical literature, their performance_ have not been explored in 

detail_. Therefore the importance of the few studies devoted to understanding their behavior are 

significant (Meng and Lui 2000, Wakefield et al. 2000, Meng and Lui 2002, Meng et al. 2004, 

Dimitrakopoulos 2010, Lou and Zerva 2005, Maleki 2005, Kaviani et al. 2012, Alam et al. 2012, 

Sullivan and Nielson 2010, Abdel-Mohti and Pekcan 2013, Hassel and Bennett 2012, Maleki and 

Bisadi 2006, Kavianijopari 2013). Many of the studies concern modeling or experimental issues 

and only a few (Kaviani et al. 2012) indirectly concerns the issue of the intensity measure: usually 

the authors, having selected an opportune intensity use it to the fragility curve evaluation without 

entering in the details of their proficiencies and efficiencies.  
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Recognizing that the fragility curves represents an adequate tool for sensitivity analyses, they 

have been adopted in these studies to represent the results of the analyses that supported the 

proposal of a new index named ASA (Average Spectral Acceleration) that takes into account 

structural acceleration on a wide range of periods: it represents the average value of the Sa 

(between a lower and upper structural period). So that based on performed incremental dynamic 

analysis (IDA), the seismic analytical fragility curves of typical skewed highway bridges have 

been evaluated for different damage states controlling the low dispersion of the ASA index as well 

as its proficiency and sufficiency.  

Given these premises, after a preliminary discussion of studied skewed bridge_ problems and 

probabilistic adopted frameworks, the proposed ASA index is introduced and discussed. Other 

chapters contain detail bridge modeling and analyze bridge descriptions together with their Limit 

State Definition and record selections.  

 

 

2. Over review of skewed bridges studies 
 

Mang and Luie (2000) used three finite element models to analyze the skewed bridge of 

Foothill under the effect of 1971 San Fernando earthquake: response spectrum method has been 

adopted for the seismic analyses. Three different bridge models were derived: elastic deck, rigid 

deck and stick models.  Eigenvalue analysis was performed to determine the natural periods and 

mode shapes using these three models. The assumptions of this study were similar to Wakefield et 

al. (1991) with the exception of the abutment rotation (along longitudinal axis) disregarded in 

(Mang and Luie 2000) and included in (Wakefield et al. 2000). The results of eigenvalue analyses 

of three models showed that, fundamental modes are dominated by in-plane rotation due to the 

skewness, as well as irregular stiffness distribution. 

Mang and Luie (2002) proposed a refined stick model for dynamic analysis of skewed bridges. 

The model utilized a dual-beam stick representation of the bridge deck. The model was presented 

for preliminary dynamic analysis of skewed highway bridges. 

Mang et al. (2004) performed a experimental study on a skewed bridge model. Static and 

dynamic parameters (vibration frequencies, mode shapes, damping) of the model were determined. 

The experimental model was used to verify the validity of 3 dimension finite element models and 

stick models, and results showed a good correlation between mentioned models and the 

experimental model. 

The influence of deck abutment pounding on short skewed bridges, was investigated by 

Dimitrakopoulos (2011) who proposed a novel rigid body approach to study the effect of 

pounding: bi-directional frictional multi-contact phenomena have been included. 

Maleki (2005) considered the seismic behavior of skewed and non-skewed bridges. He 

considered the effect of gaps for the bearing pad retainers by including the stiffness of end-

diaphragms and elastomeric bearings in the modeling.  

Kaviyanchi (2012) studied the probabilities of skewed bridge responses. Three types of bridges 

were studied and fragility curves were evaluated. The engineering parameters of the study are: 

deck rotation, columns drift and Peak Ground Velocity (PGV) assumed as IM. Forty recorded 

earthquakes were used for the nonlinear dynamic analysis and collapse fragility curves were 

evaluated. As mentioned in their study an appropriate choice of intensity index is required to work 

within the framework of probabilistic seismic response of skewed bridges. 

Shahria Alam et al. (2012) performed analytical studies on fragility curves of a three span 
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bridge with and without seismic isolators at the base of the continuous deck: 1) incremental 

dynamic analysis were performed using records with PGA between 0.4g and 1.07g 2) traditional 

as well as innovative Shape-Memory Allow seats (SMA) were analyzed 3) fragility curves were 

evaluated for the bridge as well as isolators and columns, showing the better performance of the 

system with SMA and that when seismic isolation system is considered the damages are localized 

at the deck joints being the column less damaged if compared with the column of the non-isolated 

bridges. 

Probabilistic seismic analysis has been developed recently and it is well documented in the 

literatures  (Sullivan and Nielson 2010, Abdel-Mohti and Pekcan 2013, Hassel and Bennett 2012, 

Maleki and Bisadi 2006, Kavianijopari 2013); in the following chapter the used approaches will be 

described in the framework of  a full probabilistic procedure. 

 

 

3. Over review of probabilistic frame work 
 

3.1 Probabilistic Seismic Demand Analysis (PSDA) 
 

An earthquake is a probabilistic event with high impact and high uncertainty (Wen 2001). By 

virtue of the random nature of earthquakes and the extensive uncertainty in the prediction of 

seismic performance of structures, estimated future behaviour of a structure in a probabilistic 

framework is recommended (Tothong and Luco 2007). Thus, the goals of Performance Earthquake 

Engineering (PREE) are: 1) to define a structural response parameter (θ)
 
such as the drift ratio and 

a threshold (x) for it 2) to evaluate the mean annual rate λθ(x) of the occurrences characterized  by 

a level of (θ) greater than x 3) to calculate, based on λθ(x), the probability to overcome  the 

threshold (x) in a year (Deierlein et al.,2003; Cornell and Krawinkler ,2000).  

Therefore, the λθ(x) based strategy can be adopted to evaluate the seismic performance of a 

structure. Direct method of calculating λθ(x) is to record the structural response in a long time 

interval obtaining the mean annual rate of exceedance of structure, so that we have (Cornell 2005) 

     
( ) ( )x P x event G        (1) 

where 1) λ= mean rate of a probable specific earthquake (“M” magnitude) with Poisson periodic 

distribution (average rate of probable specific earthquake) 2) P=Gθ(x)=conditional probability 

function of occurrence x in a specific event 3) θ=structural response 4) x=a given level of 

response. 
Since the structure is generally affected by a set of earthquakes with different  sources and 

consequently different characteristics, Eq. (1) can be written as reported in Eq. (2) where 1) Mi and  

Ri are magnitude and epicenter distance of each considered earthquake 2) 
,i i

M R
G

 is the   

probability that θ will cross-over a given value of x 

     
     ,

, ,
i i

i i i iM R
i

x G x M R M R 
   (2) 

Based on the previous equation the response rate is the results of different scenarios {M, R}. A 

useful tool to assess the probability of a certain limit state or conditional probability is fragility 

function that can be empirical or analytical, being the analytical fragility function more used in 

recent years because of their flexibility and their accuracy; on the other hand the empirical fragility 

functions have some limitations due to the insufficiency of recorded damage data and the 
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subjectivity in defining damage states. 

Two are the adopted approaches to obtain analytical fragility functions: the „scaling‟ (like 

„stripe‟) and „cloud‟ approach. Both methods are based on nonlinear (time history, pushover) and 

linear analyzes (time history, elastic spectral). In cloud approach a great numbers of accelerograms 

(different for frequency content and intensity and PGA) are applied to the structure. In the scaling 

approach, named also IDA (Incremental Dynamic Analysis), a set of selected accelograms is 

applied incrementing for each of it the PGA. The IDA results are generally presented in terms of 

Engineering Demand Parameter (EDP) and Intensity Measure (IM), adopting a logarithmic 

correlation between EDP and IM as reported in Eq. (3): 1) the EDP depend on two coefficients (a, 

b) and 2) its standard deviation β is evaluable according Eq. (4) 

     
  ln( ) ln( ) .ln( )

b
EDP a IM or EDP a b IM    (3) 

     

2(ln( ) ln( .ln( ) ln( )))

2

i

EDP IM

EDP b IM a

N


 





 (4) 

If the standard normal distribution function Φ is adopted, for a given limit state (x) and 

intensity measure (IM) the fragility function can be evaluated according Eq. (5) 

     

ln( ) ln( )
[ ] 1 [ ]

b

i

EDP IM

x a IM
P EDP x IM




    (5) 

In this work, Eq. (5) will be adopted for the probabilistic seismic demand analysis (PSDA), 

adopting for (x) three different level, evaluated in terms of column drift ratio. 

 

3.2 Seismic Intensity Measures (IM) 
 

The choice of an appropriate intensity measure parameter is important in applying probabilistic 

seismic analysis. The selection of appropriate parameters can reduce the result dispersion: the 

concepts of sufficiency, efficiency and practically are recognized to be the attributes of a well 

selected parameter. Having selected the appropriate intensity, Eq. (2) can be generalized as 

reported in Eq. (6) if an integral formulation is needed instead of a discrete one (Cornell and  

Krawinkler 2000), where 1)  I iMi
G x IM


is the  probability that θ will cross-over a given value of 

x,  given an earthquake's intensity iIM  2)   
iIM id IM is average value of cross over annual rate  

of IMi. 

     
     

1I i IM iMi

IMi

x G x IM d IM 
    

(6) 

Having defined the probabilistic framework, the selection of the appropriate parameter remains 

as crucial point. The key challenges are to find the quantitative index for earthquake 

characterization its introduction (Luco and Cornell 2007, Baker et al. 2006). Shome and the 

colleagues (Shome 1999) have considered that the magnitude is an effective factor in the multi 

degree response of structures. Some researchers (Shome 1999) proposed the elastic spectrum Sa 

(T) as measure of the earthquake intensity. Alternative Displacement Spectra Sd (T) can be adopted 

(Tothong and Luco 2007) even if not often applied due to the problem related to its uncertainty 

(Tothong and Luco 2007, Baker and Cornell 2006). Many researchers have stressed that the shape 
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of Sa (T), cannot be considered as unique and deterministic but its variability has to be taken in 

account. Alternative, instead of Sa, 1) Baker and Cornell (2006) suggested to use the geometric 

intensity measure 2) Luco and Cornell (2007) proposed, the spectral indices to include the effects 

of higher modes 3) Baker and Cornell (2005) suggested, for near field,   the ratio        = Sa (T1) / 

Sa (T2) being  T1 is the fundamental period of structures and T2 and opportune optimal  period to be 

selected. Other approaches, consider the use of two intensity measures (Baker and Cornell , 2005, 

2006), so that Eq. (6) can be rewritten as follows 

      

       
1 2 2 1

1 2

1 2 2 1 1 1I ,
, , IMM IM IM IM

IM IM

x G x IM IM f IM IM d IM 
     

(7) 

In the above equation  
2 1

2 1,
IM IM

f IM IM , the conditional probability density function IM2 on 

IM1,  is the challenging item in evaluating of the responses: although a process known as “vector 

probabilistic risk analysis” (Bazzurro and Cornell 1994)  have been proposed in the literature for 

overcoming the problem of the above term calculation, its  application, far from  the Standard 

Probabilistic Seismic Hazard Analysis (PSHA), is currently not feasible since it is not 

generalizable (Bazzurro and Cornell 1994). 

The decision about the optimal intensity measures is generally driven by the concepts of 

efficiency and practically which leads to the evaluation of the proficiency and sufficiency of 

intensity measures. These criteria are defined in the following section. 

 

(a) Efficient intensity measure  
 

The efficiency is a measure of the dispersion about the median of the results of nonlinear time 

history analysis: it is inversely proportional to the dispersion, so that lower is the dispersion greater 

is the efficiency. In this study the dispersion is measured by means of βEDP|IM (see Eq. (4)) so that 

lower values of βEDP|IM leads to a more efficient intensity measure as proposed in Padgett et.al 

(2008). Noticing that βEDP|IM affects the structural fragility (see Eq. (5)) as well as the Intensity 

Measure (see Eq. (6)), it is obvious that different challenges related to the βEDP|IM efficiency 

evaluation have been proposed (Padgett et al. 2008). 

On passing it has to be noted that, since the efficiency is a measure of the dispersion, greater it 

is, lower will be the number of running. So that a 50 percent reduction in the dispersion of 

response leads to a reduction of 75 percent is the minimum required input (Cornell and Krawinkler 

2000 ). 

 

(b) Practical intensity measure 
 

Padgett et al. (2008) presented new criteria for selecting an optimal intensity measure in 

bridges. They introduce the practically of an intensity measure which correlate structural response 

and seismic hazard. They identified the practically as a coefficient of the regression parameter b in 

Eq. (3). The higher value of b leads to a more practical intensity measure (see Fig. 1). 

 

(c) Composite measure: Proficiency 
  

Padgett et al. (2008) composite the measure of efficiency and practically as new criteria to 

classify the intensity: a “modified” dispersion ζ= βEDP|IM to be introduced in Eq. (5) as reported in  
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Fig. 1 Comparison of relative practicality of intensity measures (Padgett et al. 2008 ) 

 

 

the Eq. (8) 

      

ln( ) ln( )

[ ] 1 [ ]

b

i

x a IM

bP EDP x IM




  

 

(8) 

Noticing that b values greater than 1 will decrease the new dispersion ζ, while b values minor 

than 1 will increase it, it is obvious that b=1 is the frontier between more and less  practical 

conditions (see Fig. 5) lower values of modified dispersion leads to more proficient IM (Padgett et 

al. 2008 ). 

 

(d) Sufficiency intensity measure  
 

The sufficiency of an IM has also been identified as a viable measure of its appropriateness for 

use in developing PSDMs (Padgett et al. 2008). An intensity measure will be sufficient when its 

efficiency and practically will have slight changes for different structures belonging to the same 

typologies (bridges in our cases). 

 

 

4. Intensity measure definition: Averaged Spectral Acceleration (ASA) 
 

In the next sections a new intensity measure will be validated and compared with the already 

presented literature proposals that are 1) the PGA  2) the value of Sa at the fundamental period (Ts) 

of the structure 3) Sa at the different periods in between 0.1Ts and 2.5 Ts. 

The proposed intensity measure ( S
a

) is the average value (Jeffreys and Jeffreys 1988)  of Sa in  

between T1 and T2 (see Eq. (9)) which values will be evaluated based on a parametric analyses 

      

2

12 1

1
( )

T

a a

T

S S T dT
T T


   (9) 

Since the proposed IM is the average value of Sa, it has been named Average Spectral 

Acceleration (ASA). 
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Fig. 2 Comparison of two different pseudo acceleration spectrum 

 

 

It will be shown that the ASA index will improve proficiency and  sufficiency of the classical 

Sa based index for which as showed in Fig. 2, the evaluation the Spectral Acceleration at a given 

point (e.g., 1.1 sec in the figure) can result non efficient: the Sa values at 1.1 sec (considered here 

representative of the structural period) is  equal for both spectra, but slight changing in the 

definition of referring period can imply great difference between the Sa values of the two 

considered spectra. So that it seems to be efficient that an index based on Sa evaluation has to take 

in account the shape of the spectrum in between an adequate period range to be evaluated based on 

the considered structure or typology. 

 

 

5. Case studies to evaluate Averaged Spectral Acceleration (ASA) 
 

5.1 Bridge descriptions and modeling  
 

The models used in this study are derived from a non-skewed model developed by Nielson 

(2005), the characteristics of which are based on data obtained from a survey of numerous bridge 

plans. The common type of the bridge throughout the Central and South-eastern United States is 

concrete slab on concrete girder highway bridges accounting for approximately 40% of all 

highway bridges in the region. A typical bridge configuration with standard details is derived 

through the data collection of concrete girder bridges (Nielson 2005). 

Preliminary studies have been carried out referring to the 0o skewed bridge we studied in 

(Bayat et al. 2015) where a comparison between PGA and Sa have been presented. The new, here 

presented, preliminary studies regards the validation of the ASA index presented in chapter 4: 

since the studies presented in (Bayat et al. 2015) considered plastic hinges models to simulate pier 

nonlinear behavior, the same assumption have been here maintained to validate the proposed ASA 

index for 0o skewed bridge. 

Further studies have been carried out to study the effect of skweness (30o and 45o degree) on 

IMs proficiency and, differently from 0o skewed bridge; in order to capture the interaction between  
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Fig. 3 Three dimensional model of the non- skewed bridge in SAP2000 

 

 

Fig. 4 Three dimensional model of the 30o skewed bridge in SAP2000 

 

 

N and M (in 2 directions) fiber hinges models have been considered: 1) Mander model (1984) has 

been adopted for confined and un-confined concrete 2) typical steel stress-strain (Elasto-plastic) 

model with no hardening has been adopted for concrete reinforcement. 

Globally, the carried out investigation considers three bridges with different skewness and span 

length. The non-skewed bridge represents the typology described by Nielson (2005) and the 

skewed bridges have been defined by modifying the Nielson non-skewed bridge. All the bridges 

have the same pier (5.75 m in height) while span numbers and the length depend on the skewness: 

1) the straight bridge (Fig. 3) has three spans which lengths are 12.2/24.4/12.2 m  2) the 30oskewed 

bridge (Fig. 4) have two equal length span (24.4 m) 3) the 45oskewed bridge has three spans which 

lengths are 12.2/24.4/12.2 m. 

Each span, which depth is 15.01 m, includes eight AASHTO type pre-stressed concrete girders. 

The scheme of deck, column and cap beam are presented in Fig. 6(a) to 6(c). The deck is modeled 

using shell elements. A rigid bar is used to connect the nodes between girders and bearings, 

bearings and cap beams, and cap beams and tops of the columns. Abutments and the column 

boundary conditions are considered Free in the longitudinal direction and considered fixed in the  
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Fig. 5 Three dimensional model of the 45o skewed bridge in SAP2000 

 

 
(a) 

 

(b)                                                   (c) 

Fig. 6 Concrete member reinforcing layout (a) Deck detail (b) Column (c) Bent beam 

 

 

transverse direction. We have considered different directions of earthquake and applied it to our 

bridges. Our results showed that the critical direction is the longitudinal one, therefore the 

earthquake has been applied to the longitudinal direction of the bridges. The column drift ratio in 

this study is related to combination of the transverse and longitudinal direction results. The 

transverse direction is also considered in our study. 

The soil-structure interaction is neglected in this study. The fundamental period of the bridges 

are: 1) straight bridge: 0.55s 2) 30o skewed bridge: 0.66s 3) 45o skewed bridge: 0.48s. 

 

5.2 Seismic scenario: earthquake selection 
 

In order to framework the analyses in a seismic scenario well accepted by the international 
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community, the FEMA-P695 (2003) have been pursued for the selection of 20 records (listed in 

Table 1) which 5% damping acceleration spectra (normalized to a unitary PGA) are reported in 

Fig. 7 together with the averaged spectra. The earthquake ground motion records cover different 

 

 
Table 1 Characteristics of the earthquake ground motion histories (FEMA 2003)  

  Earthquake Recording station 

ID No M PGA Year Name Name owner 

1 7.0 0.48 1992 Cape Mendocino Rio Dell Overpass USGS 

2 7.6 0.21 1999 Chi-Chi, Taiwan CHY101 CWB 

3 7.1 0.82 1999 Duzce,Turkey Bolu ERD 

4 6.5 0.45 1976 Friuli, Italy Tolmezzo ------------ 

5 7.1 0.35 1999 Hector Mine Hector SCSN 

6 6.5 0.34 1979 Imperial Valley Delt UNAMUCSD 

7 6.5 0.35 1979 Imperial Valley El Centro Array#1 USGS 

8 6.9 0.38 1995 Kobe, Japan Nishi-Akashi CUE 

9 6.9 0.51 1995 Kobe,Japan Shin-Osaka CUE 

10 7.5 0.24 1999 Kokaeli,Turkey Duzce ERD 

11 7.3 0.36 1992 Landers Yemo Fire Station CDMG 

12 7.3 0.24 1992 Landers Coolwater SCE 

13 6.9 0.42 1989 Loma Prieta Capitola CDMG 

14 6.9 0.53 1989 Loma Prieta Gilory Arrey#3 CDMG 

15 7.4 0.56 1990 Manjil Abbar BHRC 

16 6.7 0.55 1994 Northridge Beverly Hills-Mulhol USC 

17 6.7 0.44 1994 Northridge Canyon Country-WLC USC 

18 6.6 0.36 1971 San Ferando LA-Hollywood Stor CDMG 

19 6.5 0.51 1987 Superstition Hills El Centro Imp.Co CDMG 

20 6.5 0.52 1987 Superstition Hills Poe Road (temp) USGS 

 

 

Fig. 7(a) Response acceleration spectra of far field ground motions (b) Percentiles of response 

acceleration spectra of a suit of 20 far field earthquake ground motion records 
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Fig. 7(a) Continued 

 

 

range of PGA form medium (0.21 g, Earthquake 2 in Table 1) to strong motions (0.8 g, Earthquake 

3 in Table 1) which are used to perform incremental dynamic analysis (IDA). The FEMA records 

satisfy the following criteria: a) Magnitude >6.5 b) Distance from source to site > 10 km (average 

of Joyner-Boore and Campbell distances) (Boore et al. 1993) c) Peak Ground Acceleration (PGA) 

>0.2 g  and  Peak Ground Velocity (PGV) >5 cm/sec d) Soil shear wave velocity, in upper 30 m of 

soil, greater than 180 m/s  e) Lowest useable frequency <0.25 Hz, to ensure that the low frequency 

content was not removed by the ground motion filtering process  f) Strike-slip and thrust faults 

(consistent with California) g) No consideration of spectral shape  h) No consideration of station 

housing, but PEER-NGA records were selected to be “free-field”. 

 

5.3 Damage index and limit states 
 

In seismic analytical fragility analysis, the response of the structure under earthquake is 

evaluated in terms of potential damages measured through damage function such as EDPs (FEMA 

1999, Choi et al. 2004, Yi et al. 2007). In highway bridge, the most critical component are pier 

columns which nonlinear behavior can be measured either in terms of involved section ductility or 

drift ratio both assumed to be a measure of the Damage Index (DI) that can be classified according 

four levels (see Table 2) as suggested in (FEMA 1999, Choi et al. 2004, Yi et al. 2007 ). 

Since the considered range of PGAs, induced a column drift ratio (θ) no greater than 0.05,  

three levels of damages (Slight, Moderate and Extensive) that respectively correspond to the well  

 

 
Table 2 Summary of DIs and corresponding LS for concrete columns 

DI Slight Moderate Extensive Collapse 

Physical phenomenon 

(FEMA 1999) 

Cracking and 

spalling 

Moderate cracking 

and spalling 

Degradation without 

collapse 

Failure leading to 

collapse 

Section ductility 

(Choi et al. 2004) 
μk>1 μk>2 μk>4 μk>7 

Drift ratio (Yi et al. 2007) θ>0.007 θ>0.015 θ>0.025 θ>0.05 
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know level proposed in (FEMA 2003) : 1) Immediate Occupancy 2) Life Safety and 3) Collapse 

prevention. 

 

5.4 Incremental Dynamic Analysis (IDA) 
 

As we have mentioned above, to derive analytical fragility curves, one of the approaches is the 

incremental dynamic analysis (IDA) that allows to analyze the bridge response from the elastic 

range till the collapse range. The results of IDA analyses are reported in terms of relation (curve) 

between the input (earthquake ground motion) and the output (structural response): the crucial 

aspect in plotting IDA curve is the definition of a parameter representative of the demand, so that 

as will be discussed in the next section many effort has been devote to define the most appropriate 

parameter based on the analyses of the most efficient parameters proposed in scientific literature 

(see chapter 3.2). 

 

 

6. Results and discussions 
 

Different spectral intensity measures (IM) have been compared against the proposed ASA 

intensity, evaluating the fragility curves for the considered limit states: 1) slight 2) moderate and 3) 

extensive. 

For each selected accelerogramsthe  IDA analysis are run either till 1)  the defined limit state is 

reached or 2) the incremented PGA became greater than 2.5 g (earthquake with PGA >2.5 g are 

considered to have a very low probability): typical IDA analyses results are reported in Fig. 8(a), 

(b). 

The results of the analyses are reported in  Tables 3,4,5 in terms of dispersion coefficients 

obtained for the three considered skewness (0o, 30o, 45o) and in Figs. 9, 10, 11.The considered IM 

are the 1) PGA, 2) the Sa evaluated for different structural periods and 3) the ASA index evaluated 

considering three periods ranges characterized by different lower (T1) and upper (T2) periods that 

are: a) T1=0, T2=4s b) T1=0.5Ts, T2=2Ts c) T1=0.9Ts, T2=1.4Ts 4) b has been considered as 

practically measure (see Eq. (3))  5) βD|IM (see Eq. (4)) has been considered to measure the 

efficiency and 6) ζ=βEDP|IM/b
 
to measure the proficiency 4) the value of b has been evaluated by 

means of regression analyses which results are reported in the Figs. 10, 11, 12 where the 

correlation between the different considered IM and column drift (EDP) are reported for the PGA 

and the optimal values of Sa and ASA indexes. 

The data (see Tables 1, 2, 3) confirm the results obtained by the authors in (Bayat et al. 2015)  

where the zero skeweness bridge has been studied: Sa is more performing than PGA and, 

depending on the skweness, the optimal period is  in the range Ts or 1.2 Ts. 

Further on, the carried out analyses supported the definition of the best performing period range 

for the evaluation of ASA obtaining that 1) the optimal period range is 0.9-1.4 and 2) ASA 

evaluated at 0.9-1.4 is the most performing IM for the considered bridge typologies. 

The results, in terms of proficiency, are reported in the Figs. 15, 16 where, for each skwness 

and for each considered IM, the proficiency value and error of the IM with respect of the 

optimized ASA index are given; it can be argued that: 1) the PGA error ranges between  ≈80 and 

130% 2) the Sa error ranges between  ≈10 and 33% . 

The results globally state that 1) the PGA is not adequate as IM for this bridge typology having 

an error to 130% (if compared with the optimized ASA IM) 2) the Sa can be, successfully  

1188



 

 

 

 

 

 

A novel proficient and sufficient intensity measure for probabilistic analysis... 

 

 

 

Fig. 8(a) IDA curves: 30 degree skewed highway bridge corresponding to the set of selected 

accelerogramms 

 

 

Fig. 8(b) IDA curves corresponding to 16%, 50% and 84%  PGA fractal curves: 30 degree 

skewed highway bridge 

 

 

optimized, for a specific case, but its proficiency is very sensible to the selected period: for 

example, as far as 45 skewness is concerned the error can be either ≈10% or  ≈100% considering a 

slight difference of the period at which Sa is evaluated  (Ts or 1.2Ts). The high sensibility has direct 

effect on the fragility curves (see Fig. 12): it is evident that as far as the 45° skewed bridge is 

concerned, considering different structural period (Ts or 1.2Ts) can lead to different failure 

probability such as in the case of the Extensive Limit State where Failure probability 

corresponding to Sa=3 can be either 0.2 or 0.4 if the referring periods are respectively Ts or 1.2Ts.  

Based on the previous observations it can be stated that ASA index can be considered an 

appropriate IM since, choosing an adequate period ranges, overcome the high sensibility of Sa to 

the selected period: the basic idea of ASA to average the Spectral Acceleration value in an 
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adequate structural period range avoid the high sensibility of Sa when slight change of period are 

considered.    

A sufficient IM is conditionally statistically independent of ground motion characteristics. A 

proposed intensity measure will be sufficient when it has the less dispersion and more practical in 

comparison of different intensity measure and also in different structures. If an intensity measure is 

working well in a single typical structure, it will be sufficient when it is capable to extend to other 

types of structures. Therefore, we have considered three different types of structures. 

The comparison of proficiency values is reported in Fig. 15 from were where the results of the 

three considered typologies are reported: it can be deduced that the proposed intensity measure 

(optimized ASA) has the less dispersion for three different bridge typology so that can be argued 

that it is a proficient and sufficient IM measure. 

 

 
Table 3 Non-skewed bridge: dispersion index vs IMs 

IM Ln (a) b βEDP|IM 
EDP IM

b


   Differences (%) 

PGA(g) -4.072 0.893 1.090 1.221 141.45 

Sa(0.1Ts,5%) -4.253 0.833 1.221 1.466 189.80 

Sa(0.2Ts,5%) -4.552 0.731 1.695 2.319 358.53 

Sa(0.3Ts,5%) -4.727 0.73 1.840 2.520 398.39 

Sa(0.4Ts,5%) -4.816 0.807 1.675 2.076 310.45 

Sa(0.5Ts,5%) -4.799 0.821 1.508 1.837 263.27 

Sa(0.6Ts,5%) -4.753 0.859 1.515 1.764 248.73 

Sa(0.7Ts,5%) -4.722 0.848 1.273 1.501 196.75 

Sa(0.8Ts,5%) -4.671 0.837 1.277 1.526 201.77 

Sa(0.9Ts,5%) -4.66 0.867 1.288 1.485 193.70 

Sa(Ts,5%) -4.6 0.952 1.156 1.214 140.11 

Sa(1.1Ts,5%) -4.531 0.981 0.682 0.695 37.52 

Sa(1.2 Ts,5%) -4.465 0.969 0.654 0.675 33.54 

Sa(1.3Ts,5%) -4.392 0.954 0.814 0.853 68.76 

Sa(1.4Ts,5%) -4.294 0.985 0.886 0.899 77.76 

Sa(1.5Ts,5%) -4.3 0.939 0.719 0.766 51.38 

Sa(1.6Ts,5%) -4.237 0.92 0.898 0.976 92.95 

Sa(1.7Ts,5%) -4.123 0.909 1.009 1.109 119.39 

Sa(1.8Ts,5%) -4.028 0.866 1.039 1.200 137.26 

Sa(1.9Ts,5%) -4.001 0.83 1.122 1.352 167.28 

Sa(2Ts,5%) -3.969 0.798 1.237 1.550 206.59 

Sa(2.1Ts,5%) -3.985 0.742 1.309 1.764 248.85 

Sa(2.2Ts,5%) -4.008 0.691 1.444 2.089 313.18 

Sa(2.3Ts,5%) -4 0.673 1.573 2.337 362.18 

Sa(2.4Ts,5%) -3.98 0.671 1.648 2.455 385.54 

Sa(2.5Ts,5%) -3.949 0.686 1.678 2.446 383.70 

ASA (0-4) -3.75 0.952 0.852 0.895 76.89 

ASA (0.5Ts-2Ts) -4.49 1.001 0.553 0.553 9.34 

ASA (0.9Ts-1.4Ts) -4.63 1.003 0.507 0.506 0.00 
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Table 4 30 degree skewed bridge: dispersion index vs IMs 

IM Ln (a) b βEDP|IM 
EDP IM

b


   Differences (%) 

PGA(g) -3.95 0.864 1.240 1.435 130.3371 

Sa(0.1Ts,5%) -4.18 0.826 2.107 2.550 309.3098 

Sa(0.2Ts,5%) -4.6 0.778 1.608 2.067 231.7817 

Sa(0.3Ts,5%) -4.73 0.728 1.815 2.493 300.1605 

Sa(0.4Ts,5%) -4.75 0.74 1.780 2.405 286.0353 

Sa(0.5Ts,5%) -4.65 0.846 1.341 1.585 154.4141 

Sa(0.6Ts,5%) -4.6 0.858 1.249 1.456 133.7079 

Sa(0.7Ts,5%) -4.59 0.809 1.412 1.746 180.2568 

Sa(0.8Ts,5%) -4.48 0.888 1.125 1.267 103.3708 

Sa(0.9Ts,5%) -4.39 0.928 1.122 1.210 94.22151 

Sa(Ts,5%) -4.34 0.932 0.769 0.825 32.42376 

Sa(1.1Ts,5%) -4.22 0.944 0.714 0.757 21.50883 

Sa(1.2 Ts,5%) -4.17 0.92 0.864 0.939 50.72231 

Sa(1.3Ts,5%) -4.14 0.895 1.068 1.193 91.49278 

Sa(1.4Ts,5%) -4 0.902 1.005 1.114 78.8122 

Sa(1.5Ts,5%) -3.9 0.853 1.292 1.515 143.1782 

Sa(1.6Ts,5%) -3.9 0.813 1.470 1.808 190.2087 

Sa(1.7Ts,5%) -3.89 0.772 1.616 2.094 236.1156 

Sa(1.8Ts,5%) -3.89 0.734 1.757 2.394 284.2697 

Sa(1.9Ts,5%) -3.9 0.708 1.854 2.618 320.2247 

Sa(2Ts,5%) -3.89 0.706 1.863 2.639 323.5955 

Sa(2.1Ts,5%) -3.8 0.712 1.862 2.615 319.7432 

Sa(2.2Ts,5%) -3.8 0.729 1.801 2.470 296.4687 

Sa(2.3Ts,5%) -3.7 0.732 1.795 2.452 293.5795 

Sa(2.4Ts,5%) -3.6 0.744 1.764 2.371 280.5778 

Sa(2.5Ts,5%) -3.6 0.741 1.766 2.383 282.504 

ASA (0-4) -3.63 0.884 1.145 1.296 108.0257 

ASA (0.5Ts-2Ts) -4.192 0.939 0.720 0.767 23.11396 

ASA (0.9Ts-1.4Ts) -4.244 0.955 0.595 0.623 0 

 
Table 5 45 degree skewed bridge: dispersion index vs IMs 

IM ln (a) b βEDP|IM 
EDP IM

b


   Differences (%) 

PGA(g) -4.29 0.953 0.884 0.928 79.71 

Sa(0.1Ts,5%) -4.47 0.934 1.015 1.087 110.48 

Sa(0.2Ts,5%) -4.66 0.875 1.386 1.584 206.81 

Sa(0.3Ts,5%) -5.01 0.881 1.380 1.566 203.29 

Sa(0.4Ts,5%) -5.12 0.825 1.580 1.915 270.80 

Sa(0.5Ts,5%) -5.15 0.794 1.698 2.138 314.05 

Sa(0.6Ts,5%) -5.12 0.847 1.426 1.683 225.99 

Sa(0.7Ts,5%) -5.05 0.882 1.251 1.419 174.73 

Sa(0.8Ts,5%) -5.03 0.887 1.222 1.378 166.86 

Sa(0.9Ts,5%) -4.99 0.931 0.842 0.904 75.05 

Sa(Ts,5%) -4.97 0.965 0.965 0.546 9.72 

1191



 

 

 

 

 

 

M. Bayat, F. Daneshjoo and N. Nisticò 

Table 5 Continued 

Sa(1.1Ts,5%) -4.9 0.958 0.635 0.662 28.19 

Sa(1.2 Ts,5%) -4.8 0.924 0.958 1.037 100.82 

Sa(1.3Ts,5%) -4.7 0.914 1.043 1.141 120.92 

Sa(1.4Ts,5%) -4.7 0.896 1.113 1.242 140.51 

Sa(1.5Ts,5%) -4.59 0.903 1.088 1.205 133.37 

Sa(1.6Ts,5%) -4.57 0.915 1.061 1.159 124.45 

Sa(1.7Ts,5%) -4.57 0.895 1.212 1.355 162.31 

Sa(1.8Ts,5%) -4.54 0.868 1.365 1.572 204.45 

Sa(1.9Ts,5%) -4.41 0.865 1.352 1.563 202.74 

Sa(2Ts,5%) -4.28 0.853 1.455 1.705 230.20 

Sa(2.1Ts,5%) -4.27 0.829 1.578 1.904 268.66 

Sa(2.2Ts,5%) -4.27 0.789 1.731 2.194 324.81 

Sa(2.3Ts,5%) -4.28 0.775 1.772 2.287 342.86 

Sa(2.4Ts,5%) -4.3 0.73 1.891 2.590 401.57 

Sa(2.5Ts,5%) -4.3 0.7 2.018 2.883 458.28 

ASA (0-4) -4.01 0.925 1.043 1.127 118.25 

ASA (0.5Ts-2Ts) -4.88 0.96 0.715 0.745 44.40 

ASA (0.9Ts-1.4Ts) -4.94 0.971 0.501 0.516 0 

 

 
Fig. 9(a) Fragility curves of the bridge pier respect to PGA for 0o skewed bridge 

 

Fig. 9(b) Fragility curves of the bridge pier respect to Sa (1.2Ts, 5%) for 0o skewed bridge 
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Fig. 9(c) Fragility curves of the bridge pier respect to ASA optimized for 0o skewed bridge 

 

 
Fig. 10(a) Fragility curves of the bridge pier respect to PGA for 30o skewed bridge 

 

Fig. 10(b) Fragility curves of the bridge pier respect to Sa(1.1Ts,5%) for 30o skewed bridge 
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Fig. 10(c) Fragility curves of the bridge pier respect to ASA optimized for 30o skewed bridge 

 

 
Fig. 11(a) Fragility curves of the bridge pier respect to PGA for 45o skewed bridge 

 

Fig. 11(b) Fragility curves of the bridge pier respect to Sa(Ts,5%) for 45o skewed bridge 
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Fig. 11(c) Fragility curves of the bridge pier respect to ASA optimized for 45o skewed bridge 

 

 

Fig. 12 Comparison Sa(1.2Ts, 5%) and Sa(Ts, 5%) fragility curves 

 

 

Fig. 13(a) Non-skewed bridge: regression analyses. Maximum column drift ratio (EDP) vs PGA (IM) 
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Fig. 13(b) Non-skewed bridge: regression analyses. Maximum column drift ratio (EDP) vs 

optimized ASA (IM) 

 

 

Fig. 13(c) Non-skewed bridge: regression analyses. Maximum column drift ratio (EDP) vs 

optimized ASA (IM) 

 

 

Fig. 14(a) 30 degree-skewed bridge: regression analyses. Maximum column drift ratio (EDP) vs PGA (IM) 
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Fig. 14(b) 30 degree-skewed bridge: regression analyses. Maximum column drift ratio (EDP) 

vs optimized Sa (IM) 

 

 

Fig. 14(c) 30 degree-skewed bridge: regression analyses. Maximum column drift ratio (EDP) 

vs optimized ASA (IM) 

 

 

Fig. 15(a) 45 degree-skewed bridge: regression analyses. Maximum column drift ratio (EDP) vs PGA (IM) 
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Fig. 15(b) 45 degree-skewed bridge: regression analyses. Maximum column drift ratio (EDP) 

vs optimized Sa (IM) 

 

 

Fig. 15(c) 45 degree-skewed bridge: regression analyses. Maximum column drift ratio (EDP) 

vs optimized ASA (IM) 

 

 

Fig. 16(a) Non-skewed bridge: IM proficiency values 
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Fig. 16(b) 30 degree skewed bridge: IM proficiency values 

 

 

Fig. 16(c) 45 degree skewed bridge: IM proficiency values 

 

 

Fig. 17(a) Non-skewed bridge: IM  error percentage 
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Fig. 17(b) 30 degree skewed bridge: IM error percentage 

 

 

Fig. 17(c) 45 degree skewed bridge: IM error percentage 

 

 

6. Conclusions 
 

In this paper, probabilistic seismic behavior of skewed highway bridges using fragility function 

methodology has been studied. Incremental dynamic analysis (IDA) was applied successfully to 

the bridge models in order to study the behavior of the structure from linear range to extreme 

nonlinear behavior. A new proficient and sufficient intensity measure named optimized Averaged 

Spectral Acceleration (ASA) was introduced to decrease (up to 10%) the dispersion in the results. 

ASA were optimized to achieve to the highest efficiency in the results. We have observed that the 

range of structural period between T1=0.9Ts, T2=1.4Ts is the critical range in acceleration spectrum. 

By considering the shape effect of this range we have achieved to the highest accuracy in 

presenting a proficient intensity measure. A sensitive analysis was done on the different spectral 
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intensity measures. The effect of the referring period on the intensity measures and the fragility 

curves have been studied, inferring the necessity to take in account the spectral shape by means the 

ASA index that resulted suitable intensity measure if compared with PGA and other spectral 

intensity measures, as far as skewed highway bridges are concerned. 
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