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Abstract.  High powered computers and engineering computer systems allow designers to routinely 

simulate complex physical phenomena. The presented work deals with the analysis of two finite element 

method optimization techniques (First Order Method-FOM and Subproblem Approximation Method-SAM) 

implemented in the individual Design Optimization module in the Ansys software to analyze the behavior of 

real problems. A design optimization is a difficult mathematical process, intended to find the minimum or 

maximum of an objective function, which is mostly based on iterative procedure. Using optimization 

techniques in engineering designs requires detailed knowledge of the analyzed problem but also an ability to 

select the appropriate optimization method. The methods embedded in advanced computer software are 

based on different optimization techniques and their efficiency is significantly influenced by the specific 

character of a problem. The efficiency, robustness and accuracy of the methods are studied through strictly 

convex two-dimensional optimization problem, which is represented by volume minimization of two bars‟ 

plane frame structure subjected to maximal vertical displacement limit. Advantages and disadvantages of the 

methods are described and some practical tips provided which could be beneficial in any efficient 

engineering design by using an optimization method. 
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1. Introduction 
 

Most of the structural engineering tasks are represented by complex physical and mathematical 

problems that are difficult to be solved manually (Su et al. 2014, Balek et al. 2012, Barnat et al. 

2012, Bajer and Barnat 2012, Kala et al. 2011). Hence, if the aim of a civil or mechanical 

engineering project is to find an efficient design using any of the available optimization techniques 

manually, it is necessary to create as simple a mathematical model as possible. This leads a 
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designer to use general coefficients to guarantee the safety of a design and the design ends up 

moving away from reality.  

For those reasons, specialists for operating research and systems of information technologies 

deal with the implementation of optimization techniques in mechanical and civil engineering 

software (Cui and Cui 2015). There, the designers have the opportunity to apply complex 

mathematical algorithms for the creation of an efficient design models (Deshbhratar and Suple 

2012, Fedorik 2013).  

In case of solving complex structural or mechanical problems defined by multi-variable design 

space number of performed iterations might markedly influence computing time (Ródenas et al. 

2011). It is recommended to perform for instance 3 times 20 random iterations initiated in different 

point with varying design space limits rather than 100 random iterations based on the same 

conditions. This improves the accuracy, robustness and time cost of the solution. 

One way of using optimization methods in structural designs is to implement them in FEM-

based (Finite Element Method) software (Morin et al. 2012). FEM is currently one of the most 

widely used methods in mechanical and civil engineering design for simulations of real systems 

(Kala and Kala 2011, Holomek and Bajer 2012, Kala et al. 2012, Karasek et al. 2012). 

The algorithms of the presented optimization methods (FOM and SAM) are based on 

traditional operating research techniques (Rao 1996, Jividinejad 2012, Khoei 2015) with certain 

modifications for their ability to solve multipurpose problems (Shayanfar et al. 2013, Şahin 2014). 

The efficiency, robustness, and design space exploration of optimization methods can be improved 

by optimization tools. 

One of the greatest challenges in the implementation of optimization techniques into 

engineering systems is their compatibility and ability to solve a wide range of systematic problems 

(Awad 2013, Bathe 2007, Himeur et al. 2014, Mallika and Rao, 2010). We present here a general 

framework for solving structural engineering-related optimization problems by applying 

mathematical methods established to find the minimal or maximal values of a function 

representing the structural design. The guideline helps to understand the operation of most 

commonly used optimization tools and to reach the optimal model of a system with commercial 

design tools without high requirements for designer skills in mathematics. 

 

 

2. General procedure of design optimization 
 

The Design Optimization module is an individual module intended for solving technical 

optimization problems within the Ansys program that applies the finite element method (Kala 

2012, Kala and Kala 2012). A finite element model which is subjected to an optimization 

procedure uses the main components of the Ansys program for model creation (model creation 

pre-processor), solution (solution processor) and evaluation of obtained outcomes (database results 

post-processor). 

Data flow during an optimization process performed by the Ansys program can be expressed by 

the following scheme (Fig. 1). 

From the point of view of a designer, the analysis file is the most important element of the 

modelling procedure. It contains the parametrical expression of a model, parameterization of 

evaluated data from an initial design and an objective function. The parametrical model includes 

geometrical features of the model, which are used in the following example as design variables 

(DVs). The evaluated data parameterization presents state variables (SVs) and objective function  
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Use of design optimization techniques in solving typical structural engineering... 

 

Fig. 1 Data flow during optimization procedure in ANSYS program 

 

 

Fig. 2 Three bars‟ plane frame structure 

 

 

(Obj). The analysis file is a key component of an optimization procedure because its content is 

used to create each consecutive iteration cycle in the optimization process until sufficient 

convergence is achieved. It includes one complete analysis from the beginning to the evaluation of 

the outcomes and their follow-up parameterization. 

 
 

3. Problem description 
 

Structural optimization problems are solved mathematically and the procedure is easily 

demonstrated with a simplified example. The aim of the presented optimization problem is to 

minimize the volume of a two-bar plane frame structure (Fig. 2) subjected to vertical displacement 

limit w of the structure in the point [A]. This can be acquired by varying the bars‟ cross-sectional 

heights defined by the parameters h1 and h2. The structure is fixed at the bottom of the column  
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Fig. 3 Graphical expression of the optimal point of the design parameters h1 and h2 

 

 

which is also loaded by the single cross force F. The horizontal bar is subjugated by the distributed 

load q. At first, the problem is analyzed by a graphical and manual solution to achieve an 

optimum, which is then used for the verification of the results acquired by First Order Method 

(FOM) and Subproblem Approximation Method (SAM). 

The optimization problem is defined as 

       {
  

  
}                ( )          ,                       (1) 

subject to 

            
            

                                          (2) 

(     
           

  
  

           

  
 )                                   (3) 

where w[A] is displacement in the point [A], and h1 and h2 are cross-sectional dimensions of the bars 

which represent the DVs of the problem. 

 

3.1 Graphical expression and extreme localization 
 

According to the definition (Eqs. (1) to (3)) a graphical expression of the presented problem 

can be obtained (Fig. 3). The axes of the graphical expression are represented by independent 

variables (DVs) and the feasible space is originated by an intersection of lower and upper limits of 

DVs h1, h2 and the upper limit of state variable (SV) w[A]. The optimum of the optimization 

problem is located at the point where the objective function forms a tangent with the state variable 

function. The actual optimization problem represents a strictly convex optimization problem which 

leads to the existence of one, and only one, extreme within the frame of the defined design space. 

The estimate obtained from the graphical expression of DV intervals is defined as follows: 
   〈         〉 

   〈         〉
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To find the optimum of the problem, a bisection method was used. Then the optimal point of the 

problem is defined by DVs‟ values: 
                

               
  

Then the state variable and objective function (Obj) values are:  

           , 

               . 

 

 

4. Solution by ANSYS: design optimization methods and tools 
 

Before an optimization procedure by SAM and/or FOM is performed, a finite elements model 

and a parametrical model of the actual problem are created using the Ansys program. The 

FEM/FEA model is assembled from two-dimensional elements labelled as „BEAM3‟. Then the 

optimization variables (parameters) are defined as follows: the bars‟ cross-sections‟ heights h1 and 

h2 represent independent design variables; dependent variables are expressed by vertical 

displacement at the point [A] as a state variable, and the weight of the structure as the objective 

function (Obj). 

 

4.1 Optimization tools 
 
Other optimization tools that are available in the Design Optimization module attend to the 

exploration of the design space and the extreme values obtained by the optimization method 

(Fedorik 2013). They are represented by Random, Gradient, Sweep, Factorial and Single Loop 

Analysis Tool. The tools as presented in Ansys Release guide but their operation and 

characteristics are briefly introduced in the following subsections. 

 

4.1.1 Random tool 
Random Tool function has been developed to recognize the behavior and proportion of the 

objective function by defining random DV value for each iteration cycle. In practice, the DVs are 

generated randomly, not based on user‟s initial assumption, as shown in Eq. (4). 

vectorgeneratedrandomly   *  xx                                (4) 

The graphical expression of a model consisting of 50 random such design sets performed 

within the frame of the presented case is shown in Fig. 4. Advantages of the tool can be realized 

e.g. in the initial investigations of vast design spaces. This allows the avoidance of unexpectedly 

located extremes and smooth formatting of the approximated design space. 

 

4.1.2 Sweep tool 
By applying the Sweep Tool, the designer monitors features of the objective function in the 

design space by a regular distribution of the design variable intervals. It means that an interval of 

each DV is divided into sections of equal length (as it is graphically shown in Fig. 5). The number 

of iterations is determined by designer, based on an assumption, i.e. how many sections have to be 

performed to obtain adequate information of the objective function features in the design space as 

ss nNn                                                   (5) 
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Fig. 4 Random tool showing 50 randomly selected DVs attempting to find the optimum 

 

 

Fig. 5 Sweep tool functionality, dividing the constrained area with equally distributed DVs 

 

 

where n is a number of design variables DVs and Ns is a number of sections for each design 

variable, where the computation will be performed. The Sweep Tool is suitable in cases where the 

design space is defined or otherwise known and investigation is required along defined DVs 

initiated in certain point in the design space.  

 

4.1.3 Factorial tool 
Factorial Tool is a statistical tool developed for acquiring information about the progress of the 

optimization procedure near the marginal points of a design space (Fig. 6). If the full factorial 

calculation is applied, with n design variables, total of nfa of design sets are obtained, where 

n

fan 2                                                 (6) 

So, with the full factorial evaluation, all combinations of design variable limits are computed in n-

dimensional design space. A decent investigation of the extreme points allows designer control  

1126



 

 

 

 

 

 

Use of design optimization techniques in solving typical structural engineering... 

 

Fig. 6 Factorial tool looks optimum near the design space extremes 

 

 

Fig. 7 Gradient tool investigates the proximity near a determined point 

 

 

over variables‟ limits and defining the suitable size of the design space. 

 

4.1.4 Gradient tool 
Gradient Tool verifies the sensitivity of dependent variables (SVs and Obj). It computes 

gradients of the design variables based on the defined point in the design space (Fig. 7). The 

general expression of the objective function gradient is given as 
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Considering each design variable DV, the gradient of the objective function is expressed as follows 

i
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where e is a vector with 1 in ith article and 0 in all the others. ∆xi is expressed by 

 iii xx
s

x 



100

                                         (9) 

where ∆s is the difference of the step lengths. This tool is suitable for verification of the optimum 

point and its direct ambient proximity attained with the optimization procedure. 

 

4.1.5 Single loop analysis tool 
Single Loop Analysis Tool is a simple and direct tool which leads the designer to understand 

the design space of an optimization problem. It is a suitable tool for the evaluation of the state 

variable and the objective function values. Design variables are always determined by a designer 

explicitly. One iteration cycle with Single Loop Analysis Tool corresponds to one complete FEM 

analysis.  

 

4.2 Subproblem approximation method 
 

The Subproblem Approximation Method (SAM) is an iterative method based on an 

approximated function. At first, the approximation of the dependent variables (Obj - objective 

function and SVs - state variables) by least squares fitting is performed, and then the approximated 

objective function is minimized or maximized. Thus, the aim of the process is minimizing or 

maximizing an approximated function instead of the true function. More efficient methods for 

finding the extreme of a function are unconstrained optimization methods. For this reason, the 

defined constrained optimization problem is converted to an unconstrained optimization problem 

(Güler, 2010). The general approximated objective function is defined in a fully quadratic form 

with cross terms as (Ansys Release 11.1) 



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ˆ
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ii
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i

ii dxcbaf xxx                           (10) 

where ˆ indicates that the function is approximated, n represents number of iterations, x is the 

vector of design variables, a, b, c and d are coefficients determined by the weighted least square 

technique, i represents the number of variables and j is the quantity of performed loops. The 

transformation is performed by the penalty function method which is applied to the objective 

function. The penalty function replaces the previously defined constraints in limits of DVs and 

SVs. Then the minimizing problem with use of the SAM is expressed by 


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)ˆ()ˆ()ˆ()(ˆ),( xx          (11) 

where X is the penalty function, used to express the constraints of design variables, G, H and W are 

penalty functions which substitute constraints of state variables, F(x,q
(j)

) is the unconstraint 

objective function, f0 is the reference objective function and q
(j)

 is the penalty parameter. The 

following table (Table 1) describes the essential features of the SAM method applied in the 

presented analysis. 

Within the frame of the presented optimization problem, the SAM is analyzed according to a 

different approximation of dependent variables SV and Obj and a different pointing of weighting  
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Table 1 SAM properties, methods of variables‟ approximations and weighting factors‟ definitions 

Setting Superscript Conditions 

Obj 

(Objective function fitting) 

0 Quadratic + cross-term curve 

1 Linear curve 

2 Quadratic curve 

SVs 

(State variables fitting) 

0 Quadratic curve 

1 Linear curve 

3 Quadratic + cross-term curve 

W 

(Weighting factors) 

0 Design space, Obj and feasibility of solution 

1 All are unity 

2 Distance in design space 

3 Obj (Objective function) 

4 Feasibility/infeasibility of solution 

 
Table 2 SAM results initiated by 5 random loops 

Category Group Settings 
Obj.10

-1
 

[m
3
] 

SV.10
-2

 

[m] 

DV1.10
-1

 

[m] 

DV2.10
-1

 

[m] 

Iterations 

[-] 

1 

1 (Obj
0,1,2

,SVs
0
,W

0
) 9,2274 1,9988 3,0672 5,1335 147 (1219) 

2 (Obj
0,1,2

,SVs
0
,W

1
) 9,2273 1,9990 3,0620 5,1377 398 (1374) 

3 (Obj
0,1,2

,SVs
0
,W

2
) 9,2278 1,9986 3,0719 5,1299 381 (1257) 

4 (Obj
0,1,2

,SVs
0
,W

3
) 9,6820 1,9892 2,5796 5,9187 27 (1176) 

5 (Obj
0,1,2

,SVs
0
,W

4
) 9,2291 1,9978 3,0670 5,1351 150 (1177) 

2 

6 (Obj
0,1,2

,SVs
1
,W

0,4
) 10,0170 1,8130 2,6488 6,1404 10 (1168) 

7 (Obj
0,1,2

,SVs
1
,W

1
) 9,7336 1,7053 3,1723 5,4678 8 (1166) 

8 (Obj
0,1,2

,SVs
1
,W

2
) 9,3746 1,9658 2,8143 5,4669 14 (1228) 

9 (Obj
0,1,2

,SVs
1
,W

3
) 10,2580 1,8406 2,5490 6,4241 18 (1183) 

3 

10 (Obj
0,1,2

,SVs
3
,W

0
) 9,2278 1,9986 3,0702 5,1313 135 (1217) 

11 (Obj
0,1,2

,SVs
3
,W

1
) 9,2290 1,9979 3,0595 5,1413 337 (1219) 

12 (Obj
0,1,2

,SVs
3
,W

2
) 9,2300 1,9986 3,0224 5,1730 158 (1189) 

13 (Obj
0,1,2

,SVs
3
,W

3
) 9,2607 1,9783 3,0424 5,1820 134 (1181) 

14 (Obj
0,1,2

,SVs
3
,W

4
) 9,2281 1,9984 3,0774 5,1256 476 (1458) 

 

 

factor (Table 1). The objective function in this problem is represented by the linear Eq. (1) which 

leads to its changeless form due to the different approximation proceeding. Furthermore, the SAM 

is depended on a different number of random iterations which are evaluated before the first 

approximation is formed. The design space was explored by 5, 50, and 100 loops where the 

Random Tool was applied.  

The following table (Table 2) represents the summarized variables‟ values in the best design 

sets obtained in the analysis where the SAM proceeding was initiated by 5 random loops. The 

presented results are divided into three categories according to the approximation type of 

dependent variable SV (Table 1). 
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Fig. 8 Obj proceeding by SAM showing the optimization procedure converging towards the optimum 

 

 

Fig. 9 SV proceeding by SAM showing the optimization procedure converging towards the optimum 

 

 

In the case where the SAM process is initiated by 5 random loops, the SV approximation 

performed by a linear fitting prevents the accuracy of the solution. Also, quadratic SV 

approximation with the combination of weight factors directed into the objective function values 

converges at a distant location from the actual optimum. The remaining cases where the quadratic 

and quadratic plus cross-term fitting approximate the SV achieve ambient of the optimum. The 

progress of dependent variables (Obj and SV) due to the first 30 SAM iterations initiated by the 5 

random loops is pictured in the following figures (Figs. 8 and 9). 

The features of the best design sets and numbers of iterations by SAM performed initiated by 

50 and 100 loops are summarized in the following tables (Tables 3 and 4). In multi-variable design 

spaces, the number of performed iterations might markedly influence computing time, improve 

accuracy, robustness and time cost of the solution. Unwarranted iterations are also wasting the 

resources but the current low cost of computing time thorough model verification schemes are 

generally warranted. 

Exploration of the design space by 50 random loops causes more reliable convergence to the 

optimum at the expense of accuracy. Except in linear approximation of the SV, the ambient of the 

actual optimum was found. 
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Table 3 SAM results initiated by 50 random loops 

Category Group Settings 
Obj.10

-1
 

[m
3
] 

SV.10
-2

 

[m] 

DV1.10
-1

 

[m] 

DV2.10
-1

 

[m] 

Iterations 

[-] 

1 

1 (Obj
0,1,2

,SVs
0
,W

0
) 9,2286 1,9981 3,0771 5,1262 177 (1211) 

2 (Obj
0,1,2

,SVs
0
,W

1
) 9,3479 1,9959 2,7764 5,4763 176 (1256) 

3 (Obj
0,1,2

,SVs
0
,W

2
) 9,2556 1,9900 2,9584 5,2477 169 (1366) 

4 (Obj
0,1,2

,SVs
0
,W

3
) 9,2340 1,9946 3,0631 5,1424 158 (1242) 

5 (Obj
0,1,2

,SVs
0
,W

4
) 9,3712 1,9953 2,7542 5,5142 57 (1255) 

2 

6 (Obj
0,1,2

,SVs
1
,W

0
) 9,5349 1,8691 2,8606 5,5619 152 (1229) 

7 (Obj
0,1,2

,SVs
1
,W

1
) 9,5854 1,7841 3,2265 5,2991 19 (1311) 

8 (Obj
0,1,2

,SVs
1
,W

2
) 9,4194 1,9669 2,7642 5,5459 53 (1211) 

9 (Obj
0,1,2

,SVs
1
,W

3
) 9,5854 1,7841 3,2265 5,2991 19 (1216) 

10 (Obj
0,1,2

,SVs
1
,W

4
) 9,4098 1,9723 2,7626 5,5393 137 (1216) 

3 

11 (Obj
0,1,2

,SVs
3
,W

0
) 9,2326 1,9988 3,1436 5,0742 143 (1221) 

12 (Obj
0,1,2

,SVs
3
,W

1
) 9,3242 1,9977 2,7993 5,4374 252 (1221) 

13 (Obj
0,1,2

,SVs
3
,W

2
) 9,2370 1,9974 2,9866 5,2086 158 (1234) 

14 (Obj
0,1,2

,SVs
3
,W

3
) 9,2362 1,9988 2,9787 5,2146 346 (1259) 

15 (Obj
0,1,2

,SVs
3
,W

4
) 9,3593 1,9935 2,7696 5,4914 194 (1243) 

 
Table 4 SAM results initiated by 100 random loops 

Category Group Settings 
Obj.10

-1
 

[m
3
] 

SV.10
-2

 

[m] 

DV1.10
-1

 

[m] 

DV2.10
-1

 

[m] 

Iterations 

[-] 

1 

1 (Obj
0,1,2

,SVs
0
,W

0
) 9,2291 1,9978 3,0670 5,1351 243 (1263) 

2 (Obj
0,1,2

,SVs
0
,W

1
) 9,2346 1,9944 3,0527 5,1516 249 (1333) 

3 (Obj
0,1,2

,SVs
0
,W

2
) 9,2791 1,9685 3,0188 5,2169 194 (1319) 

4 (Obj
0,1,2

,SVs
0
,W

3
) 9,2313 1,9964 3,0607 5,1421 197 (1271) 

5 (Obj
0,1,2

,SVs
0
,W

4
) 9,4314 1,9984 2,6992 5,6102 839 (1278) 

2 

6 (Obj
0,1,2

,SVs
1
,W

0
) 9,5152 1,8259 3,2377 5,2312 84 (1259) 

7 (Obj
0,1,2

,SVs
1
,W

1
) 9,5152 1,8259 3,2377 5,2312 84 (1302) 

8 (Obj
0,1,2

,SVs
1
,W

2
) 9,4516 1,9916 2,6955 5,6302 243 (1326) 

9 (Obj
0,1,2

,SVs
1
,W

3
) 9,5152 1,8259 3,2377 5,2312 84 (1295) 

10 (Obj
0,1,2

,SVs
1
,W

4
) 9,5152 1,8259 3,2377 5,2312 84 (1259) 

3 

11 (Obj
0,1,2

,SVs
3
,W

0
) 9,2292 1,9977 3,0678 5,1345 379 (1334) 

12 (Obj
0,1,2

,SVs
3
,W

1
) 9,3157 1,9980 2,8093 5,4220 247 (1276) 

13 (Obj
0,1,2

,SVs
3
,W

2
) 9,2391 1,9951 2,9960 5,2026 255 (1429) 

14 (Obj
0,1,2

,SVs
3
,W

3
) 9,2333 1,9987 2,9954 5,1983 246 (1309) 

15 (Obj
0,1,2

,SVs
3
,W

4
) 9,3926 1,9854 2,7532 5,5329 987 (1298) 

 

 

If the solution is initiated by 100 random loops, the SAM method requires a great number of 

iterations to achieve convergence especially if the weighting factor is directed to  
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Table 5 Initial design sets  

Obj [m
3
] SV [m] DV1 [m] DV2 [m] Status 

0,2200 1,9922 0,1 0,1 infeasible 

1,1000 1,5966.10
-2

 0,5 0,5 feasible 

1,7600 3,9094.10
-3

 0,8 0,8 feasible 

 

 

Fig. 10 Obj proceeding by FOM showing the optimization procedure converging towards the optimum 

 

 

feasibility/infeasibility of the obtained design sets. In the case that the SV variable is approximated 

by a linear fitting the SAM is not able to improve features of the best achieved random design set 

(no. 84). The actual optimum ambient is achieved in solutions where the SV approximation is 

performed by quadratic and quadratic plus cross-term fitting.  

 

4.3 First order method 
 

Unlike SAM, the First Order Method (FOM) uses a derivation of functions to solve an 

optimization problem. The objective function and the penalty functions of the state variable are 

derived, which leads to the problem of searching a certain direction in the design space. For each 

iteration, a browsing of the direction by the steepest descent method and the conjugate gradient 

method is performed. This means that several sub iterations are performed in each iteration 

computing both the direction and descent of the functions. The function which solves optimization 

problem by the first order method has the general form 

 
 









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m

i
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m

i
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m

i
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f
qxF

1

3

1

2

1

1

10

)()()()(),( x              (12) 

where F is the unconstrained objective function. The term Xx is the penalty function, which 

compensates constraints of the design variables DVs and Wg, Wh and Ww are limit values of the 

state variables (SVs). f0 then represents a reference objective function, which was achieved in the 

current group of the design sets. An appropriate penalty parameter q monitors how well the design 

constraints are being satisfied. 

To analyze the efficiency of the FOM, different cases with varying step lengths‟ range of 
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Fig. 11 SV proceeding by FOM showing the optimization procedure converging towards the optimum 

 

 
gradients and different initial point locations are studied. The following table (Table 5) shows 

optimization variables' values at analyzed initial points, where the initial points DV1=DV2=0,5 and 

DV1=DV2=0,8 are located in the feasible design space and DV1=DV2=0,1 is in the infeasible design 

space because of exceeding the upper SV limit (3). The progress of the dependent variables (Obj 

and SV) in the first 10 loops by the FOM performed initiated by h1=0,5 and h2=0,5 are shown in 

the figures (Figs. 10 and 11) below. 

The termination of the procedure consists of achieving the convergence criteria which, in this 

case, are defined as the differences of the objective function values in the two consecutive design 

sets. The variables‟ values in the best sets obtained and the total number of iterations by the FOM 

method performed are summarized in Table 6. 

In the case where the FOM method is initiated in the infeasible design space, the solution 

requires markedly more iterations to achieve the convergence criteria. On the other hand, the high 

number of performed loops allows finding the minimum of the objective function in the feasible 

design space. The FOM analyses initiated by the feasible design sets require a smaller number of 

loops to achieve the convergence criteria at the expense of accuracy.  

To guarantee achieving the optimum of the problem, design space exploration is recommended. 

In the case where the presented problem is initiated by 5 random loops, the optimum is obtained in 

all presented cases.  

 

 

5. Conclusions 
 

The function and procedure to apply First Order Method and Subproblem Approximation 

Method, both given as Ansys tools, were presented and analyzed using a simple two-bar plane 

frame structure weight minimization problem. The optimization problem was expressed by two 

dependent (Obj and SV) and two independent variables (DVs). To control and verify efficiency 

and accuracy of analyzed methods‟ resultant design sets was manually evaluated and the graphical 

solutions provided for each method. 

The FOM was analyzed depending on different initial point location and varying step lengths of 

gradient. The initial points were located at the lower and upper constraints of the design variables 
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Table 6 Initial design sets  

Initial point 
Step length 

[%] 

Obj.10
-1

 

[m
3
] 

SV.10
-2

 

[m] 

DV1.10
-1

 

[m] 

DV2.10
-1

 

[m] 

Iterations 

[-] 

DV1=0,1 

DV2=0,1 

100 9,2369 1,9927 3,0688 5,1401 39 (100) 

90 9,2378 1,9921 3,0691 5,1406 43 (103) 

80 9,2316 1,9962 3,0631 5,1657 52 (107) 

70 9,2357 1,9942 3,1058 5,1083 16 (102) 

60 9,2301 1,9971 3,0665 5,1363 43 (104) 

50 9,2300 1,9972 3,0751 5,1291 46 (103) 

40 9,2307 1,9967 3,0646 5,1384 93 (129) 

30 9,2313 1,9967 3,0456 5,1547 29 (102) 

20 9,2315 1,9967 3,1000 5,1096 47 (101) 

10 9,2278 1,9986 3,0632 5,1372 99 (129) 

DV1=0,5 

DV2=0,5 

100 10,3350 1,9435 4,7214 4,6784 4 (9) 

90 10,3160 1,9422 4,6972 4,6821 4 (9) 

80 9,2844 1,9750 3,2340 5,0420 8 (12) 

70 9,5122 1,9376 3,6409 4,8928 6 (10) 

60 9,2593 1,9783 3,0707 5,1572 10 (13) 

50 9,2613 1,9770 3,0829 5,1486 9 (12) 

40 9,2330 1,9954 3,0887 5,1203 7 (12) 

30 9,3188 1,9503 3,2277 5,0759 7 (12) 

20 10,3250 1,9403 4,7054 4,6829 4 (9) 

10 9,6089 1,9771 3,5651 4,7865 7 (12) 

DV1=0,8 

DV2=0,8 

100 9,4574 1,9827 3,6431 4,8452 8 (13) 

90 10,6850 1,9491 5,1173 4,6394 4 (9) 

80 9,2676 1,9871 2,9349 5,2773 7 (12) 

70 9,3208 1,9496 2,9724 5,2903 10 (16) 

60 10,7110 1,9326 5,1280 4,6528 4 (10) 

50 9,4097 1,9442 3,4624 4,9561 7 (12) 

40 10,6520 1,9657 5,1005 4,6265 6 (11) 

30 9,4752 1,9846 3,6763 4,8325 7 (14) 

20 9,3090 1,9881 3,3653 4,9531 12 (15) 

10 10,2030 1,9932 4,6296 4,6446 10 (15) 

 

 

and in the middle of their defined ranges. In the case where the initial point is defined in the 

infeasible design space (lower constraints of the DVs), the FOM method requires markedly more 

iterations to achieve convergence criteria, but with no effect on efficiency and accuracy of the 

solution. If the initial point is localized in the feasible design space, the convergence criteria were 

achieved already in max 10 iterations at the expense of accuracy. To improve the efficiency and 

accuracy of the FOM procedure, the defined design space can be explore further and adapt 

convergence criteria considering the features of the optimization problem at hand. 
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According to the optimization problem definition within the frame of the SAM, the dependent 

variable (SV) approximation techniques and the effect of weighting factor were observed. The 

SAM efficiency was analyzed depending on the number of random loops performed beforehand. 

The cases where the SV approximation was performed by quadratic and quadratic plus cross-term 

fitting achieved the optimum. The number of loops evaluated beforehand influences the dependent 

variables' function forms depending on their location within the design space. To improve stability 

and accuracy of the SAM procedure, it is recommended to explore the design space of the problem 

and regulate its constraints according to obtained features.  

The presented optimization methods and tools are implemented in the Ansys Design 

Optimization module and allow the designer an efficient design of a wide range of problems. The 

robustness and accuracy of the solutions are not guaranteed, which is why these features can be 

improved by the application of one of the optimization tools or their combination for more detailed 

exploration of the design space before the optimization method is used and/or for controlling of the 

best design obtained by the First Order or Subproblem Approximation method.  

It is recommended to use the SAM techniques in cases where the features of the design space 

are unknown. Suitable initial conditions before the optimization procedure is applied are 

determined with the Random Tools loops which allow a generalized investigation of the design 

space. In the case the estimated location of searched extreme is known, the FOM is more 

advisable. 

Within the frame of the optimization problem defined by more variables and complex 

geometry, it is more suitable to use the SAM from the point of view of time consumption, although 

it demands more iterations to achieve required results. In the case the initial investigation is 

performed by Random Tool the FOM procedure starts its solution from the most convenient point 

obtained towards lower (minimization) or higher (maximization) location in the ambient of the 

point.  

Contrary to the FOM, SAM does not focus on the random extreme point only, but it searches 

the optimum of the approximated objective function all over the design space. Hence, the selection 

and proper usage of design tools can markedly reduce the time, cost, and accuracy of a structural 

model design. In the case of using an optimization method in efficient structural design, it is 

recommended to pay closer attention to the method selection. Some tools are proven to perform 

sub-optimally on computing certain engineering problems – this can easily be verified by changing 

the optimization methods and perceiving the software reach alternate solutions, both labelled 

“optimum”. Both analyzed methods described here also have certain advantages and disadvantages 

in dependence on the characteristics of a problem. Matching the right tool with solving the 

structural optimization task surely makes a difference.  
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