
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 55, No. 6 (2015) 1261-1278 

DOI: http://dx.doi.org/10.12989/sem.2015.55.6.1261                                         1261 

Copyright ©  2015 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=sem&subpage=8        ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Damping of a taut cable with two attached high damping 
rubber dampers 

 

Viet Hung Cu
1,2, Bing Han1a and Fang Wang3b 

 
1
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China 

2
Bridge and Road Faculty, National University of Civil Engineering, Hanoi, Vietnam 

3
Engineering Management Center, China Railway Corporation, Beijing 100844, China 

 
(Received December 7, 2014, Revised July 1, 2015, Accepted September 15, 2015) 

 
Abstract.  Due to their low intrinsic damping, stay cables in cable-stayed bridges have often exhibited 

unanticipated and excessive vibrations which result in increasing maintenance frequency and disruption to 

normal operations of the entire bridges. Mitigation of undesired cable vibration can be achieved by attaching 

an external damping device near the anchorage. High Damping Rubber (HDR) dampers have many 

advantages such as compact size, better aesthetics, easy maintenance, temperature stability, and cost 

benefits; therefore, they have been widely used to increase cable damping. Although a single damper has 

been shown to reduce cable vibrations, it is not the most effective method due to geometric constraints. This 

paper proposes the use of two HDR dampers to improve effectiveness and robustness in suppressing cable 

vibration. Oscillation parameters of the cable-dampers system were investigated in detail by modeling the 

stay cable as a taut string and each HDR damper as complex-valued impedance and by using an analytical 

formulation of the complex eigenvalue problem. The problem of two HDR dampers arbitrarily located along 

a cable is solved and the solution is discussed. Asymptotic formulas to calculate the damping ratios of the 

cable with two HDR dampers installed near the anchorage(s) are proposed and compared with the exact 

solutions. Further, a design example is presented in order to justify the methodology. The results of this study 

show that when the two HDR dampers are installed close to each other on the same end of the cable, some 

interaction between the dampers leads to reduced damping ratio. When the dampers are on the opposite ends 

of the cable, they are effective in increasing damping ratio and can provide better vibration reduction to 

multiple modes. 
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1. Introduction 
 

In recent years, with the development of advanced materials, design theories, and construction 

technology, cable stayed bridges are developing rapidly in quantity and span length. Cables are 

becoming lighter and more flexible, and consequently have less intrinsic damping. Thus, the cables 

may suffer large amplitude vibrations induced by dynamic excitations such as those caused by 
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moving vehicles, wind, and wind and rain combination (Wenzel and Tanaka 2006, Kumarasena et 

al. 2007, Fujino et al. 2012). Wind induced cable vibrations can be categorized as vortex shedding, 

buffeting or galloping. Moreover, the combination of rain and moderate wind can cause high 

amplitude stay cable vibration at low frequencies (Hikami and Shiraishi 1988, Matsumoto et al. 

1992). Frequent and excessive cable vibrations necessitate more frequent maintenance and are 

detrimental to the safety of the entire bridge structures. Consequently, cable vibration control is a 

serious concern of engineers in the design of new bridges, as well as in the retrofit of existing 

bridges.  

The mitigation of cable vibration is commonly addressed by attaching an external damper, of 

which High Damping Rubber (HDR) dampers are the most commonly used type. HDR material has 

the capability to dissipate significant energy; therefore it has been widely used in buildings and 

bridge bearings for earthquake resistance. In considering the application of HDR dampers for 

bridge cables, it can be noted that HDR dampers have many advantages compared to other types of 

damper, such as compact size, better aesthetics, easy maintenance, temperature stability, and cost 

benefits. An HDR damper may be composed of several rubber pads attached around the cable and 

placed at the end of the guide tube. It may also be a rubber ring of annular shape placed inside the 

guide tube. A single HDR damper is commonly used for stay cables of short length; for example, 

on the Bai Chay Bridge in Vietnam which has a single stay cable plane and a main span length of 

435 m, one HDR damper per stay cable is used for cables having a length between about 50 m to 70 

m (Freyssinet 2005).  

The vibrations of the cable attached with a single HDR damper were studied using empirical 

formulas by Nakamura et al. (1997). The approximate formulas for damping ratios in the first few 

modes of a stay cable attached with an HDR damper near the end of the cable were proposed by 

Fujino and Hoang (2008). In fact, the dampers are often attached to the cable near the anchorage 

due to geometric constraints and thus the maximum modal damping ratio is low. To increase the 

damping ratio the use of two dampers at different locations was studied. In the Tatara Bridge, a 

stay cable is attached with two types of damper: an HDR damper was installed near the bridge 

tower and a pair of viscous dampers was placed near the bridge deck. To reduce wind induced 

vibration and additional stresses caused by live loads, a combination of HDR bushing and viscous 

dampers was used in the Tsurumi Tsubasa Bridge (Takano et al. 1997). The influence of rubber 

bushing on stay-cable damper effectiveness was studied by Main and Jones (2003) in which the 

rubber bushing was modeled as a linear spring (k). Subsequently, the influence of the stiffness of 

the damper support was studied by Huang and Jones (2011). Two viscous dampers on a single stay 

cable were studied in detail based on taut string theory and complex mode eigenvalue by 

Caracoglia and Jones (2007). The combined effects of two viscous dampers and of one viscous 

damper combined with one HDR damper were analyzed using asymptotic solutions for the first 

few modes by Hoang and Fujino (2008). Recently, the modal damping ratio and frequency of taut 

cable with a viscous damper and a spring were analyzed by Zhou et al. (2014).   

This paper proposes use of two HDR dampers to improve damping ratio of the cable. The 

vibrations of a stay cable with two HDR dampers attached at different locations are investigated 

using analytical formulation of the complex eigenvalue problem. This method has been used by 

many authors in order to study vibrations of a cable with dampers attached, for example, the studies 

of a taut cable with an attached single viscous damper by Krenk (2000), Main and Jones (2002a,  

2002b), Fujino and Hoang (2008) or two viscous dampers by Caracoglia and Jones (2007), Hoang 

and Fujino (2008). However, most authors used the asymptotic solution to investigate vibrations of 

a cable-damper system in the first few modes for only damper locations near the ends of the cable.  
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Fig. 1 A model of stay cable with attached two HDR dampers 

 

 

In this paper, oscillation parameters of the cable-two HDR dampers system are considered in detail 

through finding the exact values of the complex eigenvalue; thus the restriction on the damper 

location and mode in the formulation is resolved. Further, this paper also proposes asymptotic 

formulas for the calculation of damping ratios of a cable when two HDR dampers are installed 

near the ends of the cable, the accuracy of which is compared with the exact solution.  

In elastic materials, force and displacement are linearly related following Hooke’s law. 

However, in real materials such as polymers and elastomers, mechanical responses depend on 

strain rate and frequency (Jung et al. 2006). HDR’s behavior has two elements: one is 

time-independent and the other is time-dependent. The time independent element is the static 

force-deformation relationship. The time dependent nature is represented by the loss modulus. The 

complex modulus (E) is represented mathematically by the real part E1 and the imaginary part E2 as 
E = E1 + jE2 where j2 =−1. The ratio of the loss to the storage modulus is defined as the material loss 

factor which is determined as =E2/E1=tan() with tan() being the tangent of the phase angle 

between stress and strain (Bert 1973). Thus, in this paper, the HDR damper is modeled as 

complex-valued impedance with spring factor (k) and material loss factor (). Complex impedance 

k(1+j) represents a viscous-elastic linear behavior of the HDR damper. Due to the hysteretic 

properties of the HDR, the damping force can be expressed as Fd =k(1+j)ud where ud is transverse 

motion at the damper location. 

This parametric study provides insights into the dynamics of cable-two HDR dampers system 

and so can act as a tool for evaluating and selecting optimal damper parameters. 

 

 

2. Motion equation of a stay cable with two attached HDR dampers 
 

A model of a taut cable with two HDR dampers attached is shown in Fig. 1 where k1 and k2 are 

the spring factors, and 1 and 2 are the material loss factors of the HDR dampers. Assume the 

tension force in the cable is large compared to its weight so that the deflection of the cable is small. 

Influence of bending stiffness and intrinsic mechanical damping of the cable are neglected.  

The two dampers divide the cable into three segments. The partial differential equation over each 

segment of the cable is as below 
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                            (1) 

where T is tension in the cable, un(xn,t) is transverse deflection, xn is coordinate along the cable chord 

axis in the nth segment, and m is mass per unit length. This equation is valid everywhere except at the 

damper attachment points, where the continuity of displacements and equilibrium of forces must be 
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satisfied.  

Using Bernoulli method, solution of equation is as follows 

tj

nnnn
exYtxu )(),(                               (2) 

where Yn(xn) is complex mode shape on nth cable segment, 1j  and  is complex circular 

frequency of cable.  

The dimensionless frequency is defined as =+j, leading to 0

1
  , where 

  mTL 0
1  is natural circular frequency of the first mode. 

Substituting Eq. (2) into Eq. (1) yields 
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The boundary conditions of zero displacements at the cable ends 

3,1;0),0(  ntu
n                               (4) 

The continuity of displacements of cable at the damper locations 
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2322
),0(),(  tutlu                              (6) 

where q are amplitudes at the dampers. 

Enforcing Eqs. (4)-(6), the solution can be expressed in the forms below 
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The force equilibrium equation at the dampers can be written as follows 
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Differentiating the assumed solution in Eqs. (2), (7) and substituting into Eqs. (8), (9) yield 
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Define Γ=πλ, Llnn /  and 
T

L
jk qqq


 )1(  . Extracting γ2/γ1 from Eq. (10b), 

substituting into Eq. (10a), yields 
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By similarity with a single degree of freedom oscillator (Pacheco et al. 1993), i is rewritten as 
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where  is modulus of the dimensional eigenvalue,  is damping ratio and i is mode number. The 

real and imaginary parts of i can be shown as below 
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The modulus of the dimensional eigenvalue i and damping ratio i can be computed from i and 
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cot Γn and q can be written explicitly in terms of real and imaginary parts as follows 
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Substituting Eqs. (16), (17) into Eq. (11) yields 
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Fig. 2 Relationship between the first mode damping ratio 1 and the nondimensional parameter 

of the spring factor K for fixed l1/L=0.05 and variable  with =1, =1=2=0.4 

 
 
3. Studying properties of cable–two HDR dampers system 
 

The values of i  and i determine the vibration characteristics of the cable-two HDR dampers 

system; thus it is important to study the oscillation parameters of cable-two HDR dampers system by 

solving the nonlinear system of Eqs. (18) and (19). In this section, effects of HDR dampers 

parameters such as damper locations, nondimensional parameter of the spring factors and material 

loss factor on the dynamic characteristics of the cable are studied in detail by finding exact values of 

the complex eigenvalue. 
The material loss factor of rubber affects the damping ratio of HDR dampers, which is dependent 

on the hysteresis by both driving frequency and displacement. Natural rubber has a material loss 

factor range of about 0.01-0.08, and with the development of material technologies, butyl rubber 

(BR40 and BR60) has a material loss factor ranging from 0.15 up to 0.4 (Marshall and Charney 

2010). 

 

3.1 Effects of damper locations 
 

For studying a cable-two HDR dampers system, two nondimensional parameters of the spring 

factors are introduced as K1=k1l1/T and K2=k2l3/T, and two ratios are defined as =k2/k1 and =l3/l1 . 

Effects of damper locations on damping ratios are studied for two HDR dampers having the same 

spring factor (=1 leading to K2=K1) and the same material loss factor (=1=2=0.4); the first 

HDR damper is fixed at l1/L=0.05 while the second one moves so that  changes from 0 to 18. 

Relationship between the first mode damping ratio 1 and the nondimensional parameter of the 

spring factor K=K1 in this case of study is shown in Fig. 2. It is seen that when two dampers are 

located at the same end of the cable, the damping level is smaller than when two dampers are placed 

at the opposite ends. For example, when l1/L=0.05 the damping ratio corresponding to =2 is larger 

than that corresponding to =18. Similar observations can be obtained with =4 and =16; =6 and 

=14; =8 and =12. Therefore, the use of two HDR dampers at the opposite ends of cable is a 

possible solution. 
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Fig. 3 Relation between the first mode damping ratio 1 and the nondimensional parameter of the 

spring factor K for variable l1/L with =1, =0.4 and =1 

 

Table 1 The maximum values of the first damping ratios max

1
 and corresponding values of

0

11
 for different  

values of l1/L with =1, =0.4 and =1 

 l1/L 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.06 0.07 0.08 0.09 0.10 

Single 

damper 

Kopt 0.93 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.96 0.96 0.97 0.98 0.99 1.00 
max

1 (%) 0.097 0.146 0.195 0.244 0.294 0.344 0.394 0.444 0.495 0.598 0.702 0.807 0.914 1.023 

 Ll1
max

1  0.097 0.097 0.097 0.098 0.098 0.098 0.098 0.099 0.099 0.100 0.100 0.101 0.102 0.102 

0

11   1.005 1.008 1.010 1.013 1.015 1.018 1.021 1.023 1.026 1.031 1.037 1.043 1.048 1.054 

Two 

dampers 

Kopt 0.94 0.94 0.95 0.95 0.96 0.96 0.97 0.98 0.98 1.00 1.01 1.03 1.04 1.06 
max

1 (%) 0.195 0.293 0.393 0.494 0.596 0.699 0.804 0.910 1.016 1.234 1.458 1.687 1.922 2.164 

 Ll1
max

1  0.195 0.196 0.197 0.198 0.199 0.200 0.201 0.202 0.203 0.206 0.208 0.211 0.214 0.216 

0

11   1.010 1.015 1.021 1.026 1.031 1.037 1.043 1.048 1.054 1.066 1.078 1.091 1.104 1.118 

)1max

1

)2max

1

HDRHDR （（   2.010 2.015 2.021 2.026 2.031 2.037 2.042 2.048 2.054 2.065 2.077 2.090 2.103 2.116 

 
 
3.2 Two symmetric equal dampers are located at opposite ends of the cable 
 

3.2.1 Effects of spring factor and material loss factor on the first mode damping ratio 
The HDR dampers are often attached to the cable near the anchorages on opposite ends of the 

cable. For easy installation and manufacturing of the dampers, the dampers were chosen with the 

same spring factors k1=k2 (=1), the same material loss factors =1=2 and equal damper locations 

l1=l3=ld (=1), leading to K1=K2=K. Effects of the nondimensional parameter of the spring factor 

K=[0, 5] on the first mode damping ratio 1 for different damper locations ld/L=[0.01, 0.1] and 

material loss factors =0.4 are shown in Fig. 3. Firstly, the damping ratios increase when K 

increases. After 1 reaches a maximal value, the damping ratios decrease when K increases. 

Furthermore, the effect of the damper is higher when the relative location of the damper ld/L is 

larger.  

Table 1 shows maximum values of the first damping ratios max

1
 and corresponding values of  

1267



 

 

 

 

 

 

Viet Hung Cu, Bing Han and Fang Wang 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Nondimensional parameter, K

N
o
rm

. 
D

am
p
in

g
 r

at
io

 

 

l  /L=l  /L=0.03

l  /L=l  /L=0.05

 1

l  /L1

1

1













3

3

(a)



 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

Nondimensional parameter, K

N
o
rm

. 
D

am
p

in
g
 r

at
io

 

 









1

1l  /L

1

(b)

l  /L= l  /L=0.05 3


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Fig. 4 Relationship between normalized damping ratio 1/(l1/L) and the nondimensional parameter of the 

spring factor K for variable  with =1 and =1 
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Fig. 5 Relationship between the damping ratio i and the nondimensional parameter of the spring 

factor K for variable l1/L=0.03, 0.05, 0.10 with =1, =0.4 and =1 

 

 
0

11
 with different values of l1/L for two cases: the cable with a single HDR damper and with two  

symmetric equal HDR dampers. Table 1 shows that when two HDR dampers are attached at 

opposite ends of a cable, the maximum damping ratio is approximately double that of a single  

dampers. This table also shows that the range of maximum normalized damping ratio  Ll
1

max

1
  is  

not large, it is [0.097, 0.102] for a single HDR damper and [0.195, 2.16] for two HDR dampers. 

The angle δ ranges from 0 for elastic behavior to π/2 for pure viscous behavior. The loss factor is 

equal to zero corresponding to no energy dissipated. When the material loss factor  increases, the 

energy dissipation also increases. While the material loss factor of HDR is about 0.15-0.4 in 

common practice, a wider range of the material loss factor is considered here to observe the damper 

behavior. The variation of material loss factor in the range 0.2 to 1.8 was mentioned for a single 

HDR damper by (Caetano 2007); thus, effects of variable material loss factor (0.15-1.8) on 

normalized damping ratio 1/(l1/L) are shown in the Fig. 4(a). Relationship between normalized 

damping ratio and the nondimensional parameter of the spring factor for larger values of  is shown 

in the Fig. 4(b). These figures show that the first mode damping ratios increase when  increases.  
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Table 2 The maximum damping ratios 
max

i
  and corresponded values of 

0

1


i  for different values of l1/L  

with =1, =0.4 and =1 

l1/L Mode ith 1 2 3 4 5 

0.03 

Kopt 0.96 0.96 0.97 0.98 1.00 
max

i
  (%) 0.596 0.598 0.600 0.603 0.607 

 Ll
i 1

max  0.199 0.199 0.200 0.201 0.202 
0

1


i
 1.031 2.063 3.094 4.126 5.157 

0.05 

Kopt 0.98 1.00 1.02 1.06 1.11 
max

i
 (%) 1.016 1.023 1.034 1.050 1.072 

 Ll
i 1

max  0.203 0.205 0.207 0.210 0.214 
0

1


i
 1.054 2.108 3.162 4.217 5.272 

0.10 

Kopt 1.06 1.14 1.28 1.53 1.94 
max

i
  (%) 2.164 2.221 2.322 2.481 2.718 

 Ll
i 1

max  0.216 0.222 0.232 0.248 0.272 
0

1


i
 1.118 2.238 3.360 4.487 5.620 

 

 

Fig. 4(b) shows that with larger values of material loss factor, when  increases, 1 reaches a 

maximal value at smaller valuer of K, and after that, the damping ratios decrease quickly when K 

increases. When the loss factors are much larger, the maximum normalized damping ratios are equal 

to about 1.  

 

3.3 Effects of spring factor on damping ratios of different vibration modes 
 

Effects of nondimensional parameter of the spring factor K=[0, 5] on the damping ratios of the 

first five modes for different damper locations ld/L = 0.03; 0.05; 0.10 and material loss factor ϕ=0.4  

are shown in Fig. 5. The maximum damping ratios
max

i
 and corresponding values of 

0

1


i in this  

case are shown in Table 2. From Fig. 5 and Table 2 can be seen that when the dampers are installed 

near the ends of the cable (l1/L and l2/L are small), the damping ratios of different vibration modes 

are similar, but this difference is larger when l1/L and l2/L are large. For example, the difference of 

damping ratio between the first mode and the fifth mode is 1.9% for ld/L=0.03, 5.4% for ld/L=0.05, 

and 25.6% for ld/L=0.10. 

 

3.4 The change of the oscillation parameters of a cable with two dampers attached 
 

With =+j, the vibration solutions can be expressed in the formula 

 )sin()cos()(),( 0

1

0

1

0
1 tjtexYtxu

t

nnnn






                   (20) 

It is seen that  represents vibration reduction and  represents vibration. Fig. 6 shows the  

relationship between 0
1  and K; and Fig. 7 shows the relationship between i and 0

1 i . It is  

seen that the HDR dampers perturb frequencies of the cable. If k1=k2, 0 and 0. In this 

case, the cable vibration vibrates with no displcement at the damper locations. In Fig. 7, the  

maximum values of 0
1 corresponds to the frequencies of the longer cable segment of length l2  
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i  and the nondimensional parameter of the spring factor K with =1, 

=0.4 and =1 
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(=iL/l2 and =0). From Table 1 and Table 2 can be seen that the values of 0
1 corresponding to 

the maximum normalized damping ratios. These values 0
1 are larger i about 3.1% for ld/L=0.03,  

5.4% for ld/L=0.05 and 11.8% corresponding to the first mode, 12.4% conrresponding to the fifth 

mode for ld/L=0.10. It means that if damper location is near the end of the cable the perturbation is 

small.  

 

 

4. Asymptotic formulas 
 

4.1 Asymptotic formulas for two HDR dampers at opposite ends 
 

Eq. (11) can be rewritten as 

       
       

313121313121312311

313121313121312311

sinsinsincossinsinsincoscossin1

cossinsinsinsinsinsincoscossin
tan






 

(21) 
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The above examples show that if the dampers are attached near the ends of the cable (l1/L and l3/L 

are both very small), the perturbation in the frequencies of cable is small. Thus, for the first few 

vibration modes of the cable which are of interest, the i of an individual mode i can be assumed to 

be a small perturbation i from solution of a cable without damper. The tangent can be 

approximated by 

   i
ii
tan  

  LliLl
i 11

sin   ,   LliLl
i 33

sin   , 
L

ll
i

L

ll
i

3131sin









 
  

  1cos
1

Ll
i

 ,   1cos
3

Ll
i

 , 1cos 31 






 

L

ll
i



             

(22) 

Substituting the asymptotic Eq. (22) into Eq. (21) yields the asymptotic formula of the solution i 

       
    

21212211212121

3121213221113121213211

11

1











j

LllLlLljLllLlLl
ii

i
   (23) 

The damping ratio i can be computed from the following approximate formula 

     
     

 
 

 
 LlLl

LlLl
i

32

2

2

2

2

2

22

12

1

22

1

11

2

2

22

2

2

1

22

1

3

2

1

22

1221

2

2

22

211

11

11

11

1

21

12





























             (24) 

Eq. (24) shows that when two HDR dampers are attached at opposite ends of the cable, the total 

damping effect is obtained by summing the contributions from single dampers.  

For small il1/L and il3/L the asymptotic maximum damping ratio can be given 





















L

l

L

l
i

3

2

2

21

2

1

1max

1111
5.0








   at 

2

1
111  opt  and 

2

2
112  opt    (25) 

From Eq. (25) can be seen that the asymptotic maximum damping ratio is determined by the 

material loss factors, it is quite low for small values of the material loss factor. For example, if 

1=2==0.4 and =1, the maximum normalized damping ratios are calculated as  

  193.01
max Lli . From Table 1 and Table 2 can be seen that the difference between asymptotic  

and exact maximum damping ratios. For example, the exact maximum normalized damping ratio is 

0.199 for the first mode and 0.202 for the fifth mode with l1/L=0.03, and is 0.203 for the first mode 

and 0.214 for the fifth mode with l1/L=0.05. When the material loss factor is much larger, the 

maximum normalized damping ratio is approximately 1 at very small nondimensional parameters 

(K1, K2). This value is similar to the case of the cable with two symmetric equal viscous dampers.  

The accurary of the damping ratios calculated by asymptotic formula Eq. (24) can be verified by 

comparing them with the exact solution. The comparisons are shown in Fig. 8, where the normalized 

damping ratios of the first mode are plotted versus K=K1 for variable l1/L=0.03, 0.05, 0.10 and 

1=2==0.15, 0.25, 0.4 with =1 and =1. This figure shows that when l1/L is small, the  
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Fig. 8 Comparison of the first mode damping ratios 1 calculated by asymptotic formula with the 

exact solution for two HDR dampers at opposite ends with =1, =1 and variable  
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approximate damping ratios are slightly smaller than the exact values, but this difference is larger 

when l1/L is large.  

For the purpose of comparing the new asymptotic curves for HDR dampers with existing 

universal curves for two viscous dampers located in the proximity of the cable ends, Eq. (24) is 

rewritten for ϕ1=ϕ2=ϕ, resulting in the following expression which is similar to an equation for two 

viscous dampers that were derived by Caracoglia and Jones (2007) 

       22

2

22

1 11 

















Ll

i                    (26) 

Fig. 9 and Fig. 10 are plotted based on Eq. (26) and for the purpose of comparison mentioned 

above, variables are labeled in a similar way to Caracoglia and Jones (2007). Fig. 9 depicts Eq. (26) 

as a function of K with = 0.4 and =1 for different values of . In this figure, the curves of exact 

solution for five first modes when l1/L=0.05 and l3/L=0.03 are also plotted; therefore they can 
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compose to asymptotic curve corresponding to =3/5. Fig. 9 shows that when  is incremented the 

normalized damping curve progressively increases; and when two symmetric equal dampers are 

located at opposite ends of the cable with =1, the corresponding asymptotic curve is at top and its 

damping ratio is doubled with respect to =0. These phenomena are similar to the result of 

Caracoglia and Jones (2007). 

Asymptotic damping curves with =0.4 for variable  and three values of =l3/l1 (1/2, 3/4, 1) 

are shown in Fig. 10. From Eq. (25) the damping ratio reaches maximum value when K1 and K2 

are both equal to 211  . Due to K1=k1l1/T, K2=k2l3/T and =l3/l1 then =k2/k1=l1/l3=1/. 

Therefore, for a given value of , the damping ratio reaches maximum values when =1/. This 

phenomenon can be seen from Fig. 10 in which the top of the curves corresponds to =1/, which 

is plotted by solid thick lines. 

When compared with the universal curves for viscous dampers by Caracoglia and Jones (2007), 

Fig. 9 and Fig. 10 show that the damping ratio of HDR dampers is lower than that of viscous 

dampers. However, for different vibration modes, the damping ratios of HDR dampers are the 

same while the damping ratios of viscous dampers are different. This means that HDR dampers can 

provide better vibration reduction to multiple modes. 

In a different way, an HDR damper can be considered approximately as a group of a linear 

spring (k) and a linear dashpot (ceq), which are attached in parallel at the same location. Equivalent 

viscosities of dashpot can be calculated by asymptotic formulas as follows 
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Fig. 10 Asymptotic damping curves for variable  and  
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Tm
i

Lk
c eq




11

1
  and Tm

i

Lk
c eq




22

2
                   (27) 

Based on the study of (Main and Jones 2003), the two damper groups can be considered 

approximately as two equivalent viscous dampers with effective damper locations given by 

1

1

1
1 


l

l eff  and 
2

3

3
1 


l

l eff                        (28) 

Therefore, asymptotic formulas in the papers of Caracoglia and Jones (2007), Hoang and Fujino 

(2008) can be applied. The damping ratio i can be computed from the following approximate 

formula (Hoang and Fujino 2008) 

 
  

 
   L

l

Lli

Lli

L

l

Lli

Lli eff

effeq

effeqeff

effeq

effeq

i

3

2

32

321

2

11

11

11 












                 (29) 

where 
Ti

L
k

Tm

ceq

eq




11

1

1
  and 

Ti

L
k

Tm

ceq

eq




22

2

2
  are nondimensional parameters of 

equivalent viscous dampers.  

 Eq. (29), which is consistent with Eq. (24), shows that for each vibration mode an HDR damper 

is equivalent to a viscous damper. These asymptotic formulas also show that the HDR damper is 

different from other types of damper by the fact that its asymptotic universal curves do not depend 

on mode. Additionally, when K1 and K2 are very small and ϕ1, ϕ2 are very large, Eq. (28) leads to 

11 lleff   and 33 lleff  , meaning that in this case for a given mode two HDR dampers are equivalent to 

two viscous dampers that are installed at l1 and l3. 

 

4.2 Asymptotic formulas for two HDR dampers at the same end 
 

When two HDR dampers are located near the anchorage at the same end of the cable, two  

nondimensional parameters of the spring factors are introduced: K1=k1l1/T and 2 =k2(l1+l2)/T. Eq.  

(11) can be rewritten as 

      
      

212112121212121212

212112121212121212

sinsinsincoscossinsinsinsincos1

cossinsinsincossinsinsinsincos
tan




  (30) 

Given that two HDR dampers are attached very close to the end of the cable and only the first 

few modes of cable vibration are of interest, applying the asymptotic approximations for very small 

values of l1/L and l2/L yields the asymptotic formula of the solution i 

            
        2122121211212212121

212212122111121221212211121

11

1

llljlll

lllllljllllll

L

ll
iii











 

 (31) 

In this case, approximate formula for the calculation of the damping ratio i is expressed as 

follows 
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Fig. 11 Comparison of the first mode damping ratios 1 calculated by asymptotic formula with the 

exact solution for two HDR dampers at the same end with l1/L= l2/L=0.015, k1=k2 and =0.4 

 

 

A comparison of the damping ratios which are calculated by asymptotic formula in Eq. (32) with 

the exact solution is shown in Fig. 11, where the normalized damping ratios of the first mode are  

plotted versus 2  for l1/L=l2/L=0.015 and k1=k2 with 1=2==0.4. The first mode damping ratios  

1 when two dampers are installed at the same end of the cable can be compared with a single 

damper when it is attached at the same location of the second damper in the former case: 

ls=(l1+l2)/L=0.03. When l1/L and l2/L are small, the approximate damping ratios are slightly smaller 

than the exact values. This figure also compares the damping ratios in two cases: two dampers and 

one damper; the damper in the latter case is at the same location of the second damper in the former 

case. At small values of K, the damping ratio of two dampers is only slightly larger than that of one 

damper. At larger values of K, the damping ratio of two dampers is even smaller. This means that 

two dampers that are installed close to each other are not efficient. This result agrees with the 

studies by Main and Jones (2003), Caracoglia and Jones (2007), Hoang and Fujino (2008). 

 

 

5. Design example of HDR dampers for stay cable  
 

HDR dampers are designed to reduce the rain-wind induced vibrations of stay cable with 

parameters as follows: length of cable L=110 m; cable diameter D=0.16 m; cable mass per unit 

length m=61.4 kg/m; tension in the cable T=5000 kN and air density =1.23 kg/m3. Natural  

frequency of the first mode 0

1f 1.3Hz. 

To avoid rain-wind induced vibrations, the stability criterion was proposed by (PTI 2001) for a 

smooth circular cable 

m

D210
                                  (33) 

where m is mass per unit length;  is damping ratio;  is air density and D is cable diameter. 

Using the cable parameters above yields >0.513%. If one HDR damper with material loss 

factor of 0.4 is used, it needs to be placed at least 5.7 m from the cable end and nondimensional 

parameter of the spring factor of 0.96 is chosen to achieve a maximum damping ratio of 0.513%.  
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Table 3 Design of HDR dampers for vibration reduction of the cable  

 Exact Solution Asymptotic Solution 
Difference (%) 

 σi φi×10-2 
0

1


i
 ζi (%) ζi (%) 

Mode 1 1.0236 0.5382 1.0236 0.5257 0.5134 2.34 

Mode 2 2.0471 1.0774 2.0471 0.5263 0.5134 2.45 

Mode 3 3.0703 1.6187 3.0703 0.5272 0.5134 2.62 

Mode 4 4.0931 2.1632 4.0932 0.5285 0.5134 2.86 

Mode 5 5.1154 2.7115 5.1155 0.5301 0.5134 3.15 
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Fig. 12 Free vibration of the cable at the first damper location in the design example 

(l1/L=l3/L=3/110, K1=K2=0.69 and =0.4) 

 

 
However, this location is hard to install damper. Due to geometric constraints, the distance 

between the anchorage and the damper is required not greater than 3m. To satisfy this requirement, 

two HDR dampers are proposed to install at opposite ends of the cable with l1=l3=3 m (=1). The 

two symmetric equal HDR dampers are chosen with the same spring factors (=k2/k1=1) and 

material loss factor (1=2==0.4). To achieve the damping ratio =0.513%, from Eq. (24) the 

nondimensional parameters of the spring factors K=K1=K2=0.69 were calculated, leading to the 

spring factors k1=k2=1150kN/m. The oscillation parameters of the cable-dampers system are shown 

in Table 3; and free vibration of the cable at the first damper location is shown in Fig. 12.  

 

 

6. Conclusions 
 

In this paper, the general dynamic characteristics of cable-two HDR dampers system investigated 

by modeling the stay cable as a taut string and each HDR damper as complex-valued impedance 

with spring factor (k) and material loss factor (). Effects of different parameters on vibration 

reduction were analyzed in detail using an analytical formulation of the complex eigenvalue 

problem. The relationships between the damping ratio and locations of the dampers, the spring 

factors, and the material loss factors were studied and plotted in figures. Additionally, asymptotic 

formulas were proposed for the calculation of damping ratios of the cable-two HDR dampers 

system and the accuracy of the damping ratios as calculated by the asymptotic formulas was also 
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compared with the exact solutions. From these studies, the following conclusions can be drawn: 

• When two HDR dampers are attached at opposite ends of a cable, the total damping ratio is the 

approximate sum of contributions from single dampers. In the contrast, when two HDR dampers are 

installed at the same end of the cable, due to interaction between the two dampers, the damping ratio 

is lower than when one HDR damper is used. Therefore, use of two HDR dampers at the opposite 

ends of the cable is a possible solution, it corresponds to higher damper levels. 

• If HDR dampers are installed near the ends of the cable the values of damping ratios of 

different vibration modes are similar; thus in this case, the HDR dampers can provide the same level 

of vibration reduction to multiple modes. 

• The effect of the material loss factor (=tanδ) of the HDR dampers on the damping ratio () of 

the cable is extremely important. The angle δ ranges from 0 for elastic behavior to π/2 for pure 

viscous behavior. The loss factor is equal to zero corresponding to no energy dissipated. When the 

material loss factor  increases, the energy dissipation increases; thus the damping ratio also 

increases.  

• In designing dampers for cable vibration reduction, it is necessary to determine the levels of 

supplemental damping provided in the first several modes of vibration for different values of the 

damper parameters and different damper locations. Due to geometric constrants, the dampers are 

often attached to the cable near the anchorages. When the HDR damper is installed at such a 

location the perturbation in the frequencies of cable is very small; thus, the approximate formulas 

Eqs. (24)-(26) and Eq. (32) can be are useful for designing process.  

• Although damping ratio of an HDR damper is not as high as that of other damper types such as 

viscous damper, it has many advantages such as compact size, better aesthetics, easy maintenance, 

temperature stability, cost benefits, and can provide better vibration reduction to multiple modes. 

HDR dampers are particularly suitable for relatively short stay cables. For longer cables, the 

damping of the cable can be improved by use of two HDR dampers attached at opposite ends of a 

cable. 

Based on the findings of this study, one can choose the optimal parameters of the HDR dampers 

for a given cable. 
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