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Abstract.  The goal of this study is to investigate computational convergence of optimal solutions, with 

respect to optimality criteria (OC) method and methods of moving asymptotes (MMA) as optimization model 

for non-linear programming of material topology optimization using an acceleration method that makes 

design variables rapidly move toward almost 0 and 1 values. 99 line topology optimization MATLAB code 

uses loop vectorization and memory pre-allocation as properly exploiting the strengths of MATLAB and 

moves portions of code out of the optimization loop so that they are only executed once as restructuring the 

program. Numerical examples of a simple beam under a lateral load and a given material density limitation 

provide merits and demerits of the present OC and MMA for 99 line topology optimization code of 

continuous material topology optimization design. 
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1. Introduction 
 

Material topology optimization (Bendsoe and Kikuchi 1988, Bendsoe 1995, Fu and Zhang 2014; 

Lee et al. 2014a, 2014b) is now a well-established field. And the Sigmund‟s 99 line code (Sigmund 

2001) demonstrated that basic topology optimization code to intend for educational purposes and 

serves as an introductory example to topology optimization for students and newcomers to the field. 

The 99 line code used MATLAB programming language that allows for the solution of numerous 

scientific problems with a minimum of coding effort.  

From the 99 line topology optimization code, there are many MATLAB code were provided to 

extend and apply for more fields, as the 88 lines of code (Andreassen et al. 2011), a 199 line 

MATLAB code for Pareto-Optimal tracing in topology optimization (Suresh 2010), a discrete 

lever-set topology optimization code written in Matlab (Challis 2010). A lot of researches were 

applied and investigated in many science fields. 

MATLAB is further from optimally utilized than the other programming languages in 

comparison, such as the extensive use of for and while loops, and MATLAB is relatively tolerant 
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towards bad programming practices, such as the use of dynamically growing variable arrays. The 

use of MATLAB, with its accessible syntax, excellent debugging tools, and extensive graphics 

handling opportunities, allow the user to focus on the physical and mathematical background of the 

optimization problem without being distracted by technical implementation issues. 

The 99 line topology optimization code used loop vectorization and memory pre-allocation as 

properly exploiting the strengths of MATLAB and moving portions of code out of the optimization 

loop so that they are only executed once as restructuring the program. For simplicity, the 99 line 

code solved the optimization problem with using a standard OC method (Lee et al. 2012, Yi et al. 

2013).  

The Method of Moving Asymptotes (MMA) (Svanberg, 1987) is based on a special type of 

convex approximation. MMA is an iterative method. In each interaction, a convex subproblem, 

which approximates the original problem, is generated and solved. An important role in the 

generation of these subproblems is played by a set of parameters which influence the “curvature”of 

the approximations, and also act as “asymptotes” for the subproblems. By moving these asymptotes 

between each interaction, the convergence of the overall process can be stabilized  (Zillober 1993). 

The aim of this paper is to present the application of MMA to the 99 line code by using a specific 

method of accelerating design variables for topology optimization engineering problems to improve 

convergence of MMA including OC. The revised MATLAB code was extended and given and 

optimal results were investigated. The comparison between 99 lines original code and applied MMA 

code was discussed and the convergence of optimal solutions was on advance comments. 

Topology design problems may be considered as related formulations under a common SIMP 

topology optimization umbrella by the penalty method, and more importantly, this general 

framework may be easily applied to new design problems (Bruns 2007). Our contribution is to 

illustrate the present acceleration method by which can be replaced the penalty method under a 

common topology optimization field. 

In the following Sections, the brief descriptions of the topology optimization problem are given 

in Section 2 and the details of MMA also. MATLAB implementation is presented in Section 3. From 

the MATLAB code running, the results are described in Section 4 and the comparison of two 

methods also. Finally, conclusions are presented in Section 5. 

 

 

2. Topology optimization problem and computational optimizer algorithm 
 

2.1 Formulations of material topology optimization 
 

Topology optimization problem presented in this study is to determine the layout of material of 

specified volume in a domain that maximizes stiffness for a given set of loads and boundary 

conditions. 

A topology optimization problem can be written as 

      ( )(    )                                   (1) 

where 

      , |              -          (2) 

The functions f and hj (j =1…M) are assumed to be continuously differentiable and the feasible  
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region is assumed to be non-empty. xi is design variables of material density. ix  and ix  are, 

respectively, lower and upper bound values of design variables. 

A 2D linear elastostatic problem (Lee and Shin 2014c, 2015) is considered in this study. The 

problem is associated with a two-phase material topology optimization of continuous structures 

distributing a given amount of material into void and solid regions. The objective function can be 

written as a minimal strain energy form as 

          

(3) 

where C is an isotropic elastic material tensor in a plane stress state, which is a function of Young‟s 

modulus E and Poisson‟s ratio v, and ε  denotes the strain. The superscript T denotes the transpose of 

the matrix or vector. 

The inequality constraint is a limit of relative design parameters 0≤Φ=Φ
real

/Φ
bulk

≤1. The 

equilibrium equation is an essential equality constraint. Another equality constraint is an assumed 

material volume fraction V0 which has to be placed in the design domain at every step in the 

optimization process. It is defined as 

             

(4) 

 

2.2 Formulations of computational optimizers of MMA and OC 
 

Svanberg (1987) introduced a well-established general approach for setting such a problem 

which generates and solves a sequence of explicit sub-problems according to the following iterative 

scheme: 

Step 0. Choose a starting point x
(0)

, and let the iteration index k=0. 

Step I. Give an iteration point x
(k)

, calculate fi(x
(k)

) and the gradients ▽fi(x
(k)

) for i=0, 1, .., m. 

Step II. Generate a sub-problem P
(k) 

by replacing, in P, the function fi by approximating explicit 

functions fi
(k)

, based on the calculations from step I. 

Step III. Solve P
(k) 

and let the optimal solution of this sub-problem be the next iteration point x
(k+1)

. 

Let k=k+1 and go to step I. 

The Method of Moving Asymptotes (MMA) (Svanberg 1987) proposed a linearization with 

respect to substituted variables 
 

     
 and 

 

     
 respectively, where Ui and Li are some chosen 

parameters. 

Given the iteration point x
(k)

 (at iteration k), values of the parameters Li
(k)

 and Ui
(k)

 are chosen, for 

j=1,…,n, such that  

Li
(k)

 < xi
(k)

 < Ui
(k)

                                                             (5) 

Then, for each i=0,1,…,m,  fi
(k)

 is defined by 
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In MMA, the values Li
(k)

 and Ui
(k)

 are always finite. With the approximating functions fi
(k)

 is 

defined, the following sub-problem, called P
(k)

, is obtained: 

P
(k)

: minimize 

 ∑ .
   
( )
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Subject to 
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   ̂                               (8) 

and 

     ,     
( )-        ,     

( )-,                 (9) 

Here, the parameter αj
(k)

 and βj
(k) 

are „move limits‟ which are probably not very crucial. However, 

to avoid the possibility of any unexpected „division by zero‟ while solving the sub-problem, αj
(k)

 and 

βj
(k) 

should at least be chosen such that 

Lj
(k)

 < αj
(k)

 < xj
(k)

 < βj
(k)

 < Uj
(k)                                                                             

(10) 

MMA use the flexibility of the asymptotes which influence the curvature of the approximations. 

It is possible to omit the concavity assumption. However, the resulting restriction on the choice of 

the asymptotes leads to a very slow numerical convergence of the algorithm, so that the theoretical 

improvement does not result in a more efficient algorithm. 

An OC (optimality criteria) method (Rozvany 1989, Patnaik et al. 1995, Bendsoe 1995) of 

gradient-based concepts is used for the optimization method because it can reduce the computational 

cost associated with having many design variables. The design parameters can be updating using the 

Lagrangian multiplier λ, which can be solved by a bisection algorithm. 

         

(11) 

and 

        

(12) 

A moving limit lm is introduced to avoid the situation in which ρ changes significantly in one 

iteration. By considering a heuristic updating scheme [60], as follows, the design parameters can 

now be updated. 
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(13) 

where dc is a numerical damping coefficient, usually 0.5 intended to stabilize the iteration. 

 

 

3. The method of accelerating design variables for computational optimizers 
 

In order to overcome the problem, a strategy accelerating design variable values (ADV) (Lee et 

al. 2007) is treated in this paper and is based on convex and concave of a curve of regularized 

Heaviside function. In spite of fast convergence through ADV, fundamentally the ADV approach 

may take ill-posed problems such as numerical singularities by numerical error or perturbations, 

since design variable values move fast toward 0 (void) or 1 (solid) and especially take overestimated 

approximations toward 0. For the purpose of well-posedness of optimal solution, a regularization of 

the procedure of replacing the given ill-posed problem with a better-posed counterpart is used in this 

study. 

The fast changes of updated design variable values from the nature of moved regularized 

Heaviside function, i.e. MRHF, as show in Fig. 1. 

 

 

 

Fig. 1 Accelerating design variables (ADV) toward 0 (void) and 1 (solid) through moved 

regularized Heaviside function (MRHF) with interface thickness χ=0.5 

   

   

   

























































































































































































































m
i
e

cd
i

e

e

ei
em

i
e

m
i
e

cd
i

e

e

ei
em

i
emin

cd
i

e

e

ei
e

m
i
emin

cd
i

e

e

ei
em

i
emin

i
e

l,min
V

f

ifl,min

l,min
V

f

l,maxif
V

f

l,max
V

f

ifl,max


























11

11

905



 

 

 

 

 

 

Dongkyu Lee, Nguyen Hong Chan  and Soomi Shin 

In case of a design variable ϕ1 which is updated more than the value 0.5, it is assumed that final 

design variable value is not ϕ1 but ϕ2=MRHF(ϕ1) since the convex of MRHF is used and the limit 

box of x, y coordinated in MRHF is a square. From ϕ1< ϕ2 it is clear that the original design variable 

ϕ1 makes toward the value 1.0. In case of a updated design variable ϕ3 which is less than the value 

0.5, it is assumed that final design variable is ϕ4 and it can be seen that the original design variable 

makes fast toward the value 0. 

Various types of the moved regularized Heaviside function (MRHF) can be used as follows 
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where ϕave denotes element densities which are averaged by nodal information. χ is a parameter 

describing interface thickness. In numerical calculations, the interface thickness should be fixed, 

and set proportional to the spatial mesh size Δh, i.e., χ=mΔh, here m is a constants coefficient, and 

χ=0.5. 

 

 

4. Numerical examples and discussion 
 

Following Sigmund (2001), several assumptions are made to simplify the Matlab code. The main 

program is call from the Matlab prompt by the line. 

topmma (nelx,nely,volfrac,penal,rmin) where nelx and nely are the number of elements in the 

horizontal and vertical directions, respectively, volfrac is the volume fraction, penal is the 

penalization power and rmin is the filter size (divided by element size). 

The example on MMB beam is tested and the result will be printed as demonstration for the 

efficiency of the method. The default boundary conditions correspond to half of the “MBB-beam”, 

as shown in Fig. 2. 

Load is applied vertically in the upper left corner and there are symmetric boundary conditions 

along the left edge and the structure is supported horizontally in the lower right corner. 

Based on the 99 line code (Sigmund 2001); the advance details of Matlab code was described in 

the following subsections. 

 

4.1 Codes of MMA based optimizer 
 
The MMA was used to update design variables. The starting function was written in Matlab code 

as: 

L=x-0.1*(xhigh-xlow)*ones(nely,nelx); 

with                    

high=(x-L).^2.*-dc./(xlow-L).^2 ;  

low=(x-L).^2.*-dc./(xhigh-L).^2; 

therefore 
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Fig. 2 Topology optimization of the MBB-beam. Top: full design domain, middle: half design domain 

with symmetry boundary conditions and bottom: resulting topology optimized beam (both halves) 

 

 

xnew=max(xlow,min(xhigh,L+abs(x-L).*sqrt(-dc./lmid))); 

where                  lmid = 0.5*(l2+l1); 

while                   l2 = min(min(high)); 

l1 = max(max(low)); 

And sum(sum(xnew)) was also known as the material volume. 

 

4.2 Codes of accelerating design variables (ADV) using MRHF 
 
The previous section was discussed the moved regularized Heaviside function (MRHF) in Eqs. 

(14) (15) (16) and (17). These functions rewrote in the code as below: 

MRHF1(ϕave) : 

x(1:nely,1:nelx)=0.75*(x(1:nely,1:nelx)-0.5)./chi-0.75*1/3*(x(1:nely,1:nelx)-0.5).^3/chi^3+1/2; 

MRHF2(ϕave) : 

x(1:nely,1:nelx)=1/2+2/3.141592654*atan((x(1:nely,1:nelx)-0.5)/chi);  

MRHF3(ϕave) : 

x(1:nely,1:nelx)=1/2+1/2.*(x(1:nely,1:nelx)-0.5)/chi+1/2*1/3.141592654*sin(3.141592654 

*(x(1:nely,1:nelx)-0.5)/chi); 

MRHF4(ϕave) : 

x(1:nely,1:nelx)=1/2+1/2*sin(3.141592654*(x(1:nely,1:nelx)-0.5)/(2*chi)); 

Many repetitions of ADV were also used to expect the fast convergence. The repeatable times 

will be mentioned on the numerical example section. 

 

4.3 Comparisons of optimal results of OC and MMA 
 

Fig. 4(a) shows the resulting density distribution obtained by the code given in the Appendix 

called with the input line: topmma(50,30,0.4,3,1.5). Then, the calculation from MATLAB shows the 

convergent of MMA method as shown in Fig. 3 below. The shape of chart shows that MMA 

convergence takes unsatisfactory results. Beside, in the end of the curve, the oscillations mean  
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(a)                                                                                         (b) 

Fig. 3 The convergence curves of MMA in mesh 50 × 30 elements with (a) is full chart and (b) is zoomed in 

the circle of (a) 

 

   

(a) (b) (c) 

Fig. 4 Optimized design of the MMB beam with the MMA code in order to (a) 50×30 elements, (b) 150×50 

elements, (c) 300×100 elements 

 

   

(a) (b) (c) 

Fig. 5 Optimized design of the MMB beam with the OC code in order to (a) 50×30 elements, (b) 150×50 

elements and (c) 300×100 elements 

 

 
MMA can not get the convergence (Sen and Roy 2013). Fig. 3(b) is zoomed in the tail of the Fig. 

3(a) to show the oscillations of MMA. In order to compare the optimized designs of the MBB beam 

between the 99 line and updated MMA code, the output were divided in two parts in Figs. 4 and 5 to 

show the differences between two methods. 

According to the results, the optimal topologies are almost the same, but MMA produces the more 

details. In Fig. 6, the convergence of OC methods and MMA is compared. For all cases of Fig. 6(a) 

and (b), the convergence shapes of MMA are almost the same while those of OC are different. The 

quantity of elements used to discretize the design domain of OC method as much, the convergence 

take longer; while MMA was still the same. MMA was the best in case of many element domains. 
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(a)                                                                                      (b) 

Fig. 6 The convergence curves of OC methods and MMA in mesh (a) 50×30 elements and (b) 300×100 

elements 

 

 

(a) Iterations from 1 to 14                                        (b) Iterations from 14 to 200 

Fig. 7 Convergence histories of objective function under ADV with once repetition of different MRHF 1~4 

with χ=0.5 

 

 

(a) Iterations from 1 to 14                                          (b) Iterations from 14 to 200 

Fig. 8 Convergence histories of objective function under ADV with fourth repetition of different MRHF 

1~4 with χ=0.5 
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(a) ADV of MRHF2 for MMA (b) ADV of MRHF2 for OC 

Fig. 9 Comparisons of oscillation results of optimal topology configuration 

 
 
4.4 Effects of ADV on the convergence of MMA 

 
Fig. 7 shows the histories of convergence of objective function between MMA and MMA added 

ADV. Once repetition of ADV yields (type of MRHF from 1 to 4) produces the results that the 

convergence was similar to the original MMA method. Then, the four times repetition of ADV 

yields (type of MRHF from 1 to 4) is showed in Fig. 8. In this case, ADV yields the quick 

convergence of objective function. Finally, MRHF of type 3 obtained the best convergence. 

Fig. 9 shows optimal topology by using MMA and OC combined with ADV. As can be seen, 

ADV of MRHF2 removes the oscillation of MMA convergence as shown in Fig. 4(a). 

 

 

5. Conclusions 
 

This study presents a revised MATLAB code considering ADV for improving computational 

convergence of typical material topology optimization using OC and MMA as optimizers. 

According to the result of OC and MMA, MMA provide the convergence longer than the OC. 

Numerical examples by the revised MATLAB codes verify that improvement of convergence and 

the removal of oscillation at MMA can be guaranteed by using the present acceleration method of 

design variables through applying appropriate MRHF. 
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