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Abstract.  This paper dealt the free vibration analysis of thick truncated conical composite sandwich shells 

with transversely flexible cores and simply supported boundary conditions based on a new improved and 

enhanced higher order sandwich shell theory. Geometries were used in the present work for the 

consideration of different radii curvatures of the face sheets and the core was unique. The coupled governing 

partial differential equations were derived by the Hamilton's principle. The in-plane circumferential and axial 

stresses of the core were considered in the new enhanced model. The first order shear deformation theory 

was used for the inner and outer composite face sheets and for the core, a polynomial description of the 

displacement fields was assumed based on the second Frostig’s model. The effects of types of boundary 

conditions, conical angles, length to radius ratio, core to shell thickness ratio and core radius to shell 

thickness ratio on the free vibration analysis of truncated conical composite sandwich shells were also 

studied. Numerical results are presented and compared with the latest results found in literature. Also, the 

results were validated with those derived by ABAQUS FE code. 
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1. Introduction 
 

The conical shells are often used as transition elements between cylinders of different 

diameters and/or end closures and sometimes as stand-alone components in various engineering 

applications such as tanks and pressure vessels, missiles and spacecraft, submarines, nuclear 

reactors, jet nozzles and such other civil, chemical, mechanical, marine and aerospace engineering 

structures (Sofiyev 2011). Sandwich structures due to their high strength and stiffness, low weight 

and durability, are widely used in many engineering applications. These structures are generally 

consisting of two stiff face sheets and a soft core, which are bonded together. In most cases, the 

core is consisting of a thick foam polymer or honeycomb material, while thin composite laminates 

are commonly used as the face sheets. In these structures, the core keeps the face sheets at 

sufficient distance and transmits the transverse normal and shear loads. Advantages of this 

construction method are used to obtain the plates with high bending stiffness characteristics and an 
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extremely low weight. To use these structures efficiently, an excellent understanding of their 

mechanical behavior is needed. Extensive research has been dedicated to the free vibration 

behavior of circular composite laminates (For example see (Tong 1994, Shu 1996, Wu and Lee 

2001)). Using first order shear deformation theory, Tong (1994) studied free vibrations of 

laminated composite conical shells. Shu (1996) used Love’s first approximation thin shell theory 

in order to free vibration analysis of composite laminated conical shells. The first-order shear 

deformation shell theory was used by Wu and Lee (2001) to study free vibration analysis of 

laminated conical shells. They assumed the stiffness coefficients were functions of the 

circumferential coordinate. 

The work on conical truncated composite sandwich shells with flexible cores is somewhat 

limited. In order to investigate free vibration analysis of sandwich structures the higher-order 

sandwich panel theory was developed by Frostig et al. (1994, 2004), who considered two types of 

computational models for expressing the governing equations of the core. The second Frostig’s 

model assumed a polynomial description of the displacement fields in the core that was based on 

the displacement fields of the first model. This theory does not impose any restriction on the 

deformation distribution through the thickness of the core. The improved higher-order sandwich 

plate theory (IHSAPT), applying the first-order shear deformation theory for the face sheets, was 

introduced by Malekzadeh et al. (2005). Liang et al. (2007) used the vibration theory and transfer 

matrix method to study the free vibration of a thin-walled laminated conical shell. The free 

vibration analysis of laminated conical and cylindrical shells was done using Love's first 

approximation thin shell theory by Civalek (2007). Natural frequencies and forced vibration 

analyses of a thin, homogeneous, and isotropic conical shell were studied using Hamilton's 

principle and the Rayleigh-Ritz method by Li et al. (2009). Sofiyev et al. (2009) performed the 

free vibration and buckling analyses of truncated conical shells with non-homogeneous material 

properties under uniform lateral and hydrostatic pressures. Rahmani et al. (2009) applied a higher 

order sandwich panel theory to study the free vibration analysis of an open single curved 

composite sandwich shell with a flexible core. They used the classical shell theory and an elasticity 

theory for the face sheets and the core, respectively. Tornabene (2009) conducted the free 

vibration analysis of functionally graded conical and cylindrical shells based on the first order 

shear deformation theory. The buckling analysis of non-homogeneous orthotropic truncated 

conical shells was done under a uniform hydrostatic pressure by Joshi and Patel (2010). Also, they 

investigated the effects of non-homogeneity and number of layers on the critical hydrostatic 

pressure. Biglari and Jafari (2010) presented a complex three layer theory for the free vibration 

and bending analysis of open single curved sandwich structures. In their model, Donell's theory 

was used for the face sheets. Using differential quadrature method, free vibrations analysis of 

functionally graded cylindrical panel was done by Yas et al. (2010). The free vibration analysis of 

FG conical shell was performed using meshless method and first order shear deformation shell 

theory by Zhao and Liew (2011). Ghannad et al. (2012) investigated the elastic analysis of thick 

functionally graded truncated conical shells and used the first order shear deformation theory and 

the virtual work principle. Mochida et al. (2012) studied the free vibration response of doubly 

curved shallow shells using the approximate Galerkin method. Kheirikhah et al. (2012) applied an 

improved high order theory to examine the bending analysis of soft core sandwich plates. They 

also used the third order plate theory for face sheets and quadratic and cubic functions for 

transverse and in-plane displacements of the orthotropic soft core and satisfied the continuity 

conditions for transverse shear stresses at the interfaces and the conditions of zero transverse shear 

stresses on the upper and lower surfaces. Ghavanloo and Fazelzadeh (2013) investigated the free  
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Fig. 1 Geometry parameters of the composite truncated conical sandwich shell 

 

 

vibration analysis of simply supported doubly curved shallow shells. Their formulation was based 

on Novozhilov's linear shallow shell theory. Viola et al. (2013) used a 2D higher order shear 

deformation theory with nine parameters in order to analyze the free vibration analysis of the thick 

laminated doubly curved shells. Their main assumptions were based on small deflections and 

negligible normal stress and strain. The free vibration of variable thickness conical shell was 

numerically done by Viswanathan et al. (2013). Thickness of the layers varied linearly and 

exponentially in an axial direction. They considered three and five layered conical shells, which 

were made up of two different types of materials. Malekzadeh Fard (2014) studied the free 

vibration of a sandwich curved beam with a functionally graded core and used two dimensional 

higher order beam theory without neglecting the amount of z/R. Jalili et al. (2014) applied 

numerical and experimental methods for studying the buckling analysis of composite conical 

shells under dynamic external pressure. Also, they investigated the effect of geometrical 

imperfections of experimental specimens on the numerical results. 

The literature survey demonstrated that most of the studies have been performed on the free 

vibration analysis of flat and curved composite sandwich panels using high order theory and no 

research is available in the field of thick sandwich truncated conical shells that use new improved 

high order theory. In this paper, by using a new improved higher order sandwich panel theory 

(Malekzadeh et al. 2005) and second computational Frostig's model (2004), the free vibration 

analysis of conical composite sandwich shells was investigated. Also, the in-plane circumferential 

(hoop) stresses of the core were considered. Geometries were used in the present work for the 

consideration of different radii curvatures of the face sheets and the core was unique. In this study, 

the analytical solution of the displacement field of the core in terms of the polynomials with 

unknown coefficients was presented according to the second computational Frostig’s model. 

Simply supported boundary conditions were considered in this paper. Since there are few research 

about the free vibration analysis of a composite truncated conical shell, to validate the results 

obtained in the present work, a truncated thick conical sandwich shell was modeled in ABAQUS 

FE code and the results obtained from analytical formulations and FE code were compared with 

each other. Also, for composite laminated shells, obtained results by the present method were 

validated by comparing them with those in the literature. Finally, the effects of various parameters 

including types of boundary conditions, conical angles, length to radius ratio, core to shell 
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thickness ratio and core radius to shell thickness ratio on the free vibration response of truncated 

conical composite sandwich shells were studied. 

 
 
2. Theoretical formulation  
 

2.1 Basic assumptions  
 

Consider a thick composite truncated conical sandwich shell which is composed of two 

composite laminated face sheets. The thickness of the top face sheet, bottom face sheet and the 

core is ht, hb and hc, respectively, in which indices t and b refer to the top and bottom face sheets of 

the shell, respectively, as shown in Fig. 1. The assumption used in the present analysis was the 

small deformation of linearly elastic materials.  

 

2.2 Kinematic relations 
 

Base on the first shear deformation theory, the displacements u, v and w of the face sheets in 

the x, θ and z (thickness) directions with small linear displacements are expressed by following 

relations (Reddy 2004) 

   

0

0

0

( , , , ) ( , , ) ( , , )

( , , , ) ( , , ) ( , , )      ;    ( = , )

( , , , ) ( , , )   
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

   
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 

 (1) 

where  and i i

x    
are the rotation components of the transverse normal along the x and θ-axes of 

mid-surface of the top and bottom face-sheets, respectively. Also 0

iu  and 
0

iv are displacements 

components in the x and θ directions, respectively and 0

iw is the vertical deflection of the top and  

bottom face-sheets. zi is the vertical coordinate of the face-sheets and is measured upward from the 

mid-plane of each face-sheet. 

The kinematic equations for the strains in the face sheets are as follows (Reddy 2003, Sofiyev 

et al. 2009, Qatu 2004) 

(2) 
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and 

(4) 0( ) sin( ) i iR x R x   
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The displacements fields for the core are based on model II of Frostig (Frostig and Thomsen 

2004) and a cubic pattern for in-plane displacements and a quadratic one for vertical ones are taken 

as follows 

     

         
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 (5) 

where 
c

ku and c

kv (k=0, 1, 2, 3) are the unknowns of the in-plane displacements of the core and 
c

kw (k=0, 1, 2) are the unknowns of its vertical displacements. Rc(x) is the radius of curvature of  

the core in θ-z plane that varies with x 

(6)      0( ) sin( ) c cR x R x   

The kinematic relations of the core for a conical sandwich shell based on small deformations are 

(Sofiyev et al. 2009, Qatu 2004) 

(7) 
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where 

(8)        2 0( ) sin( ) ; , ,   i ia R x R x i t b c  

The stress- strain relations for the face sheets are given as 

(9) 
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where the transformed reduced elasticity matrix [Q ]
 
is 
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where α is the angular orientation of the fibers and 
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2.3 Compatibility conditions 
 

The compatibility conditions were presented assuming perfect bonded conditions between the 

core and face-sheet interfaces (Kheirikhah et al. 2011) 

(12) 
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Using displacement fields of the core (Eq. (4)), the compatibility conditions can be written as 

follows 
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It can be seen from Eq. (13) that the number of unknowns in the core is reduced to five. These 

unknowns are 0 1 0 1, , ,c c c cu u v v and 0

cw . Therefore, in a general form, the number of unknowns for a 

doubly curved composite sandwich shell is fifteen as below: 

 ,,,,,,,,,,,,,,, 01010000000
cccccb

q
b
x

bbbt
q

t
x

ttt wvvuuyywvuyywvu  

 

2.4 Governing equations 
 

The governing equations were derived using Hamilton's principle, requiring that 
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(14) 
0 0

[ ] 0

T T

Ldt K U dt       

where δK and δU denote the variation of kinetic energy and that of strain energy, respectively. 

Also t is the time duration between the times t1 and t2, and δ denotes the variation operator.  

The first variation of the kinetic energy, upon assuming the homogeneous conditions for the 

displacement and velocity with respect to the time coordinate, can be written as follows 
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(15) 

where (
..

) denotes the second derivative in time. 

The first variation of the internal potential energy for a composite conical sandwich shell that 

includes the face sheets and the core is 

(16) 
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The moments of inertia (  0,  1, ,6c

n nI   ) for the core layer are 
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Using the Hamilton’s principle (Eqs. (14)-(16)), kinematic relations (Eqs. (1)-(8)), the 
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where i

j  ( 1,2,...,6& 1,2,...,15i j  ) are given in Appendix A. 

 

 

3. Analytical solution 
 

Also, using the Hamilton’s principle (Eqs. (14)-(16)) and kinematic relations (Eqs. (1)-(8)), the 

boundary conditions equations can be obtained. The simply supported geometrical and physical 

boundary conditions for a truncated conical shell at the edges x=0, a of the top, bottom face-sheets 

and the core are 
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 (34) 

The displacement fields based on double Fourier series for a composite conical sandwich panel 

with simply supported boundary condition at the top and bottom face-sheets are assumed to be in 

the following form (j=t,b) 
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(35) 

where 
0 ( )j

mnU t , 
0 ( )j

mnV t , 
0 ( )j

mnW t , ( )j

xmn t , ( ) j

mn t
, ( )c

kmnU t , ( )c

kmnV t  
and ( )c

lmnW t are time-

dependent Fourier coefficients and m and n are the half wave numbers along x and θ directions, 

respectively. Also αm=mπx/l. The above double Fourier series functions assumed to satisfy the 

geometrical simply supported boundary conditions on all edges for a conical composite sandwich 

shell (See also, Qatu 2004, Reddy 2003). 

By substituting the stress resultants, compatibility conditions, and displacement field (Eq. (35)) 

in the governing equations (Eqs. (19)-(33)) and by applying the Galerkin method, the governing  

729



 

 

 

 

 

 

Keramat Malekzadeh Fard and Mostafa Livani 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.2

0.25

0.3

0.35

0.4

h/R
2

N
o
n

d
im

en
si

o
n

a
l 

n
a
tu

ra
l 

fr
eq

u
en

cy

 

 

Tong (1994)

Wu and Lee (2001)

Shu (1996)

Current method

 

Fig. 2 Variations of the nondimensional natural frequency with respect to the ratio of h/R2 

 

 

equations were reduced to the following system of the coupled ordinary differential equations 
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then the eigenvalue equation is obtained as follows 

[ ]{ } {0}mnK M c   (37) 

where 2

mn mn  , {c} is displacement vector for all the values of m and n, [K] is the (15×m× 

(n+1))×(15×m×(n+1)) stiffness matrix and [M] is the (15×m×(n+1))×(15×m×(n+1)) square mass 

matrix. Some of the mass and stiffness matrix elements for simply supported conical composite 

sandwich shells are given in Appendix B. 

 

 

4. Results and discussion 
 

In this section, some examples are considered and the obtained results are validated and 

discussed. To validate the present results and demonstrate their capability in predicting the free 

vibration analysis of a composite truncated conical sandwich panel, some examples are presented. 

To validate obtained results, a truncated conical sandwich panel was modeled in ABAQUS FE 

code and results obtained from the analytical formulations and FE code were compared together. 

Also, for composite laminated shells, obtained results by the present method were validated by 

comparing them with those in the literature. The agreement between the results was very good. 

 

Example 1: Free vibration analysis of conical laminated composite shell with simply 
supported boundary conditions (S. S. B.C.s)  

In this example, in order to validate the present formulation, free vibration of a truncated 
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conical composite laminated shell with two layered anti-symmetric cross-ply laminate and simply 

supported boundary conditions was investigated. Nondimensional natural frequencies were  

obtained from 1/2

2 11( / )R h A   . The conical angle is α=30° and the material properties of the  

individual layers are considered as: Ex/Eθ=15, Gxθ/Eθ=0.5, υxθ=0.25, υxz=υθz=0.3, Gxθ=Eθ/2(1+ 

υxz) and Gθz=Eθ/2(1+υθz). In Fig. 2, the dimensionless natural frequencies obtained from the 

presented improved higher order theory were compared with those obtained from first order shear 

deformation theory (FSDT) (Tong 1994, Wu and Lee 2001) and Love’s first approximation thin 

shell theory (Shu 1996) for 0.01<h/R2<0.1. The results obtained by the present method converged 

after 169 expressions (m=n=13). It can be seen that the agreement between the results obtained 

from current method and FSDT was very good but there was a little difference between the current 

results and those obtained by Love’s first approximation thin shell theory. It is clear, that the 

current high order improved theory reduces to FSDT with decreasing of the core thickness up to 

zero. Note that, with increasing the h/R2 ratio, the differences among results would increase.  

 

Example 2: Free vibration of a conical composite sandwich shell with S.S. B.C.s 
In this example, the free vibration of a truncated conical sandwich shell with a foam core and 

composite face sheets (Table 1) with simply supported (S.S. B.C.s) boundary conditions was  

investigated. Non-dimensional natural frequencies were obtained from 2 1/2

2( / ) /tL E h   , core  

to panel thickness ratio was hc/h=0.88, radius of the mid-plane of core to panel thickness ratio was 

Rc1/h=10
 
and length to radius of the mid-plane of core ratio was L/Rc1=1. In Table 2 obtained 

results were presented. In this table, the results were compared with presented FE results by 

ABAQUS code. The results obtained by the present method converged after 169 expressions 

(m=n=13). In this paper, to investigate the free vibration problem, in addition to the presented 

method, a finite element procedure was considered. Therefore, for free vibration analysis, 

ABAQUS software (version 6.8-1) was used. The modal frequency analysis in ABQAUS is 

performed in ABAQUS/Standard software, which uses a central difference rule to integrate the 

equations of motion explicitly. In this study, the face sheets and the foam core were meshed using 

SC8R and C3D8R elements, respectively. There was quite good agreement between the results 

and there was a little difference between them. Also, this table shows that the lowest non-

dimensional natural frequency for S.S. B.C.s occurred at mode number (m, n)= (1, 3).  

 

 
Table 1 Material properties of a conical composite sandwich panel 

Foam core Composite face sheets 

E1=E2=E3=0.10363 GPa E1=24.51 GPa, E2=7.77 GPa 

G12=G13=G23=0.05 GPa G12=G13=3.34 GPa, G23=1.34 GPa 

v=0.32, ρ=130 kg/m
3
 v12=0.3, ρ=1800 kg/m

3
 

 
Table 2 Nondimensional natural frequencies of a conical composite sandwich panel 

Mode No. (m,n) 

2 1/2

2( / ) / , 30tL E h      

Present model ABAQUS Discrepancy (%) 

(1,3) 211.82 202.33 4.6 

(1,2) 220.82 204.66 7.8 

(1,4) 224.85 211.14 6.5 
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Table 3 Mechanical and geometrical properties of a truncated conical composite sandwich panel 

Foam core E1=E2=E3=0.10363 GPa, G12=G13=G23=0.05 GPa, v=0.36, ρ=130 kg/m
3
 

Composite face sheets 
E1=131 GPa, E2=10.34 GPa, G12=G13=6.895 GPa, G23=0.05 GPa, 

v=0.22, ρ=1627 kg/m
3
 

Geometry h=0.03, hc/h=0.8, Rc1=10 h, L=Rc1, [0 90 0/core/0 90 0] 
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Fig. 3 Variation of the non-dimensional fundamental frequency with respect to the conical angles 

for the truncated conical composite sandwich panel with S.S. B.C.s obtained by ABAQUS FE 

code and presented formulations 

 

  
(a) φ=15 (b) φ=60 

Fig. 4 3D view of mode shapes of the conical sandwich shell for φ=15 and φ=60 for S.S. B.C.s 

 

 
Example 3 Effect of the conical angle on the free vibration of a composite truncated 

conical sandwich shell 
In this example the effect of the conical angle on the free vibration of a composite truncated 

conical sandwich shell with S.S. B.C.s were investigated. The mechanical and geometrical 

properties of the composite truncated conical sandwich panel were given in Table 3. 

Fig. 3 shows the variation of the non-dimensional fundamental frequency with the conical 

angles. In this figure, the results obtained from the presented improved higher order theory were 

compared with presented FE results by ABAQUS code. As can be seen in Fig. 3, by increasing the 

conical angle, the non-dimensional fundamental frequency decreased uniformly because, by  
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Table 4 Mechanical and geometrical properties of a conical composite sandwich shell 

Foam core E1=E2=E3=0.10363 GPa, G12=G13=G23=0.05 GPa, v=0.36, ρ=130 kg/m
3
 

Composite face sheets 
E1=131 GPa, E2=10.34 GPa, G12=G13=6.895 GPa, G23=0.05 GPa, 

v=0.22, ρ=1627 kg/m
3
 

Geometry h=0.03, hc/h=0.8, Rc1=10 h, L=Rc1, [0 90 0/core/0 90 0] 
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Fig. 5 Variation of the fundamental frequency (Hz) with respect to the length to radius ratio for 

the truncated conical composite sandwich shell with S.S. B.C.s 

 

 

increasing the conical angle, a decrease occurred in axial stiffness. Also this figure shows that the 

agreement between the results obtained from the current method and presented FE results by 

ABAQUS code was very good and acceptable. The 3D view of mode shape of the truncated 

conical sandwich panel for two different values of the conical angle is given in Fig. 4.  

   

Example 4 Effect of the length to radius ratio on the free vibration of a composite 
truncated conical sandwich shell 

In this example the effect of the length to radius ratio (L/Rc1) on the free vibration of a 

composite truncated conical sandwich shell with S.S. B.C.s was investigated. The mechanical and 

geometrical properties of the composite truncated conical sandwich shell were given in Table 4.  

The variation of the fundamental frequency (Hz) with the length to radius ratio is presented in 

Fig. 5. As can be observed in this figure, by increasing the length to radius ratio, fundamental 

frequency decreased rapidly because, by decreasing the length to radius ratio, the sandwich shell 

became stiffer. 

 

Example 5 Effect of the core to panel thickness ratio on the free vibration of a 
composite truncated conical sandwich shell 

In this example the effect of the core to panel thickness ratio (hc/h) on the free vibration of a 

composite truncated conical sandwich shell with S.S. B.C.s was investigated. The mechanical and 

geometrical properties of the composite truncated conical sandwich shell given in Table 4 were 

also used in this example. The variation of the fundamental frequency (Hz) with the core to panel 

thickness ratio is presented in Fig. 6, in which increasing the core to panel thickness ratio resulted  
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Fig. 6 Variation of the fundamental frequency (Hz) with respect to the core to panel thickness 

ratio for the sandwich shell with S.S. B.C.s 
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Fig. 7 Variation of the fundamental frequency (Hz) with respect to the core radius to panel 

thickness ratio for the truncated conical panel with S.S. B.C.s 

 

 

in the fundamental frequency increase because, by increasing the core to panel thickness ratio, the 

flexibility of the structure decreased. 

 

Example 6 Effect of the core radius to panel thickness ratio on the free vibration of a 
composite truncated conical sandwich shell 

In this example the effect of the core radius to panel thickness ratio (R1c/h) on the free vibration 

of a composite truncated conical sandwich shell with S.S. B.C.s were investigated. The mechanical 

and geometrical properties of the composite truncated conical sandwich shell given in Table 4 

were also used in this example. The variation of the fundamental frequency (Hz) with the core 

radius to panel thickness ratio is presented in Fig. 7. This figure shows that, by increasing the core 

radius to panel thickness ratio, the fundamental frequency decreased. It means that for larger core 

radius to panel thickness ratio, the structure would be more flexible. 
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5. Conclusions 
 

Using a new improved and enhanced higher order sandwich plate theory (IHSAPT) based on a 

three-layer model, the coupled partial differential governing equations on the composite truncated 

conical sandwich shell were derived based on the Hamilton’s principle. The above analysis is quite 

general and valid for any type of core, any type of boundary conditions, as well as for the cases 

where the conditions at the top (outer) face sheet are different from those at the bottom (inner) one 

along the same edge. The thickness of the top (outer) face sheet may be different from that of the 

bottom (inner) face sheet. Transverse shear and rotary inertia effects of face sheets have been 

taken into consideration. To validate obtained results, a truncated conical sandwich shell was 

modeled in ABAQUS FE code and results obtained from analytical formulations and FE code 

were compared together. Also, the present method is validated by comparing the present results 

with those in the literature. It is clear, that the current high order improved theory reduces to FSDT 

with decreasing of the core thickness up to zero. Therefore, using this comprehensive high order 

theory, various free vibration problems like free vibration of conical laminated shells can be 

analyzed easily. By increasing the conical angle for both boundary conditions, the non-

dimensional fundamental frequency decreased uniformly because, by increasing the conical angle, 

a decrease occurred in axial stiffness of the conical panel. By increasing the length to radius ratio, 

fundamental frequency decreased rapidly because, by decreasing the length to radius ratio, the 

sandwich shell became stiffer. By increasing the core to shell thickness ratio, resulted in the 

fundamental frequency increase because, by increasing the core to panel thickness ratio, the 

flexibility of the structure decreased. The results show that, by increasing the core radius to shell 

thickness ratio, the fundamental frequency decreased. It means that for larger core radius to shell 

thickness ratio, the structure would be more flexible. Using standard optimization programs like 

the commercial Genetic algorithm software, one can optimize the design parameters. The present 

approach can be linked with the standard optimization programs and it can be used in the iteration 

process of the structural optimization.  
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Nomenclature 
 

E1, E2
 

Young’s modules 

Gxθ,Gxz,Gθz Shear modules 

H Thickness of conical sandwich shells 

ht, hc, hb
 

Thickness of the top face sheet, core and bottom face sheet, respectively. 

( , , )i

nI i t b c  The moments of inertia of the top and bottom face sheets and the core 

Ks
 

Shear correction factor 

c

zM
 

Out-of-plane bending moment resultant of the core per unit length of the 

cross-section of the conical panel 

, , ,i i i i

x x xxM M M M    
Bending and twisting moments resultants per unit length of the cross-

section of the conical panel (i=t,b) 

* *

, , , ,

, , ,

c c c c

nxx nx n n x

c c c c

nxz n z nxz n z

M M M M

M M M M

  

 
 

Bending and twisting moments resultants per unit length of the cross-

section of the conical panel (n=1,2,3) 

, , ,i i i i

x x xxN N N N    
In-plane force resultants per unit length of the cross-section of the 

conical panel (i=t,b) 

,,,, c
xx

c
qz

c
qx

c
qq NNNN

 c
qz

c
xz

c
xq NNN *,,

 

In-plane force resultants per unit length of the cross-section of the 

conical panel 

Qij
 

Laminate stiffness referred to the principal material coordinates 

ijQ  Transformed stiffness 

,i i
xz zQ Qq  

Transverse shear force resultants (i=t,b) 

Rxi, Rxb, Rxc
 Principal radius of middle surface of the top and bottom face sheets and 

the core  

c
zR

 

Normal force resultant of the core per unit length of the cross-section of 

the conical panel 

, ,c c c

k k ku v w  
Unknowns of the in-plane and out of plane displacements of the core 

(k=0,1,2,3) 

, ,c c cu v w  Displacement components of the core 

0

iu ,
0

iv ,
0

iw  Displacement components of the face-sheets, (i = t, b) 

zt , zb ,zc 
Normal coordinates in the mid-plane of the top and bottom face-sheets 

and the core 

 

Greek letters 
 
ρt, ρb, ρc Material densities of the face-sheets and the core 

δ
 

Variational operator 

n12, n21
 Poisson’s ratio 

j

ii  Normal stress in the face sheets, (i=x,y), j=(t,b) 

c

ii  Normal stress in the core, (i=x,y,z) 

, ,j j j

x xz z     Shear stress in the face sheets, j=(t,b) 

c

x , c

xz ,
c

z  Shear stresses in the core 
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0 0 0 0 0, , , ,i i i i i

xx x xz xz       The mid-plane strain components, (i=t,b) 

, ,c c c

zz xx   
 

Normal strains components of the core 

, ,c c c

xz z x   
 

Shear strains components of the core 

ϕ1, ϕ2 Rotation of the normal section of mid-surface along x, θ 

ϕn 
Rotations about the transverse normal to the face sheets 
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Appendix A. 
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c c

c c c c c c c c c c
c c c c c c cc

b b t t t

c c c c c c c c

I I I I II I I
I I

h h h h h h h h h h

I I h I h I h I h I h II

h h h h h h h h

  

  

         

        
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2 8 16 16 16 16 2 84 4 4
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c c c cc c

c c

c cc c c c c c c c
c c c c c c cc c c
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c c c c c c c c c c
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I I I I I I h I h II I I
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h h h h h h h h h

h I h I

h


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

   
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, ,
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, , ,

4
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t t t t t t t t

c c c c c c c c
c c c c c c c

b b t t t t b t b

c c c c c c c
c c

t t
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 
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
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 
2

6

6

4
,

c

t

c

h I

h


 

1 22 3 4 5 3 4 5 6

8 82 3 4 5 2 3 4 5

2 2 2

3 4 54 5 6 4 6 4 5 6

8 8 84 5 6 4 6 4 5 6

6 4

8 4

2 4 8 2 4 8
, ,

2 8 8 2 8 4 4
, , ,

4

c c c c c c c c

b b b b b b b b

c c c c c c c c
c c c c c c c c

b b b t t b b b

c c c c c c c c
c

t b t

c

h I h I h I h I h I h I h I h I

h h h h h h h h

h I h I h I h I h I h I h I h I

h h h h h h h h

h h I h h

h

 

  



       

       

   6

6
,

c

b

c

I

h
 

1 3 4 5 5 64

9 2 32 3 4 4 5 5

2 3 43 4 5 6 4 6 4 5 6

9 9 92 3 4 5 4 6 4 5

2 4 4 8 8
,

( ) ( ) ( )

2 4 8 2 8 2 8 8
, ,

c c c c cc

c ct t t t t t

c cc c c c c c c c
c c c c c c c c

t t t t t t t t t

c c c c c c c c

h I h h I h I h I h II
I I

R x Rh h h R x h h R x h

h I h I h I h I h I h I h I h I h I

h h h h h h h h



  

   
           

  

           
6

2 2 2

5 64 6 4 5 6

9 94 6 4 5 6

,

4 4 4
, ,

c

c
c c c c c

t b t b t t t

c c c c c

h

h h I h h I h I h I h I

h h h h h
      
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1 3 4 5 5 64

10 2 32 3 4 4 5 5

2 3 43 4 5 6 4 5 6 4

10 10 102 3 4 5 4 5 6 4

2 4 4 8 8
,

( ) ( ) ( ) ( )

2 4 8 2 8 8 2 8
, ,

c c c c cc

c cb b b b b b

c cc c c c c c c c
c c c c c c c c

b b b b b b b t

c c c c c c c c

h I h h I h I h I h II
I I

R x R xh h h R x h h R x h

h I h I h I h I h I h I h I h I h

h h h h h h h h



  

   
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6
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,
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, ,

c

t

c
c c c c c
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I

h
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h h h h h
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11 112 3 4 5 2 3 4 5
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Appendix B. 
 

Some stiffness matrix coefficients for SS B.Cs. 
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Some mass matrix coefficients for SS B.C.s: 
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where: 
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