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Abstract. This paper introduces Romberg-Richardson’s method as one of the numerical integration tools
for computation of stress intensity factor in a pre-cracked specimen subjected to a complex stress field
across the crack faces. Also, the computation of stress intensity factor for various stress fields using existing
three methods: average stress over interval method, piecewise linear stress method, piecewise quadratic
method are modified by using Richardson extrapolation method. The direct integration method is used as
reference for constant and linear stress distribution across the crack faces while Gauss-Chebyshev method is
used as reference for nonlinear distribution of stress across the crack faces in order to obtain the stress
intensity factor. It is found that modified methods (average stress over intervals-Richardson method,
piecewise linear stress-Richardson method, piecewise quadratic-Richardson method) yield more accurate
results after a few numbers of iterations than those obtained using these methods in their original form.
Romberg-Richardson’s method is proven to be more efficient and accurate than Gauss-Chebyshev method
for complex stress field.

Keywords: pre-cracked specimen; stress intensity factor; weight function; mode-I loading; numerical
integration

1. Introduction

To determine the stress intensity factor (SIF) for a pre-cracked specimen, the standard solutions
available in the handbook (Tada et al. 2000) are derived for simple geometrical conditions and
stress distributions while the actual condition may not be the same. Because of the fact that the real
environment is influenced by the actual crack configurations subjected to complex stress field,
more effective tools for calculating stress intensity factor should be explored. The major
contribution in this field was made by Rice (1968a, b, 1972, 1974) whose work in the area of
elasticity and plasticity opened the door for computing stress intensity factor, strain energy rate and
J-integral.
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Further advancement in this field took place by the work of Rice and Rosengren (1968) which
helped in predicting the relationship between crack length and size of plastic zone according to
which the crack length was detected to be much larger than the size of plastic zone. Also, material
deformation considering plastic behavior was also analyzed by Drucker and Rice (1970). A
milestone in this area was the work of Bueckner (1970) for computation of SIF by introducing the
method of weight function. This proved to be a very helpful and flexible method of calculating
stress intensity factors because it requires a weight function for the cracked specimen for any
loading system applied to the specimen. Also, this method can be applied to a variety of crack
configurations, especially the cracks subjected to non-uniform stress fields. Because of uniqueness
of the weight function method, the method of deriving the weight function proposed by Petroski
and Achenbach (1978) started gaining a lot of attention. However, it was observed that Petroski-
Achenbach’s (1978) method was limited to constant and linear stress distribution of stress along
the crack faces. Gorner er al. (1985) showed that Petroski-Achenbach’s crack opening
displacement (COD) function could be used to limited cases where the reference stress intensity
factor was known which was further improved by Niu and Glinka (1987). Extending this method
to structures under different boundary conditions, computation of SIF using superposition
technique and weight function method was presented by Aaghaakouchak et al. (1990). Further
advancement in this field was made by Glinka and Shen (1991) who showed that same common
form of weight function can be used for a variety of crack configuration and thus weight function
is having universal characteristics irrespective of the crack configuration. Later, the investigation
on the use of the weight function method increased drastically as many authors used it for different
cases. Niu and Glinka (1990) used the weight function method to compute the SIF for cracks in
flat plates and plates having corners which showed that this COD function can be applied to semi-
elliptical surface cracks but justifying the weight functions for deepest point on crack. Since it is
important to know the weight function parameters in order to define the complete form of weight
function, Shen and Glinka (1991) showed the method of two reference intensity factors and weight
function characteristics to get weight function parameters. Shen et al. (1991) used two reference
stress intensity factors and general form of weight function to compute SIF for surface of semi-
elliptical crack in an infinitely wide plate. Zheng et al. (1995) used the weight function method to
determine SIF for an internal semielliptical crack in a thick cylinder considering fixed ratio of
inner radius to wall thickness, but the weight function parameter was calculated using two
reference stress intensity factors given by Shiratori and Miyoshi (1992). The weight function
approach with the indirect boundary integral method was also used by Lee and Hong (1996).
Ferahi and Meguid (1998) used a new approach for getting SIF by discretized initial weight
function and getting SIF through finite element calibration for crack emanating from a semi-
circular edge notch. Finite element analysis was used by Pastrama and Castro (1998) on the
displacement of crack faces to show that SIF for any loading can be obtained from known
solutions for one loading system. Ng and Lau (1999) used another form of weight function to
determine the stress intensity factor for through cracked specimens. Fett and Bahr (1999) came up
with new approach of Boundary Collocation Method for computing SIF. In the study, it was
shown that stress intensity factors and weight functions depend on Poisson's ratio for pure
displacement condition but independent for mixed boundary conditions at end of plate for mode-I
case. Fett (2001) used boundary collocation method to compute SIF with weight function and 7-
stress with Green’s function for internally cracked specimen under different boundary conditions.
Finite element analysis was carried out by Jones and Rothwell (2001) to obtain SIF solutions for
internal cracks in cylinder component. Li et al. (2001) employed a new technique of Laplace
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inversion to obtain dynamic SIF of a finite crack in an unbounded functionally graded material
under the influence of an antiplane shear loading. Finite element method was used by Rubio-
Gonzalez and Mason (2001) to compute the SIF for any cracked configuration under any loading
provided that complete solution for one loading is known. A new approach, i.e., modeling
approach of crack was presented by Kim ef al. (2003) who used crack-bridging model to model
partially patched crack plate with weight function for computing stress intensity factor. Mattoni
and Zok (2003) presented a method which involved the use of crack mouth opening displacement,
COD and available SIF solution for uniform tension and pure bending of single edge notched
specimen. Fett et al. (2004) also used the weight function for the kinked semi-infinite cracked
specimens in their study. Lira-Vergara and Rubio-Gonzalez (2005) employed Laplace and Fourier
transforms to solve equations of motions which are used to get dynamic stress intensity factor for
orthotropic material. Shahani and Nabavi (2006) took the problem of steady state thermo-elasticity
in an internally axial cracked semi-elliptical thick-walled cylinder by directing thermal and
mechanical boundary conditions. Jankowiak et al. (2009) presented a new method of point load
weight function for calculating SIF and also analyzed crack growth of planar crack under mode-I
loading. Closed-form thermal stress intensity factors for an internal circumferential crack in
cylinders with a variety of ratios of external to internal radii were derived by Nabavi and Ghajar
(2010) using the weight function method. Das et al. (2011) considered the problem of an edge
crack under normal point loading to the surface of a two orthotropic strip stacked together having
finite thickness in plane strain condition using Hilbert transform technique to compute SIF and
expressing displacements and stress in terms of harmonic functions. Ghajar and Saeid Googarchin
(2012) employed general point load weight function for plates with finite thickness of semi-
elliptical crack to calculate stress intensity factors for any point along the crack front for two
dimensional cases. Since the weight function method has been applied to a wide range of
problems, it is necessary to develop some technique so that stress intensity factors can be
computed with efficiency for cracks in complex stress fields using this approach.

Due to singularity problem at the integral boundary, the SIF can be obtained using specialized
numerical integration i.e., Gauss-Chebyshev method (Yang et al. 2005) for any kind of stress field
available across the crack faces. Further, closed form solution for the SIF can be obtained using
universal weight function for linear and constantly varying stress field, whereas the same is not
possible for non-linear stress field acting across the crack faces. Anderson and Glinka (2006) came
up with a powerful technique to integrate the weight functions for any type stress fields. They
proposed three methods, i.e., average stress over interval, piecewise linear and piecewise quadratic
method to calculate the stress intensity factor of nonlinear stress fields. Average stress over interval
is much easier to implement, but less accurate than the other two while piecewise linear method is
modest among three and provides more accurate results than average stress over intervals method.
The piecewise quadratic method provides most accurate result out of three methods, though it has
a disadvantage i.e., difficulty in its implementation. In light of above facts, this paper is aimed at
reducing the errors in the above existing three methods (average stress over interval, piecewise
linear and piecewise quadratic method) by modifying them with the help of Richardson’s
extrapolation method (1911). Thus, even the least accurate method of those three (average stress
over the interval) can be used with good accuracy for calculating the SIF. Also, Romberg-
Richardson’s numerical integration method is introduced in the present investigation for
determining the SIF. The results are systematically compared. The direct integration method is
used as reference for constant and linear stress distribution across the crack faces while Gauss-
Chebyshev method is used as reference for nonlinear distribution of stress across the crack faces.
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Fig. 1 Stress systems S,, 0,(x) and displacements u,(x,a) required for deriving weight function

2. Stress intensity factors using the weight function method

The principle of superposition holds true for weight function technique which eases the effort
of calculating stress intensity factors. According to this principle, it can be shown from Fig. 1 that
the stress intensity factor for a cracked specimen under the influence of any external load S is the
same as the stress intensity factor in a geometrically identical body subjected to local stress field
o(x) applied to the crack faces. The local stress field o(x), induced in the prospective crack plane,
can be easily predicted due to action of the external load S for an uncracked specimen.

2.1 Background

According to the weight function method, if weight function for a particular cracked body is
known, then stress intensity factor for any loading system applied to the body can be calculated by
simply integrating, the product of the weight function m(x,a) and the stress field o(x) in the
prospective crack plane (Fig. 1), over the entire length of crack a. Mathematically, the SIF can be
given as

K = ia(x)m(x,a)dx (1)
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Buekner (1970) and Rice (1972) showed that weight function can be predicted in terms of
crack opening displacement function u, and reference stress intensity factor K, (Fig.1) which can
be expressed as

H du @

r

mx,a) =2

where, H is Generalized modulus of elasticity whose value is E for plain stress and E/(I-v°) for
plain strain and v is Poisson’s ratio. Petroski and Achenbach (1978) provided an approximate crack
opening displacement function which can be given as

ur(x’a): o, {4[{, a(l_é’)+Ga(1_§)3/2} (3)

HA2 00\/;

If the reference stress intensity factor K, is known, the only unknown function G in Eq.(3) can
be derived from self consistency of Eq. (1) by putting, K=K,, o(x)=0,(x), and o,(x)=0( p(x) and
substituting Eq. (2) for m(x,a). In which, { is the ratio of distance at which load is applied to the
crack length i.e., x/a and p(x) is the non-dimensionalized stress distribution function along the
crack length. This results into the expression of weight function in the form of Eq. (4) (Niu and
Glinka 1987,1990).

m(x’a):72ﬂ'(2a—x) {1+M1[1—;‘j +M2(1_§j } 4)

In case of multiple loading, when there are multiple forces applied at a distance x from the
crack-tip to the crack face, the solution of the stress intensity factor can be simplified by using the
weight function method. However, in the present study, the cases of multiple loading are not
considered.

2.2 Universal weight function for one-dimensional cracks

Sha and Yang (1986) introduced a new form of weight function as expressed in Eq. (5),
because of inaccuracy in results predicted while using Eq. (4). Further, Glinka and Shen (1991)
found that one universal weight function expression can be used to approximate weight functions
for a variety of geometrical configurations of cracked bodies with one dimensional cracks of Mode
I type loading.

2 x 1/2 x x 3/2 ¥ nl/2
m(x,a)—m[HMl(l—aJ +M2(l—aj +M3[l—a) + .. +Mn(l—aj } (5)

Considering the four terms in Eq. (5), the universal weight function is expressed as

m(x,a):zﬂ-(za_x){l+M1(l—zj +M2(1—3j +M3(1—2J } (6)

In order to determine the universal weight function m(x, a) of Eq. (6) for a particular cracked
body, it is necessary to determine the three parameters M;, M,, and M;. Because the form of
universal weight function is the same for all cracks, the same integration procedure can be
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Table 1 Weight function parameters for various cracked geometries

Weight function Edge crack with finite Finite width plate with Double edge crack with
parameter (a/W=0.2) width plate central crack finite width plate
M, —0.0832121 0.1122954 0.0624526
M, 1.53307 —0.0693821 0.287762
M; 0.263238 0.434237 0.460859
+x Y
| s !
|
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(a) Edge crack in finite width (b) Central through crack in finite (c) (c) Double edge crack
plate width plate in finite width plate

Fig. 2 Loading and dimension of various specimen geometries

followed for calculating the stress intensity factors using Eq. (1).

Three specimen geometries i.e., edge crack with finite width plate, double edge crack with
finite width plate, and finite width plate with central crack as shown in Fig. 2 are considered in the
present study. Similar to the work of Glinka and Shen (1991), the weight function parameters for
various specimens under consideration are computed by using least square fitting method for the
given ratio of crack length to width of plate (a/W) as 0.2. These parameters are tabulated in Tablel.

In order to determine SIF, Anderson and Glinka (2006) proposed three methods (Method-I:
average stress over interval, Method-II: piecewise linear method, Method-III: piecewise quadratic
method), for integrating the weight function by considering a power law of stress field o(x)=0,(" in
Eq. (1). These methods are presented in subsequent para in which /# shows number of intervals, {
shows the ratio of distance at which load is applied to the crack length i.e., x/a.

Method- I (Average Stress Over Interval) Anderson and Glinka (2006) - In this method the
stress is taken as the average over the interval (i to ;. Since the stress is considered as constant
over each segment, #=0, indefinite integrals of weight function is given by

I, = 63—0‘/%[6M1(§ D+ AM (¢ -DT-C +3m @ -¢)-n2 -] D

Since stress is average over the interval i-1 to i, the average stress can be given by
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o,,+0,; (8)
2

O gy =

The stress intensity factor can now be found by adding every segment

Kl = Z {10(4’1’0-0(,')) - Io(é,,qsgo(,»))} (9)

i

where, n shows number of iterations and vary from 0 to 7.

Method- II (Piecewise linear Method) Anderson and Glinka (2006) - The method discussed
above can be more refined by considering the variation of stress distribution in linear way such
that its normal stress can be given by

O-(é/) =0, + O-lé/ (10)

where, 0y and o, are constants which can be computed for segment i-1 to i by

O = 0= ST (11)
Oy = ((Z-,L :Zl_l)) (12)

In this case the indefinite integral of weight function is given for n=1 as
oy [a [15M (7 -1)+aM (6 - -2 1= ¢ (13)
s N 27 4 sM cP(B3-2¢)-20(¢ + 21— ¢

Now, stress intensity factor can be given as

K, = 22 {[[o(§i500(i)) - Io(gi-lao'()(i))]"' [[o(§i900(i)) - Io(gi—l’o'()(i))]} (14)

i=1

Method-III (Piecewise Quadratic Method) Anderson and Glinka (2006) - If quadratic
polynomial in place of linear stress distribution is used to specify the stress variation, the stress
function is expressed as

c(()=0,+0,{ +0,{" (15)
where ay, 01, and o, are constants which can be computed for segment i-2 to i by

_ O-i—z(é/izflé/i - é‘i*lé/iz) + O-ifl(élizé/ifZ - gigiaz) + O';(ézizfzélm - é/;fzé/izq) (16)

Goiy = _ _ _ 2
(€= NGi8i = ¢in8i = ¢iagi i +615)
o =— Gifz(é’iz_é/izfl)"'o'ifl(gizfz_é’iz)"'o-i(é/izfl_é/izfz) (17)
) (gl - é‘i—l)(é‘i—lé’i - é‘i*Zé‘i - gi—Zgi—l + §12—2)
Tasy = - 0,8 —¢)+0,,(¢i—¢in)+0,(fis—¢iy) (18)

(gi - é’i—])(;i—lgi - gi—zé/i - é’i—zé/ifl + ;iiz)
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where j=i/2 and weight function integral for =2 will be given by

o, [a 140 M (C° +8M ,(15¢° =302 —4¢ —-8)J1-¢ + (19)
P210 V27 | 7M (20 —15¢ ) - 8(21C 2 + 28¢ +56)4/1— ¢

Hence, stress intensity factor will be

K, =Y S ¢ 0,0)-1.(C 0o} (20)

j=1 k=0

where, J=2""'/2. Since, we are only taking even values so the method for odd intervals is not
shown here. The method of integration of Eq. (1) using Gauss-Chebyshev and the introduction of a
new method using Romberg-Richardson method is presented as the Method-IV and Method-V
respectively.

Method- 1V (Gauss-Chebyshev’s Method)- Let us say there is a function f{x) required to be
integrated from a to b then using this method the integral can be obtained as

I: f(x)dx = uf w, f(x)Jl -z} (21)

g i-Hrx

where, w; is weight function having a value of z/h, nodes: x, = (u.z,)+v, z, = co ;
' 2

b—a b+a
sV =
2

in which ¢ =

Method-V (Romberg’s Integration and Richardosn’s Extrapolation)- Romberg-Richardson
method is introduced in the present work for determining the stress intensity factor. This method
takes into consideration the effect of singularity and can be divided into two types.

(a) Midpoint rule

o
R(n,0)=h,Y f(a+(j-05)h,) (22)
where , - b -4
n 2 n
(b) Nonlinear substitution in x
b 1
L f(x)dx = J._lu*l*f(x)*dg (23)
2 2
Where:x:(u*z)+v, ZZM, l = 3-g ),u:b_a, v:b+a
2 2 2 2

In present work, the nonlinear substitution method is used because of its higher accuracy over
midpoint rule. Further, certain modification is also introduced in existing Method-I, Method-II,
Method-III in their original form of integration using Richardson’s extrapolation method. By and
large, the above discussed methods (Method-I, Method-II, Method-III and Method-V) except
Gauss-Chebyshev method (Method-IV) are coupled with Richardson’s extrapolation method
which reduces the error during the segments. The Richardson’s extrapolation method is expressed as
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4*R(n+1,k) = R(n,k) (24)

R(n,k +1) = yOa

where, n is the number of iterations and £ is the length of element which will vary from 1 to ».

3. Results and discussion

The above mentioned methods (direct integration method, Gauss-Chebyshev method,
Romberg-Richardson method, average stress interval- Richardson method, piecewise linear-
Richardson method, piecewise quadratic- Richardson method) are applied to determine the stress
intensity factor for three types of specimen geometries under consideration i.e., edge crack with
finite width plate, central crack with finite width plate, double edge crack with the finite width
plate. The value of a/W ratio is kept constant as 0.2 for all the specimen geometries. The results of
non-dimensionalized stress intensity factors for different crack configurations and stress
distributions across crack faces obtained using various methods are presented in Tables 2-4.

Table 2 Non-dimensional SIF obtained from Romberg-Richardson Method and Gauss-Chebyshev Method

Non-dimensional stress intensity factor Kl/ao\/a

. Linearly Varying Loadin Nonlinear Loadin
Crack Constant Loading a(x)=09 ;](x) :IZO ( lg- 8 & o(x)=0y(1 +cos( 5
configuration " Romberg- Gauss- Romberg- Gauss- Romberg- Gauss-
Richardson =~ Chebyshev  Richardson = Chebyshev  Richardson = Chebyshev
Method Method Method Method Method Method
Number of

. . n=0 n=7 n=0 n=7 n=0 n=7 n=0 n=7 n=0 n=7 n=0 n=7
iterations

Edge crack 3.047 2.449 3.191 2.449 1523 1.058 1.595 1.058 3.047 2.092 3.191 2.092
Central crack 2.028 1.821 2.123 1.821 1.014 0.670 1.061 0.670 2.028 1.286 2.123 1.286

Douct;fclidge 2286 1982 2394 1982 1.143 0.771 1.197 0.771 2286 1.497 2394 1497

Table 3 Non-dimensional SIF obtained using various modified methods for constant and linearly varying
loading

Non-dimensional stress intensity factor K;/ao\/a

Constant Loading a(x)=0¢ Linearly Varying Loading a(x)=0y(1-{)
Crack ) Average stress  Piecewise ~ Piecewise = Average stress  Piecewise  Piecewise
configuration interval- linear- quadratic- interval- linear- quadratic-
Richardson  Richardson Richardson Richardson Richardson  Richardson
method method method method method method
Number of n=0to 7 =0t07  n=0t07 =0 =7  n=0t07  n=0to7
1terations
Edge crack 2.449 2.449 2.449 1.132  1.058 1.058 1.058
Central crack 1.821 1.821 1.821 0.764 0.670 0.670 0.670
Double cdge

1.982 1.982 1.982 0.860 0.771 0.771 0.771
crack
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Table 4 Non-dimensional SIF obtained using various modified methods for nonlinear loading

Non-dimensional stress intensity factor K/o\a
Nonlinear Loading a(x)=0,(1+cos(n())

Crack configuration

Average stress interval- Piecewise linear- Piecewise quadratic-
Richardson method Richardson method Richardson method
Number of iterations n=0 n=7 n=0 n=7 n=0 n=7
Edge crack 2.265 2.092 2.116 2.092 2.116 2.092
Central crack 1.529 1.286 1.340 1.286 1.340 1.286
Double edge crack 1.720 1.497 1.542 1.497 1.542 1.497
3.26
3.16 -
—o— Romberg-Richardson
3.06 - Method
2.96 - —— Gauss-Chebyshev Method
<
7@ 2.86 1 Direct Integration
o 2.76 -
266 - —*— Average St}ress over
Interval- Richardson Method
2.56 - —*— Piecewise Linear-
246 | = _ _ - _ _ _ Richardson Method
- — - - - - - Piecewise Quadratic-
2.36 . . . - . . . Richardson Method

Number of iterations

Fig. 3 Plot of non-dimensionalized parameter vs number of iterations for edge crack specimen
subjected to constant loading

As such the following cases are studied.

Case-1 (Constant Loading i.e., o(x)=04): The stress intensity factors determined for standard
specimen geometries i.e., edge crack with finite width plate, central crack with finite width plate,
double edge crack with the finite width plate subjected to constant stress distribution of o(x)=ay
across the crack faces (Tables 2-3) are presented in Figs. 3-5 respectively. In these figures, the
non-dimensioned parameter K,/ao\/a versus number of iterations are plotted. The values of K|
obtained using direct integration (closed form solution) are considered as the reference for the
comparison purpose. The legends shown in the figures are self explanatory.

From Fig. 3, it can be seen that at the start of iteration i.e., n=0, Gauss-Chebyshev method and
Romberg-Richardson method yield the results with an error 30.28% and 24.41% respectively.
Similarly, Fig. 4 shows that at the start of iteration, Gauss-Chebyshev method and Romberg-
Richardson method yield the results with an error 16.585% and 11.33% respectively. Further, it
can be observed from Fig. 5 that at n=0, Gauss-Chebyshev method and Romberg-Richardson
method yield the results with an error 20.78% and 15.34% respectively. After 7 iterations i.e., n=7,
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2.15
—o— Romberg-Richardson Method
2.05 -
—— Gauss-Chebyshev Method
= 1.95 1 —a— Direct Integration
5
M 185 - —— Average Stress over Interval-
o o = & u Richardson Method
175 | —*— Piecewise Linear-Richardson
. Method
—0— Piecewise Quadratic-
1.65 . . . : : : : Richardson Method

(=)
—_—
\S]

3 4 5 6 7
Number of iterations

Fig. 4 Plot of non-dimensionalized parameter vs number of iterations for central crack specimen
subjected to constant loading

2.44 —o— Romberg-Richardson Method
2.34 -
—— Gauss-Chebyshev Method
= 2.24 -
2 —a&— Direct Integration
J2.14 -
—%— Average Stress over Interval-
2.04 1 Richardson Method
= i & = | —*— Piecewise Linear-Richardson
1.94 T T T T T T T Method

0 1 2 3 4 5 6 7

Number of iterations

Fig. 5 Plot of non-dimensionalized parameter vs number of iterations for double edge crack specimen
subjected to constant loading

both the methods (Gauss-Chebyshev method, Romberg-Richardson method) predict the result
without any error for all the three specimen geometries. The figures also show that the other three
methods (average stress interval- Richardson method, piecewise linear- Richardson method,
piecewise quadratic-Richardson method) give the constant value of SIF throughout the iterations
with insignificant error.

Case-II (Linearly Varying Loading i.e., o(x)=0y(1-{)): The stress intensity factors determined
for standard specimen geometries i.e., edge crack with finite width plate, central crack with finite
width plate, double edge crack with finite width plate subjected linearly varying stress distribution
of a(x)=0y(1-{) (Tables 2-3) are plotted in non-dimensional form through Figs. 6-8 respectively. In
this case, the values of K; obtained using direct integration method (closed form solution) are also
considered as the reference.
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16 —o— Romberg-Richardson Method
1.5 - —— Gauss-Chebyshev Method
= 1.4 . :
S —#— Direct Integration
L 1.3
M 1.2 - —<— Average Stress over Interval-
Richardson Method
LT - - - - = —*— Piecewise Linear-Richardson
1 . . . . . . . Method
0 1 2 3 4 5 6 7 —0— Piecewise Quadratic-
Richardson Method

Number of iterations

Fig. 6 Plot of non-dimensionalized parameter vs number of iterations for edge crack specimen
subjected to linearly varying loading

1.12 —o— Romberg-Richardson Method
1.02 —— Gauss-Chebyshev Method
<
700 0.92 —a— Direct Integration
2 0.82 —<— Average Stress over Interval-
0.72 Richardson Method
>—n = = = —*— Piecewise Linear-Richardson
0.62 Method
0 1 ) 3 4 5 6 7 —0— Piecewise Quadratic-
Richardson Method

Number of iterations

Fig. 7 Plot of non-dimensionalized parameter vs number of iterations for central crack specimen
subjected to linearly varying loading

1.22 - —— Romberg-Richardson Method
1.12 4 —&— Gauss- Chebyshev Method
= 1.02 - . .
S —&— Direct Integration Method
M 0.92
0.8 —%— Average Stress over Interval-
: - - - R}charQSon Method.
0.72 : . : : : : . —*— Piecewise Linear-Richardson
o 1 2 3 4 5 6 7 glethoq Quadat
. . —0— Piecewise Quadratic-
Number of iterations Richardson Method

Fig. 8 Plot of non-dimensionalized parameter vs number of iterations for double edge crack specimen
subjected to linearly varying loading
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It can be seen from Fig. 6 that at the start of iteration, Gauss-Chebyshev method, Romberg-
Richardson method and average stress interval- Richardson method yield the results with an error
50.84%, 44.04% and 7.041% respectively. Similarly, Fig. 7 shows that at the start of iteration,
Gauss-Chebyshev method, Romberg-Richardson method and average stress interval-Richardson
method yield the results with an error 58.478%, 51.335% and 14.101% respectively. Further, it can
be observed from Fig. 8 that at =0, Gauss-Chebyshev method, Romberg-Richardson method and
average stress interval- Richardson method yield the results with an error 55.238%, 48.241% and
11.533% respectively. Figs. 6-8 show that after 7 iterations, all the five methods (Gauss-
Chebyshev method, Romberg-Richardson method, average stress interval- Richardson method,
piecewise linear- Richardson method, piecewise quadratic- Richardson method) predict the result
without any error for the three specimen geometries under consideration.

Case-III-(Nonlinear Loading i.e., 6(x)=c(1+cos(n)))

The stress intensity factors determined for standard specimen geometries i.e., edge crack with
finite width plate, central crack with finite width plate, double edge crack with finite width plate
subjected nonlinear stress distribution of o(x)=0o(1+cos(x()) (Tables 2 and 4) are plotted in non-
dimensional form through Figs. 9-11 respectively. In this case, the values of K; obtained using
Gauss-Chebyshev method after 7 iterations are considered as the reference.

It can be seen from Fig. 9 that at the start of iteration, Romberg-Richardson method, average
stress interval- Richardson method, piecewise linear- Richardson method and piecewise quadratic-
Richardson method yield the results with an error of 45.67%, 8.26%, 1.139% and 1.139%
respectively. Similarly, Fig. 10 shows that at the start of iteration, Romberg-Richardson method,
average stress interval- Richardson method, piecewise linear- Richardson method and piecewise
quadratic- Richardson method yield the results with an error of 57.732%, 18.884%, 4.192% and
4.192% respectively. It can also be observed from Fig. 11 that at n=0, Romberg-Richardson
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3.02 Method

2.92 -

287 | —— Gauss- Chebyshev Method
7‘1 2.72 A
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230 - —*— Piecewise Linear-Richardson

2'22 | Method

2.12 A = = 0 = Piecewise Quadratic-
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4 5 6 7
Number of iterations

Fig. 9 Plot of non-dimensionalized parameter vs number of iterations for edge crack specimen subjected
to nonlinear loading
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Fig. 10 Plot of non-dimensionalized parameter vs number of iterations for central crack specimen
subjected to nonlinear loading
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Fig. 11 Plot of non-dimensionalized parameter vs number of iterations for double edge crack specimen
subjected to nonlinear loading

method, average stress interval- Richardson method, piecewise linear- Richardson method and
piecewise quadratic - Richardson method yield the results with an error of 52.732%, 14.912%,
3.029% and 3.029% respectively. Further, Figs. 6-8 show that after 7 iterations, all the four
methods (Romberg-Richardson method, average stress interval- Richardson method, piecewise
linear- Richardson method, piecewise quadratic-Richardson method) predict the result with
insignificant error for the three specimen geometries.

4. Conclusions

From the present study, the following conclusions can be drawn.
* For obtaining the closed form solution, the method of average stress over intervals is not the
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accurate method when compared to piecewise linear and piecewise quadratic method. But,
modifying the existing methods (average stress over intervals, piecewise linear, and piecewise
quadratic method) by using the Richardson’s extrapolation method provides more accurate results
than the methods in their original form. The Richardson’s extrapolation method improves accuracy
of all three methods and thus, average stress over interval method which is the weakest method
among all the three methods can also be used with good accuracy for computing stress intensity
factor even for non-linear distribution of stress along the crack faces.

* The Gauss-Chebyshev method provides an accurate result but its iteration time and
requirement for number of iterations are higher. Hence, the Romberg’s method with Richardson
extrapolation is introduced in the present work which is an accurate method and it does not need
those many numbers of iterations. Hence, it can be a powerful tool for determining stress intensity
factor using numerical integration which reduces the effort of doing more number of iterations.
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