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Abstract.  It is intended to perform buckling analysis of steel gabled frames with tapered members and 

flexible connections. The method is based on the exact solutions of the governing differential equations for 

stability of a gabled frame with I-section elements. Corresponding buckling load and subsequently effective 

length factor are obtained for practical use. For several popular frames, the influences of the shape factor, 

taper ratio, span ratio, flexibility of connections and elastic rotational and translational restraints on the 

critical load, and corresponding equivalent effective length coefficient are studied. Some of the outcomes are 

compared against available solutions, demonstrating the accuracy, efficiency and capabilities of the 

presented approach. 
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1. Introduction 
 

Gabled steel portal frames with non-prismatic members are the most commonly steelwork 

among the structures used in single storey industrial buildings. The members of these 

constructions are generally made of I-shape plates in two types: with linearly varying amplitudes 

of web and flanges or web-tapered I-section. Subsequently, the member moment of inertia 

variation is approximated as cubic and parabolic functions, respectively. It should be added that 

the tapering for both beams and columns provide a better distribution of structural strength, and 

they offer a lighter design. This research deals with the buckling analysis of semi-rigid gabled 

frames consisting of linearly tapered I-section elements. It is reminded that the flexibilities of 

connections and elastic supports of the frame are modeled by linear springs. 

Stability represents a fundamental problem, which must be mastered to ensure the safety of 

structures against collapse (Bazant 2000). Elastic buckling of end-loaded, tapered, cantilevered 

beams with initial curvature were investigated by Wilson and Strong (1997). Essa (1998) 

developed a new approximate method for the determination of effective length factors for columns 

in unbraced frames. Based on stability theory of rigid steel frames and using the three-column sub-

assemblage model, Wang and Li (2007) presented the governing equations for determining the 
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effective length factor of the columns in semi-rigid composite frames. Recently, Rayleigh-Ritz 
procedure for determination of the critical load of tapered columns was utilized by Marques et al. 
(2014). The stability analysis and design of the gabled frames have been treated in the past, and 
still remains an important research topic. Lu (1964) presented a graph to determine the effective 
length factors of uniform columns for a pin-based, and partially restrain-based gabled frames. Lee 
et al. (1971), Lee and Morrell (1975) proposed recommendations in structural design guide for 
calculation of effective length coefficients of tapered columns in the gabled frames. Charts for 
determining effective length factors of gabled frame columns were presented by the AISC standard 
(AISC 1999). Based on the matrix force method, a program for calculating member sizes to yield a 
minimum weight gabled frame with tapered members was developed by Miller and Moll (1979). 
Fraser (1980) presented design-aid information for calculating the effective length factors of 
prismatic columns in pitched-roof (gabled) frame. Moreover, this investigator, proposed guidelines 
for design of the gabled frames with tapered members (Fraser 1983). Using the finite element 
method, Karabalis and Beskos (1983) studied the static, dynamic and stability analyses of 
structures including gabled frames, composed of tapered members. 

Manolis et al. (1986) utilized the assumptions of first-order rigid-plastic theory and the 
principle of virtual work for the elasto-plastic analysis and design of gabled frames. By using the 
equilibrium and continuity conditions, an approximate method for calculating the critical load of 
simple portal or gabled steel frames with varying moment of inertia, was proposed by Irani (1988). 
Simitses and Mohamed (1989) studied the non-linear analysis of gabled frames with linear and 
non-linear flexible joint connections and elastic rotational restraints. Furthermore, these 
researchers, investigated the effects of several parameters on the buckling mode and critical load 
of the gabled frame (Mohamed and Simitses 1989). By using shaking table, the dynamic 
characteristics of the pinned-base steel gabled frame with prismatic members were obtained by 
Hwang et al. (1989). Rezaiee-Pajand (1990) presented the formulation for calculating end moment 
of the gabled frame members which are primarily subjected to bending. A non-linear elasto-plastic 
instability analysis of rigid and flexibly connected gabled frames with uniform and non-uniform 
members was proposed by Simitses and Mohamed (1990), Mohamed et al. (1991, 1992). 

Vlahinos and Cervantes (1990) investigated the buckling and post-buckling behavior of planar 
steel gabled frame under static loading with imperfection. The dynamic responses of a one-fifth-
scale gabled frame composed of tapered members subjected to El Centro earthquake ground 
motions, using shaking table, were obtained by Hwang et al. (1991). An algorithm for the 
optimum design of steel frames including gabled frame with prismatic and tapered I-section 
members was presented by Hayalioglu and Saka (1992), Saka (1997). Ronagh and Bradford 
(1996) developed a general finite element method for the analysis of coupled local and lateral 
buckling of steel structures composed of tapered I-sections. This method is used to investigate the 
significance of distortion in the buckling of a typical gabled frame under gravity loads. The elastic 
in-plane buckling, second-order behavior and design of unbraced pitched-roof steel frames with 
rigid and semi-rigid connections were studied by Silvestre and Camotim (2005, 2007) and 
Silvestre et al. (1998, 2000). 

Li and Li (2000, 2002) used the Chebyshev Polynomial Approach for solving the governing 
equations of a tapered Timoshenko-Euler beam element in the analysis of steel portal frames. 
Accordingly, static, dynamic and stability responses of individual tapered members and a gabled 
frame with tapered beam-column were investigated. In another article, these investigators, studied 
integrated structural designs, with consideration of system readability for steel gabled frames 
comprising tapered members (Li and Li 2004). Moreover, Li et al. (2003) proposed a concentrated 
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plasticity model for second-order inelastic analysis of the steel frames of tapered members with a 
slender web and responses compared with the experimental test results of a gabled frame. A power 
series approach was used by Al-Sadder (2004) for solving the fourth-order ordinary differential 
equation of a non-prismatic beam-column member with variable coefficients. Advanced analysis 
of steel portal and gabled frame structures subjected to lateral torsional buckling effects was 
performed by Yuan (2004). Liao et al. (2005) analyzed the effects of the joint flexibility on the 
steel gabled frames with pinned and fixed bases. A robust finite element procedure for large 
deflection and inelastic analysis of imperfect portal and gabled steel frames with semi-rigid bases 
was suggested by Chan et al. (2005). They also studied the non-linear behavior of semi-rigid 
frames with various modes of initial imperfection. Plane steel portal frames with pitched roof and 
exposed to fire were examined by Papadopoulos et al. (2008). Saffari et al. (2008) proposed 
design-oriented charts for quick calculation of the effective length factor of columns in steel 
gabled frame with tapered members. A prismatic and non-prismatic stiffness matrix solution for 
haunched-rafter pitched-roof steel portal frames was presented by Issa and Mohammad (2009), 
based on the virtual work approach. 

Safavi and Moharami (2009) obtained the critical load and corresponding effective length 
coefficient of tapered gabled frame by equating the structural external work to its internal flexural 
strain energy. Xu et al. (2010) studied the effective length factor of tapered gabled portal frames 
with leaning columns. A new procedure to find the exact shape functions and stiffness matrices of 
non-prismatic beam elements was obtained by Shooshtari and Khajavi (2010). Accordingly, they 
studied behavior of gabled frame with non-prismatic Euler-Bernoulli members. Li et al. (2011) 
investigated the in-plane buckling analysis of gabled arch frame steel building using finite element 
method. Based on the numerical simulations and experimental research, Wang et al. (2011), 
studied the effects of semi-rigid connections in gabled frames. Tajmir Riahi et al. (2012) used the 
slope-deflection method to present a new method for buckling analysis of tapered columns and 
gabled frames with tapered members. Recently, based on the advanced finite element method, 
Cristutiu and Nunes (2013a, b) studied the behavior of steel pitched-roof portal frames with 
tapered web and flange members considering lateral restraint and initial imperfections. 

Based on this brief review, it is obvious that no attempt has been made yet for considering the 
flexibility of connections and supports in buckling analyses of the gabled frames with different I-
tapered members. The object of this study is to derive the exact expression for the gabled frame 
critical load, taking into account the above effects with various I-sections. Finding numerical 
results, demonstrating the accuracy, efficiency and capabilities of the presented approach, is 
another goal of this article. Furthermore, the influences of several parameters such as the taper 
ratio, span ratio, flexibility of connections and elastic supports on the buckling load and 
corresponding equivalent effective length factor will be investigated. The outcomes obtained 
herein can be readily applied for the stability design of a semi-rigid gabled frame with tapered 
members. 
 
 
2. Stability formulation 
 

In this section, the elastic stability analysis of the gabled frames shown in Figs. 1(a)-(b) will be 
performed. The frame in Fig. 1(a), has uniform members; while that of Fig. 1(b) is composed of 
the tapered members. In both of the gabled frames, α is the frame slope. It is assumed that the 
columns and beams have lengths of lc and lb, respectively, and their moments of inertia vary in the  
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(a) With prismatic members (b) With non-prismatic members 

Fig. 1 Geometry and sign convention of gabled frames with flexible supports and connections 
 

 
following forms: 

( ) ( 1,4)

( ) ( 2,3)

n
i

i i c

n
j

j j b

x
I x I i

x
I x I j

b

a

      
       

                       (1) 

In these functions, a and xi are distances from the origin for the columns and similarly, b and xj 
represent distances from the origin for the beams, as shown in Fig. 1(b). Ic and Ic-b are the moments 
of inertia at the foundations (i.e., points 1 and 5) and eaves (i.e., points 2 and 4) of the columns, 
respectively. The beams’ moments of inertia at the apex (i.e., point 3) and eaves are Ib and Ib-c, 
respectively. As shown in Fig. 1(b), the moments of inertia of beams and columns for the uniform 
gabled frame, are Ib and Ic, respectively. Each frame is subjected to two vertical concentrated 
loads, P1 and P4, on the centerline of the columns. It is assumed that the left and right beam-to-
column connections, have rotational stiffnesses of KcL and KcR, respectively. The elastic bracing 
support is modeled by a horizontal spring with translational stiffness Kb, which is located at the top 
of the right hand side column. Furthermore, the rotational stiffness of elastic supports at the left 
and right hand side columns are modeled by springs with rotational stiffnesses of KfL and KfR, 
respectively, which are located at the bases of the columns. The behaviors of all springs are 
considered to be linear. 

In Eq. (1), n is the shape factor and represents the moment of inertia variation along the 
member length. According to Fig. 2(a), the moment of inertia variation along the length of I-
section member, with linearly varying amplitudes for web and flanges, is approximated as cubic 
function (i.e., n=3). Similarly, based on the Fig. 2(b), the moment of inertia variation along the  
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(a) Varying both of depth, d and width, b (n=3) (b) Varying depth, d and constant width, b (n=2) 

(c) Constant both of depth d and width, b (n=0) 

Fig. 2 Various cross-sectional shape factors for linear tapered I-section member 

 
 

length of I-section web-tapered members is approximated as parabolic function (i.e., n=2). It 
should be mentioned that when the member is uniform, n equals to zero (Fig. 2(c)). 

Based on the Euler-Bernoulli beam-column theory, the governing fourth-order differential 
equations for the columns and beams are written as below: 

2 22
1 1 1

12 2 2
1 1 1

22
2 2

2 2
2 2

22
3 3

2 2
3 3

2 22
4 4 4

42 2 2
4 4 4

0

0

0

0

n

c

n

b

n

b

n

c

x d w d wd
EI P

adx dx dx

x d wd
EI

bdx dx

x d wd
EI

bdx dx

x d w d wd
EI P

adx dx dx

       
    

                     
        

     

                    (2) 

For the shape factors n=0, 2 and 3, the general solutions of Eq. (2), are presented in Eqs. (3)-
(5), respectively. 

1 1
1 1 1 1 1 1

3 2
2 2 2 2 2 2 2 2

3 2
3 3 3 3 3 3 3 3

4 4
4 4 4 4 4 4

sin cos

sin cos

c c

c c

x x
w A B C x D

l l
w A x B x C x D
w A x B x C x D

x x
w A B C x D

l l

 

 

   
       

    
   
    

               

                (3) 
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2 2

1 1 1
1 1 1 1 1 1

2 2
2 2 2 2 2 2

3 3
3 3 3 3 3 3
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 
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     
 
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 

    
               

4 4 4x D













       (5) 

where 2 2 /c cPl EI  , halaaa c /)/(   and Ai, Bi, Ci, and Di (i=1,2,3,4) are integration 
constants to be determined using boundary and kinematic conditions. These constants can be 
obtained from Tables 1 and 2, for prismatic and non-prismatic gabled frame, respectively. It 
should be mentioned that the bending moments have the following formula: 

2

2
( ) ( ) ( 1,4)i

i i i i
i

d w
M x EI x i

dx
                         (6) 

On the other hand, the shear forces of the columns have the following form: 

2

2
( ) ( ) ( 1,4)i i

i i i i i
i ii

d w dwd
V x EI x P i

dx dxdx

 
     

 
                (7) 

The corresponding bending moment and shear force of the beams can be determined from the 
following equations: 

2

2
( ) ( ) ( 2,3)j

j j j j
j

d w
M x EI x j

dx
                        (8) 

2

2
( ) ( ) ( 2,3)j

j j j j
i j

d wd
V x EI x j

dx dx

 
    

 
                   (9) 

In practice, both columns and beams in a gabled frame have the same sectional properties (i.e., 
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Table 1 Kinematic and boundary conditions of a uniform gabled frame (i.e., Fig. 1(a)) 

Joint Condition 

1 
w1(0)=0 

M1(0)+KfLw′
1(0)=0 

2 

w2(lb)−w1(lc) sinα=0 
w1(lc)−w4(lc)=0 
M1(lc)+M2(lb)=0 

M2(lb)=KcL[w′
2(lb)−w′

1(lc)] 

3 

w2(0)−w1(lc) sinα=0 
w3(0)−w4(lc) sinα=0 

M2(0)+M3(0)=0 
w′

2(0)−w′
3(0)=0 

4 

w3(lc)−w4(lc) sinα=0 
V1(lc)+V4(lc)+Kbw4(lc)=0 

M2(lb)+M4(lc)=0 
M3(lb)=KcR[w′

3(lb)−w′
4(lc)]  

5 
w4(0)=0 

M4(0)+KfRw′
4(0)=0 

 
Table 2 Kinematic and boundary conditions of a non-uniform gabled frame (i.e., Fig. 1(b)) 

Joint Condition 

1 
w1(a)=0 

M1(a)+KfLw′
1(a)=0 

2 

w2(g)−w1(h) sinα=0 
w1(h)−w4(h)=0 
M1(h)+M2(g)=0 

M2(g)=KcL[w′
2(g)−w′

1(h)]  

3 

w2(b)−w1(h) sinα=0 
w3(b)−w4(h) sinα=0 

M2(b)+M3(b)=0 
w′

2(b)−w′
3(b)=0 

4 

w3(g)−w4(h) sinα=0 
V1(h)+V4(h)+Kbw4(h)=0

M3(g)+M4(h)=0
M3(g)=KcR[w′

3(g)−w′
4(h)] 

5 
w4(a)=0 

M4(a)+KfRw′
4(a)=0

 
 

I1(x1)=I4(x4) and I2(x2)=I3(x3)), and mostly loaded by equal loads (i.e. P1 = P4). Accordingly, it is 
assumed that P1=P4=P, I1=I4 and I2=I3. At this stage, a gabled frame with tapered members, as 
shown in Fig. 1(b), will be analyzed. By utilizing the boundary and kinematic conditions, and also 

the following dimensionless parameters, cc EIPl /22   , cb II / , cb lll / , haa / , 

hbb / ,  hgg / , )/1/(1 bcRbcR lKEIK  , )/1/(1 cfLcfL lKEIK  , 
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)/1/(1 cfRcfR lKEIK  , )/1/(1 3
cbcb lKEIK  the following system of non-dimensional 

equations for shape factor n=3, can be written as: 
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  

       
  

1 1 11,1 ,1

2 2
1 1,1 ,0 ,1 ,0

1 11 ,1 ,1

4 4 44,1 ,1

2 2
4 4,1 ,0 ,1 ,0

4 44 ,1 ,1

0

1 1

(1 ) 0

0

1 1

(1 )

a a

fL a a a a

a a

a a

fR a a a a

a a

A Y B J C D

K A Y a a Y a B J a a J a

C a a A Y B J

A Y B J C D

K A Y a a Y a B J a a J a

C a a A Y B J

   



   



   
               

   

   
               

  

 

 

 

 

21
1 1 1 2 2 21 1

21
1 1 1 2 2 21 1

34
4 4 4 3 3 31 1

34
4 4 4 3 3 31 1

1

0

sin ln 0

sin ln 0

sin ln 0

sin ln 0

C D
A Y B J D a A B b C b

ba
C D

A Y B J D a A B g C g
ga

C D
A Y B J D a A B b C b

ba
C D

A Y B J D a A B g C g
ga

Y










 

          
 
 

          
 
 

          
 
 

          
 

 

   

1 4
1 4 1 4 1 41

2 2
4 4 41 4 4 1 41 1

2
2

1 1 2 21 1 3

3 3

2 2

1 11 0 1 0

( ) ( ) 0

(1 )( ) (1 )( ) 0

(1 )
2 0

1 1

b

cL

C C
A A J B B D D a

a

K a C C A aY B aJ C D a a C C

a
A Y B J B g D

b

a a
K A Y Y B J J

a a

 

 

 


      

            


   

       
                                

   

   

2 21
2 2 2 22 2 2 2

2
2

4 4 3 31 1 3

3 3

2 2

4 41 0 1 0

3 34
3 2 2

1 1
1 2 1 2 0

(1 )
2 0

1 1

1
1

cR

C B D g g
C D B g B g D

g b ba g b b
a

A Y B J B g D
b

a a
K A Y Y B J J

a a

C B D
C

ga g b

 

 

                   
   


   

       
                                

         

     

3 3 3 32

2 2 3 3

2 2

2 3 3 2

2 3 2

1
2 1 2 0

2 2
0

0

g g
D B g B g D

b bb
B D B D

b bb b
B B D D

C C
b b
















































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The non-dimensional constants 1 1 1 211 1 1 1 2, , , / , / ,A A B B C C a D D a A A h      

3
2 2 3 3 32 32 2 2 3 3 3/ , , / , / , / , ,B B h C C h D D h A A h B B h C C h D        

3
4 4 443 4 4 4 4/ , , , , /D h A A B B C C a D D a     are utilized. The following 

abbreviations can be used for simplifications: 

,1 ,1 ,0 ,0

2 2 2 2
1, , 1, , 0, , 0, ,

1 1 1 1a a a a

a a a a
Y BesselY J BesselJ Y BesselY J BesselJ

a a a a

          
                           

3 3 3 3

2 2 2 2

1 1 0 0

2 2 2 2
1, , 1, , 0, , 0,

1 1 1 1

a a a a
Y BesselY J BesselJ Y BesselY J BesselJ

a a a a

   
       
                           
       

. 

When the shape factor n is equal to 2, the following system of dimensionless equations can be 
similarly obtained: 

1 11

2

2 2
1 1 1 11

4 44
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4 4 4 44
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1
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  
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     


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(11)

In the above relationships, the subsequent dimensionless constants are assumed: 

1 1 1 2 2 21 21 1 1 1 2 2 2 2/ , / , , , , , , ,A A a B B a C C h D D A A h B B h C C D D         

3 3 3 4 4 43 43 3 3 3 4 4 4 4, , , , / , / , , ,A A h B B h C C D D A A a B B a C C h D D         

2
1 1

ln
41

a

a a


            

. 

For the gabled frame with uniform members, the following system of non-dimensional 
equations can be derived: 
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in which, 2
1 1 1 2 21 21 1 1 1 2 2 2/ , / , , / , , , ,c c c c cA A l B B l C C D D l A A l B B l C C        

2
2 3 3 3 4 43 42 3 3 3 3 4 4 4/ , , , , / , / , / , ,b c c b c cD D l A A l B B l C C D D l A A l B B l C C       

4 4 / cD D l . 

At this stage, the determinant of Eqs. (10)-(12) is set to zero. This leads to the non-dimensional 
critical load factor, ρ2

cr, of the uniform (i.e., n=0) and non-uniform (i.e., n=2 and n=3) gabled 
frames, with flexible connections and elastic supports. 

det K=0                                  (13) 

The matrix K, which includes parameters for the various shape factors (i.e., n=0, 2 and 3) are 
explicitly given in the Appendix A. By solving Eq. (13), the dimensionless critical load factor, ρ2

cr, 
can be found. Consequently, the following frame buckling load will be obtained: 

2
2 2

2 2 2( )
c m m

cr cr cr
c c c

EI EI EI
P

l l Kl

                           (14) 

As a result, the equivalent effective length factor of column, K, is computed in the following 
form: 

2
cr

K



                                 (15) 

It should be noted that 2 2 /cr cr c mP l EI   is the dimensionless equivalent critical load factor and 
represents the load-carrying capacity of the frame. Moreover, Im is the moment of inertia at the 
middle of the column (i.e., for x=a+0.5lc). For uniform column, Im= Ic. 
 
 
3. Verification and numerical examples 
 

In order to demonstrate the efficiency, accuracy and application of the suggested method, four 
numerical examples are analyzed in this section. The findings are compared with those obtained by 
other methods. 
 

3.1 Example 1 
 
As shown in Fig. 3, critical load of the gabled frame, with tapered web I-section members is 

given by the dimensionless design charts (AISC 1999, Saffari et al. 2008). Steel I-section tapered 
columns have total depth varying linearly from a depth of 21 cm at supports 1 and 5 to a depth of 
61 cm at eave points. Furthermore, for the steel beams, the total depth varies linearly from 61 cm 
at the eave points to a depth of 37 cm at the apex point. Accordingly, the members' moments of 
inertia at the foundations (Ic), eaves (Ic-b=Ib-c) and apex (Ib) are 1527 cm4, 18181 cm4 and 5552 
cm4, respectively. The materials' elastic modulus is 2.1×106 kg/cm2. It should be noted that the 
moment of inertia variations for all structural members is parabolic (i.e., n=2). 

The required parameters for stability matrix, as given in Appendix A, are calculated as follows: 
244.84 827.56 827.56 670

0.2898, 0.9795, 1.7726
244.84 600 244.84 600 244.84 600

a b g
a b g

h h h


        

  
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Fig. 3 Geometry and material constants of steel gabled frame with tapered I-section members 
and hinged supports (example 1) 

 
Table 3 Comparison of the critical loads, Pcr(kN), of the gabled frame in example 1 

Proposed method Saffari et al. (2008) AISC (1999) F.E.M. (100elements) 

89 85 88 89 

 
 

5552
26.56 , 3.6359, 0.0, 1.0, 0.0

1527
fL fR cL cR bK K K K K         . 

Using non-dimensional factors obtained above and solving Eq. (13) for n=2, the buckling load 
of the frame is given by Eq. (14). Comparisons of the result with the other methods are presented 
in Table 3. By dividing each member into 100 elements (for finding exact response), the exact 
buckling load was checked using finite element program belong to Ferdowsi University of 
Mashhad. Based on the obtained results, it is observed that the proposed method for calculating the 
critical load has a high accuracy. 
 

3.2 Example 2 
 
Saffari et al. (2008) studied the steel gabled frame with tapered members shown in Fig. 4. By 

extended slope-deflection relations, the effective length factor of the frame was obtained for the 
two cases of hinged and fixed supports. The columns' moments of inertia at the eaves (Ic-b) and 
bases (Ic) are 50000 cm4 and 5000 cm4, respectively. The modulus of elasticity is 2.1×106 kg/cm2. 
The beams' moments of inertia at the eaves (Ib-c) and apex (Ib) are 30000 cm4 and 4000 cm4, 
respectively. The critical load and equivalent effective length factor can be obtained from Eqs. (14) 
and (15), respectively. A value of n=2 and the following non-dimensional parameters are used: 
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Fig. 4 Geometry and material constants of steel gabled frame with tapered I-section members and 
various bases (example 2) 

 
Table 4 Comparison of the effective length factor, K, of the gabled frame in example 2 

Type of foundations Proposed method Saffari et al. (2008) F.E.M. (100elements) 

Hinged ( 0.0fK ) 2.611 2.610 2.611 

Semi-Rigid ( 5.0fK ) 2.341 - 2.341 

Fixed ( 0.1fK ) 1.619 1.619 1.619 

 
 

184.99 265.66 265.66 461.88
0.3162, 0.4541, 1.2437,

184.99 400 184.99 400 184.99 400

a b g
a b g

h h h


        

  
 

4000
30 , 0.8, 0.0 0.50 1.0, 1.0, 0.0

5000
fL fR f cL cR bK K K K K K            . 

Table 4 demonstrates the results of present study, as well as those of other approaches. 
According to the results, the predictions of the proposed technique agree well with those of other 
methods. 
 

3.3 Example 3 
 
As shown in Fig. 5, the unbraced steel gabled frame composed of tapered I-section members is 

considered. This frame was analyzed by Safavi and Moharami (2009). According to Fig. 5, the 
members’ moments of inertia at the points 1, 2 and 3 are Ic=3691 cm4, Ic-b=Ib-c=18181 cm4 and 
Ib=5552 cm4, respectively. The material modulus of elasticity is 2.1×106 kg/cm2. The required 
dimensionless factors for the stability matrix, K, are computed as follows: 

492.04 827.56 827.56 670
0.4506, 0.7578, 1.3713, 26.56 ,

492.04 600 492.04 600 492.04 600

a b g
a b g

h h h
 

         
  

 

5552
1.5042, 0.0, 1.0, 0.0

3691
fL fR cL cR bK K K K K        . 

Using n=2 and the foregoing parameters Eq. (13) can be solved for the non-dimensional critical 
load factor ρ2

cr. The buckling load can then be calculated form Eq. (14). The results are presented  
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Fig. 5 Geometry and material constants of steel gabled frame with tapered I-section members 
and hinged supports (example 3) 

 
Table 5 Comparison of the buckling loads, Pcr (kN), of the gabled frame in example 3 

Proposed method Safavi and Moharami (2009) AISC (1999) F.E.M. (100elements) 

100 97 98 99 

 
 
in Table 5. It is reminded that the solution of Safavi and Moharami (2009) is based on equating the 
external work on the frame to its internal flexural strain energy of buckling. From Table 5, it is 
observed that the results of the proposed method are very close to the values obtained by other 
methods. 

 
3.4 Example 4 
 
In this example, the stability of steel gabled frame with different shape factors and various 

supports, as shown in Fig. 6, will be investigated. Recently, Tajmir Riahi et al. (2012) studied the 
stability of this frame for shape factor n=2, using the slope-deflection method. The modulus of 
elasticity is 2.0×108 kN/m2. For all three shape factors, the moment of inertia at the apex and bases 
is Ic=Ib=3671 cm4, while this value at the eaves (Ic-b=Ib-c) has values of 3671 cm4, 4×3671=14684 
cm4 and 8×3671=29368 cm4, for the shape factors of 0, 2 and 3, respectively. The required 
parameters for stability matrix with various shape factors, which are presented in Appendix A, 
have the following values: 

1154.70
1.1547

1000
b

c

l
l

l
    (for n=0), 
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h h h


          (for n=2 and 3), 

3671
30 , 1, 0.0 1.0, 1.0, 0.0 1.0

3671
fL fR f cL cR c bK K K K K K K              (for n=0, 2 

and 3). 
Comparisons of the results with those obtained by other available approaches are summarized 

in Table 6. According to the findings, the proposed method gives a high-accuracy prediction. 
 
 

Fig. 6 Geometry and material constants of steel gabled frame with various tapered I-section 
members and supports (example 4) 

 
Table 6 Comparison of the critical loads, Pcr (kN), of the gabled frame in example 4 

Type of 
bases 

Bracing 
system 

n=0 n=2 n=3 
Proposed 
method 

F.E.M 
(100elements)

Proposed 
method

Tajmir Riahi
et al. (2012)

F.E.M. 
(100elements)

Proposed 
method 

F.E.M. 
(100elements)

Fixed Braced 1930.21 1930.24 4024.57 4022.57 4023.73 5634.10 5634.25 
Fixed Unbraced 421.68 421.98 858.68 858.74 858.28 1228.56 1228.63 

Hinged Braced 992.47 992.49 2083.81 2083.94 2083.49 2910.53 2910.66 
Hinged Unbraced 97.62 97.55 280.70 280.73 280.18 461.74 461.77 

 
 
4. Parametric studies 
 

In this section, the effects of taper ratio, span ratio, flexibility of supports and connections on  
the equivalent dimensionless critical load factor, cr , and the corresponding effective length  
factor, K, for three general cases of the steel frames shown in Fig. 7, are studied. It should be noted 
that the beam-to-column connections in the unbraced frames A and C are rigid, while frame B has 
semi-rigid connections with 50% rigidity (i.e., 0.5cL cR cK K K   ). For the latter frame, both 
dimensionless rotational and translational stiffness factors of the foundation and bracing system, 
are assumed to be 0.5 (i.e., 0.5fL fR f bK K K K    ). Frame A has two hinged supports, while 
frame C is based on fixed foundations. As it will be demonstrated later, parametric studies reveal 
the pronounced influence of the foregoing parameters. 
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(a) Frame A (b) Frame B 

(c) Frame C 

Fig. 7 General forms of frames in the parametric studies 
 

 
4.1 Effect of taper ratio 
 
According to Eq. (1), the variations of moment inertia, along the length of tapered I-section 

member have the following form: 

( ) ( 1, 4)

( ) ( 2,3)

n nn
i c i i

i i c c c c
c c

n n n
j j jb

j j b b b b
b b

x l x x
I x I I I c i

a a l l

x x xl
I x I I I c j

b b l l

                     

     

                       

            (16) 

Where cc and cb are the taper ratios of column and beam, respectively. The taper ratios vary within 
the range of 0≤cc or cb<∞, where cc or cb=0 denote a uniform member. If cc or cb=∞, the member 
would taper to a point at the eave, which is only a theoretical limit and not practical. 

Tables 7-9, show the influence of the taper ratio, cc=cb, on the equivalent effective length factor, 
K, of frames A, B and C, respectively, for various values of stiffness ratio   and shape factor n. 
It is reminded that the stiffness ratio is the ratio of the column moment of inertia at the base, Ic, to 
the beam moment of inertia at the apex, Ib. Obviously, whenever the taper ratio or the shape factor 
increases, the equivalent effective length factor of column in frames B and C increases, while it 
decreases for frame A. Nevertheless, the variation of the taper ratio is more significant for frame B. 
According to Table 8, as the taper ratio increases from 0.1 to 1.0, the equivalent effective length 
factor increases by 65%, 63% and 35%, for n=3 and stiffness ratio 0.1, 1.0 and 10, respectively. 
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Furthermore, it is noticed that irrespective of the taper ratio and shape factor, the equivalent 
effective length factor reduces as the values of the stiffness ratio increase. This effect is significant 
for the frame A. 
 
 
Table 7 Influences of the taper ratio cc=cb on the equivalent effective length factor K with various values of 
stiffness ratio   for n=2 and n=3 in frame A 

 
n=2 n=3 

 =0.1  =1  =10  =0.1  =1  =10 

0.1 7.420 2.865 2.055 6.778 2.772 2.035 
0.2 6.767 2.756 2.021 6.629 2.703 1.988 
0.3 6.653 2.712 1.994 6.470 2.641 1.951 
0.4 6.556 2.674 1.971 6.337 2.590 1.921 
0.5 6.473 2.642 1.952 6.225 2.548 1.896 
0.6 6.400 2.614 1.935 6.130 2.512 1.877 
0.7 6.337 2.590 1.921 6.049 2.482 1.861 
0.8 6.281 2.569 1.909 5.979 2.457 1.848 
0.9 6.231 2.551 1.899 5.919 2.435 1.838 
1.0 6.187 2.534 1.890 5.867 2.416 1.830 

 
Table 8 Influences of the taper ratio cc=cb on the equivalent effective length factor K with various values of 
stiffness ratio   for n=2 and n=3 in frame B 

 
n=2 n=3 

 =0.1  =1  =10  =0.1  =1  =10 

0.1 2.877 2.427 1.692 2.945 2.480 1.708 
0.2 3.005 2.528 1.725 3.140 2.635 1.761 
0.3 3.130 2.628 1.760 3.340 2.796 1.816 
0.4 3.256 2.729 1.795 3.545 2.962 1.876 
0.5 3.382 2.831 1.832 3.754 3.132 1.938 
0.6 3.507 2.933 1.870 3.968 3.308 2.005 
0.7 3.633 3.035 1.908 4.187 3.487 2.074 
0.8 3.759 3.138 1.947 4.409 3.671 2.147 
0.9 3.885 3.242 1.987 4.636 3.858 2.223 
1.0 4.012 3.345 2.027 4.867 4.049 2.303 

 
 

4.2 Effect of span ratio 
 
The equivalent effective length factor, K, of the frames A, B and C, for different values of shape 

factor, frame slope and span ratio are tabulated in Tables 10-12, respectively. It should be noted  
that the span ratio, s , is the ratio of the column height, lc, to the frame span, s. Moreover, it is 
assumed for all frames that the stiffness ratio is  =1 and the taper ratios are cc=cb=1. 

According to Tables 10-12, it is observed that the equivalent effective length factor, for all 
three frames, increases when the span ratio increases. This effect is more pronounced for frame A, 
such that when the span ratio increases from 1.0 to 4.0, the equivalent effective length factor 
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Table 9 Influences of the taper ratio cc=cb on the equivalent effective length factor K with various values of 
stiffness ratio   for n=2 and n=3 in frame C 

 
n=2 n=3 

 =0.1  =1  =10  =0.1  =1  =10 

0.1 1.866 1.360 1.048 1.902 1.361 1.048 
0.2 1.914 1.372 1.049 1.945 1.378 1.051 
0.3 1.943 1.379 1.052 1.992 1.389 1.055 
0.4 1.973 1.387 1.055 2.040 1.401 1.060 
0.5 2.002 1.395 1.059 2.089 1.413 1.065 
0.6 2.032 1.403 1.063 2.137 1.425 1.071 
0.7 2.061 1.411 1.067 2.185 1.438 1.078 
0.8 2.089 1.419 1.072 2.233 1.450 1.085 
0.9 2.117 1.428 1.076 2.281 1.462 1.092 
1.0 2.145 1.436 1.081 2.328 1.474 1.100 

 
Table 10 Influences of the span ratio s  on the equivalent effective length factor K with various values of 
shape factor and frame slope for  =1 and cc=cb=1 in frame A 

 
n=0 n=2 n=3 

α=15° α=30° α=45° α=15° α=30° α=45° α=15° α=30° α=45°
1.0 2.339 2.377 2.458 2.088 2.119 2.186 2.007 2.035 2.096 
1.5 2.500 2.555 2.670 2.222 2.267 2.364 2.128 2.170 2.259 
2.0 2.655 2.724 2.870 2.351 2.410 2.534 2.247 2.301 2.416 
2.5 2.804 2.886 3.060 2.477 2.548 2.696 2.364 2.429 2.568 
3.0 2.946 3.041 3.240 2.599 2.680 2.851 2.477 2.553 2.712 
3.5 3.083 3.189 3.411 2.716 2.808 2.999 2.586 2.672 2.851 
4.0 3.214 3.332 3.575 2.829 2.931 3.141 2.692 2.787 2.985 

 
Table 11 Influences of the span ratio s  on the equivalent effective length factor K with various values of 
shape factor and frame slope for  =1 and cc=cb=1 in frame B 

 
n=0 n=2 n=3 

α=15° α=30° α=45° α=15° α=30° α=45° α=15° α=30° α=45°
1.0 1.989 2.026 2.095 2.738 2.807 2.936 3.273 3.363 3.530 
1.5 2.128 2.166 2.235 2.995 3.062 3.184 3.605 3.692 3.846 
2.0 2.227 2.264 2.331 3.170 3.233 3.345 3.828 3.908 4.049 
2.5 2.302 2.337 2.399 3.297 3.356 3.459 3.989 4.063 4.191 
3.0 2.360 2.393 2.451 3.394 3.449 3.543 4.110 4.178 4.295 
3.5 2.407 2.438 2.492 3.471 3.522 3.609 4.205 4.268 4.376 
4.0 2.445 2.474 2.525 3.533 3.580 3.660 4.282 4.340 4.439 

 
 
increases by about 37%, 40% and 45%, in the uniform gabled frame, for α=15°, 30° and 45°, 
respectively. In addition, as the frame slope increases, regardless of the span ratio and shape factor, 
the equivalent effective length factor of the frame increases. Furthermore, irrespective of the value 
of s , when the shape factor increases, the equivalent effective length factor decreases, in frame A, 
while increases in frames B and C. 
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Table 12 Influences of the span ratio s  on the equivalent effective length factor K with various values of 
shape factor and frame slope for  =1 and cc=cb=1 in frame C 

 
n=0 n=2 n=3 

α=15° α=30° α=45° α=15° α=30° α=45° α=15° α=30° α=45°
1.0 1.161 1.178 1.212 1.204 1.223 1.261 1.226 1.245 1.285 
1.5 1.229 1.250 1.292 1.281 1.305 1.355 1.306 1.332 1.386 
2.0 1.287 1.311 1.358 1.349 1.378 1.436 1.379 1.411 1.474 
2.5 1.337 1.363 1.413 1.410 1.442 1.505 1.446 1.481 1.552 
3.0 1.381 1.408 1.460 1.464 1.499 1.565 1.506 1.544 1.619 
3.5 1.420 1.447 1.499 1.513 1.549 1.618 1.561 1.601 1.679 
4.0 1.454 1.482 1.534 1.557 1.594 1.664 1.610 1.652 1.733 

 

(a) Frame A (b) Frame B 

(c) Frame C 

Fig. 8 Influence of the non-dimensional rotational stiffness factor of the semi-rigid connection cK  on the 
equivalent effective length factor K ( cL cR cK K K   and  = 1) 

 
 

4.3 Effect of semi-rigid beam-to-column connections 
 
The influences of the non-dimensional rotational stiffness factor of the semi-rigid connection, 

cK , on the equivalent effective length factor of column, K , and corresponding dimensionless 
equivalent critical load factor, cr , for frames A, B and C, are depicted in Figs. 8 and 9, 
respectively. It is assumed for each frame that; the column height lc=L, span of the frame s=2L and 
the frame slope α=45°. In addition, the non-dimensional rotational stiffness factor of the semi-rigid  
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(a) Frame A (b) Frame B 

(c) Frame C 

Fig. 9 Effect of the non-dimensional rotational stiffness of the semi-rigid connection factor cK  on the 
dimensionless equivalent critical load factor 2

cr  ( cL cR cK K K   and  = 1) 

 
 

connection varies within the range of 0 to 1. A value of cK = 0.0 represents a pinned connection, 
whereas cK = 1.0 indicates that the connection of beam-to-column is rigid. 

Based on the Figs. 8 and 9, it is evident that as cK  increases, the value of K decreases, while 
the corresponding dimensionless equivalent critical load factor, cr , increases. Fig. 8(a) indicates 
that when cK  increases from 0.0 to 1.0, the equivalent effective length factor of column reduces  
by about 96%, 94% and 92%, for n=3, 2 and 0, respectively. Furthermore, as the shape factor, n, 
increases, the equivalent effective length factor increases in frames B and C, while this effect  
reverses when the values of cK  exceed 0.90 in the frame A. Similarly, according to Fig. 9, the 
value of cr  for the corresponding gabled frame with uniform members (i.e., Ic=Im), is always 
greater than that of the gabled frame with tapered members, except for the values of cK   
exceeding 0.90 in the frame A. In other words, the load-carrying capacity of the gabled frame with 
tapered members, is not greater than the corresponding gabled frame with uniform members. It 
should be mentioned that for all connection flexibilities, the load-carrying capacity of the gabled 
frame C is more than those of other frames. 
 

4.4 Effect of elastic translational restraint 
 
In Figs. 10 and 11, the effects of the non-dimensional translational stiffness factor of the brace, 

bK , on the equivalent effective length factor of column, K, and the corresponding equivalent 
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dimensionless buckling load factor, cr , for frames A, B and C, are investigated, respectively. It 
should be noted that bK  varies within the range of bK = 0.0 (i.e., unbraced frame) to bK = 1.0  
(i.e., braced frame). Moreover, it is assumed for both frames that the column height, span and 
slope of the frame are lc=L, s=2L and α=45°, respectively. 

According to the Figs. 10 and 11, it is obvious that the equivalent effective length factor of 
column in gabled frames, K, decreases and the corresponding equivalent dimensionless buckling  
load factor, cr , increases, when bK  increases. This influence is more pronounced for frame B, 
as shown in Fig. 10(b). As bK  increases from 0.0 to 1.0, the equivalent effective length factor of  
column decreases by about 78%, 75% and 68%, for n=3, 2 and 0, respectively. In addition, when 
the shape factor, n, increases, the equivalent effective length factor increases in frames B and C,  
while this effect reverses when the values of bK  are smaller than 0.55 in the frame A. Similarly, 
Fig. 11 indicates that the value of the dimensionless equivalent critical load factor, cr , for the  
corresponding gabled frame with uniform members (i.e., Ic=Im), is always greater than that of the  
gabled frame with tapered members, except for values of bK  below 0.55 in the frame A. In fact;  
the load-carrying capacity of the gabled frame with tapered members, is smaller than the  
corresponding gabled frame with uniform members having the same values of bK . Nevertheless, 
the non-dimensional equivalent critical load factor increases only slightly when bK  is smaller 
than 0.50. Moreover, the load-carrying capacity of gabled frame C is more than other frames, for 
all values of bK . 
 
 

(a) Frame A (b) Frame B 

(c) Frame C 

Fig. 10 Influence of the non-dimensional translational stiffness factor of the brace bK  on the 
equivalent effective length factor K (  = 1) 
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(a) Frame A (b) Frame B 

(c) Frame C 

Fig. 11 Effect of the non-dimensional translational stiffness factor of the brace bK  on the 

dimensionless equivalent critical load factor 2
cr  (  = 1) 

 

(a) Frame A (b) Frame B 

(c) Frame C 

Fig. 12 Influence of the non-dimensional rotational stiffness factor of the foundation fK  on the 

equivalent effective length factor K ( fL fR fK K K  and  = 1) 
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(a) Frame A (b) Frame B 

(c) Frame C 

Fig. 13 Effect of the non-dimensional rotational stiffness factor of the foundation fK  on the 

dimensionless equivalent critical load factor 2
cr  ( fL fR fK K K  and  = 1) 

 
 
4.5 Effect of elastic rotational restraints 
 
The influences of the non-dimensional rotational stiffness factor of the foundation, fK , on the 

equivalent effective length factor of column, K, and the corresponding equivalent dimensionless  
critical load factor, cr , for the frames A, B and C, are shown in Figs. 12 and 13, respectively. It is 
reminded that fK  varies within the range of 0 to 1. The value of fK =0.0 represents hinged 
supports and fK =1.0, represents fixed bases. Furthermore, it is assumed that the column height  
lc=L, span of the frame s=2L and the frame slope α=45°, for each frame. 

From Figs. 12 and 13, it is observed that as fK  increases, the equivalent effective length  
factor, K, decreases linearly, while the corresponding dimensionless equivalent critical load factor,  

cr , increases. The flexibility of foundations is more considerable for frame B. Fig. 12(b) shows 
that when fK  increases from 0.0 to 1.0, the equivalent effective length factor of column  
decreases by about 57%, 55% and 50%, for n=3, 2 and 0, respectively. In addition, as the shape 
factor, n, increases, the equivalent effective length factor increases in frame B, while this effect  
reverses for the values of fK  less than 0.40, for both frames A and C. Similarly, according to 
Fig. 13, the dimensionless equivalent critical load factor, cr , for the corresponding gabled frame  
with uniform members (i.e., Ic=Im), is always greater than that of the gabled frame with tapered  
members, except for the values of fK  less than 0.40 in frame A. In other words, the load- 
arrying capacity of the gabled frame with uniform members, is greater than the corresponding 
gabled frame with tapered members. 
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5. Conclusions 
 

This paper tackles buckling analysis of a general gabled frame with different I-section 
members. Based on the Euler-Bernoulli beam-column theory, the governing fourth-order 
differential equation was accurately solved and the stability matrix for a semi-rigid frame, with 
prismatic and/or non-prismatic members and elastic supports, was obtained. It was assumed that 
the semi-rigid connections and elastic supports have a linear behavior, and both were modeled by 
linear springs. The moment of inertia variations over the length of non-uniform members was 
assumed to be cubic for I-section element with linearly varying amplitudes of web and flanges. On 
the other hand, it was modeled as parabolic functions for web-tapered. The presented formulation 
can exactly determine the critical load, and corresponding equivalent effective length factor of 
uniform and/or non-uniform gabled frames with semi-rigid connections and elastic supports. 
Comparing the available literature results with the current approach demonstrates the accuracy, 
efficiency and capabilities of the proposed method. Parametric studies for gabled frames disclose 
the effects of the taper ratio, shape factor, stiffness ratio, frame slope, span ratio, flexibility of 
connections and elastic supports on the dimensionless equivalent buckling load factor of 
structures, and corresponding equivalent effective length factor of the gabled frames. With regard 
to the findings of this study, the following points are concluded: 

• The influences of the flexibility of connections, lateral stiffness of bracing system, taper ratio, 
rigidity of foundations, and the span ratio on the critical load and corresponding equivalent 
effective length factor of frames are very significant. In some cases, they can decrease the 
columns’ effective length factor by about 96%, 78%, 65%, 57% and 45%, respectively. 
Accordingly, these effects should be considered in stability design of gabled frames. 

• As the non-dimensional factors of rotational stiffness of the semi-rigid connection; 
translational stiffness of the brace; and rotational stiffness of the foundation increase, the 
equivalent effective length factor, K, decreases, while the corresponding dimensionless equivalent  
critical load factor, cr , increases. 

• The load-carrying capacity of the gabled frame with tapered members, for most cases, is less 
than the corresponding gabled frame with uniform members. 

• The effect of variation of the taper ratio is more pronounced for gabled frame with flexible 
connections and supports. Irrespective of the taper ratio and shape factor, the equivalent effective 
length factor decreases, when the stiffness ratio increases. 

• As the span ratio increases, the equivalent effective length factor of the gabled frame 
increases. When the frame slope increases, regardless of the span ratio and shape factor, the 
equivalent effective length factor of the frame increases. 

• The flexibility of connections has a very significant effect on unbraced frame with hinged 
bases. In fact, for this structure, as the shape factor, n, increases, the equivalent effective length  
factor increases, while this effect reverses for the values of cK  greater than 0.9, and for the 
values of bK  and fK  smaller than 0.55 and 0.4, respectively. 

• Increasing of the non-dimensional equivalent critical load factors is negligible when the non-
dimensional translational stiffness factor of the bracing system is less than 0.5. 
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Appendix A 
 

The unknown constants’ matrix, K for the frame has the below form: 

1,1 1,2 1,3 1,4

2,1 2,2 2,3

3,13 3,14 3,15 3,16

4,13 4,14 4,15

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0

K K K K
K K K

K K K K
K K K

K K K K K K K K
K K K K K K K K

K

7,9 7,10 7,11 7,12 7,13 7,14 7,15 7,16

8,9 8,10 8,11 8,12 8,13 8,14 8,15 8,16

9,1 9,2 9,3 9,4 9,13 9,14 9,15 9,16

10,3 10,13 10,14 10,15 10,16

11,1 11,2 11,5 11,6 11,

0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0

K K K K K K K K
K K K K K K K K

K K K K K K K K
K K K K K

K K K K K 8

12,1 12,2 12,3 12,6 12,7 12,8

13,9 13,10 13,12 13,13 13,14

14,9 14,10 14,11 14,12 14,13 14,14 14,15

15,6 15,8 15,10 15,12

16,5 16,6 16,7 16,8 16

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

K K K K K K
K K K K K
K K K K K K K

K K K K
K K K K K ,9 16,10 16,11 16,12 0 0 0 0K K K

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

( A-1) 

For the shape factor n=0, the entries of the unknown constants’ matrix are as follows: 

1,1 1,3 3,13 3,15 5,5 5,6 5,7 7,9 7,10 7,11 11,8 13,12 15,8 15,12K K K K K K K K K K K K K K             

16,5 16,6 16,8 16,9 16,10 16,12 0K K K K K K                        (A-2) 

1,2 1,4 3,14 3,16 9,3 9,4 9,15 9,16 15,6 15,10 16,7 16,11 1K K K K K K K K K K K K                 ( A-3) 

2,1 fLK K                                  ( A-4) 

 2
2,2 1 fLK K                               ( A-5) 

2,3 fLK K                                  ( A-6) 

4,13 fRK K                                  ( A-7) 

 2
4,14 1 fRK K                               ( A-8) 

4,15 fRK K                                  ( A-9) 

5,1 6,1 7,13 8,13 sin sinK K K K                             ( A-10) 

5,2 6,2 7,14 8,14 cos sinK K K K                             ( A-11) 

5,3 5,4 6,3 6,4 7,15 7,16 8,15 8,16 sinK K K K K K K K                         ( A-12) 

5,8 6,7 6,8 7,12 8,11 8,12K K K K K K l                           ( A-13) 

3

6,5 8,10K K l                              ( A-14) 
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2

6,6 8,11K K l                            ( A-15) 

9,1 9,13 sinK K                            ( A-16) 

9,2 9,14 cosK K                            ( A-17) 

 2
10,3 1 bK K                            ( A-18) 

10,13 sinbK K                            ( A-19) 

10,14 cosbK K                            ( A-20) 

 2
10,15 1b bK K K                           ( A-21) 

10,16 bK K                             ( A-22) 

2
11,1 13,13 sinK K                            ( A-23) 

2
11,2 13,14 cosK K                            ( A-24) 

11,5 13,9 6K K l                             ( A-25) 

11,6 13,10 2K K                              ( A-26) 

12,1 coscLK K                              ( A-27) 

12,2 sincLK K                              ( A-28) 

12,3 12,7 cLK K K                              ( A-29) 

 2

12,5 3 2 cLK l K                             ( A-30) 

12,6 14,10 2K K l                              ( A-31) 

 2

14,9 3 2 cRK l K                             ( A-32) 

14,11 14,15 cRK K K                              ( A-33) 

14,13 coscRK K                               ( A-34) 

14,14 sincRK K                              ( A-35) 

The entries of the unknown constants’ matrix for the shape factor n=2 can be written as follows: 

1,1 3,13 11,5 13,9 14,11 16,7 16,11 0K K K K K K K                       ( A-36) 
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5,7 6,7 7,11 8,11 9,3 9,4 9,15 9,16 15,6 15,10 16,5 16,9 1K K K K K K K K K K K K                 ( A-37) 

1,2 3,14K K a                             ( A-38) 

1,3 3,15K K a                              ( A-39) 

 2,1 1fLK K a a                            ( A-40) 

   2
2,2 1 1 / 2fL fLK a K a K a                          ( A-41) 

 2,3 1fLK K a a                            ( A-42) 

 4,13 1fRK K a a                           ( A-43) 

   2
4,14 1 1 / 2fR fRK a K a K a                          ( A-44) 

 4,15 1fRK K a a                            ( A-45) 

5,1 6,1 7,13 8,13 sin sinK K K K                          ( A-46) 

5,2 6,2 7,14 8,14 cos sinK K K K                         ( A-47) 

5,3 5,4 6,3 6,4 7,15 7,16 8,15 8,16 sinK K K K K K K K                     ( A-48) 

5,5 7,9K K b                              ( A-49) 

5,6 7,10 lnK K b b                            ( A-50) 

5,8 7,12 lnK K b                             ( A-51) 

6,5 8,9K K g                              ( A-52) 

6,6 8,10 lnK K g g                            ( A-53) 

6,8 8,12 lnK K g                             ( A-54) 

9,1 9,13 sinK K                              ( A-55) 

9,2 9,14 cosK K                              ( A-56) 

  2
10,3 1 1 bK a K                            ( A-57) 

10,13 sinbK K                             ( A-58) 
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10,14 cosbK K                              ( A-59) 

  2
10,15 1 1b bK K a K                          ( A-60) 

10,16 bK K                              ( A-61) 

2
11,1 13,13 sinK K                            ( A-62) 

2
11,2 13,14 cosK K                             ( A-63) 

 2 2

11,6 13,10 1 /K K g a b                         ( A-64) 

 2 2

11,8 13,12 1 /K K a b                          ( A-65) 

12,1

sin
cos

2 1
cL

a
K K

a

  
 

     
                     ( A-66) 

12,2

cos
sin

2 1
cL

a
K K

a

  
 

     
                     ( A-67) 

12,3 12,5 cLK K K                             ( A-68) 

12,6 1 ln 1 1cL
g g g g

K K g
b b b b

      
                       

                ( A-69) 

12,8

1 1 1
1 1cL

g g
K K

g b b b b

                                   
                 ( A-70) 

14,9 14,15 cRK K K                            ( A-71) 

14,10 1 ln 1 1cR
g g g g

K K g
b b b b

      
                       

               ( A-72) 

14,12

1 1 1
1 1cR

g g
K K

g b b b b

                                   
                ( A-73) 

14,13

sin
cos

2 1
cR

a
K K

a

  
 

     
                    ( A-74) 

14,14

cos
sin

2 1
cR

a
K K

a

  
 

     
                    ( A-75) 
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15,8 15,12 16,8 16,12 1 /K K K K b                         ( A-76) 

16,6 16,10 1 lnK K b                            ( A-77) 

For the shape factor n=3, the entries of the unknown constants’ matrix are as follows: 

11,5 13,9 14,9 12,5 16,5 16,9 0K K K K K K                       ( A-78) 

1,3 1,4 3,15 3,16 5,5 6,5 7,9 8,9 16,8 16,11 1K K K K K K K K K K                   ( A-79) 

1,1 3,13 ,1a
K K Y                             ( A-80) 

1,2 3,14 ,1a
K K J                             ( A-81) 

   2
2,1 ,1 ,1 ,0

1 1
1

fL fLa a a

a
K Y a K K a Y Y

a


 

       
              ( A-82) 

   2
2,2 ,1 ,1 ,0

1 1
1

fL fLa a a

a
K J a K K a J J

a


 

       
             ( A-83) 

 2,3 1fLK K a                             ( A-84) 

   2
4,13 ,1 ,1 ,0

1 1
1

fR fRa a a

a
K Y a K K a Y Y

a


 

       
            ( A-85) 

   2
4,14 ,1 ,1 ,0

1 1
1

fR fRa a a

a
K J a K K a J J

a


 

       
            ( A-86) 

 4,15 1fRK K a                            ( A-87) 

5,1 6,1 7,13 8,13 1 sinK K K K Y                          ( A-88) 

5,2 6,2 7,14 8,14 1 sinK K K K J                         ( A-89) 

5,3 6,3 7,15 8,15 sin /K K K K a                        ( A-90) 

5,4 6,4 7,16 8,16 sinK K K K a                        ( A-91) 

5,6 7,10 lnK K b                            ( A-92) 

5,7 7,11K K b                             ( A-93) 

5,8 7,12 l/K K b                            ( A-94) 
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6,6 8,10 lnK K g                            ( A-95) 

6,7 8,11K K g                              ( A-96) 

6,8 8,12 1 /K K g                             ( A-97) 

9,1 9,13 1K K Y                               ( A-98) 

9,2 9,14 1K K J                               ( A-99) 

9,3 9,15 1 /K K a                            ( A-100) 

9,4 9,16K K a                             ( A-101) 

  2
10,3 1 1 bK a K                           ( A-102) 

10,13 1bK K aY                            ( A-103) 

10,14 1bK K aJ                            ( A-104) 

  2
10,15 1 1b bK K a K                         ( A-105) 

10,16 bK K a                             ( A-106) 

2
11,1 13,13 1K K Y                           ( A-107) 

2
11,2 13,14 1K K J                           ( A-108) 

 2 3

11,6 13,10 1 /K K g a b                        ( A-109) 

 2 3

11,8 13,12 2 1 /K K a b                         ( A-110) 

3

2

12,1 1 0
1

cL
a

K K Y Y
a


 
     
 

                       ( A-111) 

3

2

12,2 1 0
1

cL
a

K K J J
a


 
     
 

                       ( A-112) 

12,3 /cLK K a                            ( A-113) 

12,7 cLK K                            ( A-114) 
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12,6 2 2

1
1 1cL

g g g g
K K

g b bb b

       
                          

              ( A-115) 

12,8 2 2 2

1 2 2
1 1cL

g g
K K

b bg b b

         
                             

             ( A-116) 

14,10 2 2

1
1 1cR

g g g g
K K

g b bb b

       
                          

              ( A-117) 

14,11 cRK K                           ( A-118) 

14,12 2 2 2

1 2 2
1 1cR

g g
K K

b bg b b

         
                             

            ( A-119) 

3

2

14,13 1 0
1

cR
a

K K Y Y
a


 
      
 

                     ( A-120) 

3

2

14,14 1 0
1

cR
a

K K J J
a


 
     
 

                     ( A-121) 

14,15 /cRK K a                            ( A-122) 

15,6 15,10 16,6 16,10 1 /K K K K b                         ( A-123) 

2

15,8 15,12 16,8 16,122 2 1 /K K K K b                         ( A-124) 

In these equations, the following non-dimensional parameters are assumed: 

2 2 / , / , / , / , / , / , 1 / (1 / ),cLc c b c b c b cL bPl EI I I l l l a a h b b h g g h K EI K l          

31/ (1 / ), 1/ (1 / ), 1/ (1 / ), 1/ (1 / ),cR fL fR bb cR b c fL c c fR c c b cK EI K l K EI K l K EI K l K EI K l       

,1 ,1 ,0 ,0

2 2 2 2
1, , 1, , 0, , 0, ,

1 1 1 1a a a a

a a a a
Y BesselY J BesselJ Y BesselY J BesselJ

a a a a

          
                           

3 3 3 3

2 2 2 2

1 1 0 0

2 2 2 2
1, , 1, , 0, , 0, ,

1 1 1 1

a a a a
Y BesselY J BesselJ Y BesselY J BesselJ

a a a a

   
       
                           
       

 

2
1 1

ln
41

a

a a


            

. 
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