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Abstract.  A graded harmonic finite element formulation based on three-dimensional elasticity theory is 

developed for the structural analysis of 2D functionally graded axisymmetric structures. The mechanical 

properties of the axisymmetric solid structures composed of two different metals and ceramics are assumed 

to vary in radial and axial directions according to power law variations as a function of the volume fractions 

of the constituents. The material properties of the graded element are calculated at the integration points. 

Effects of material distribution profile on the static deformation, natural frequency and dynamic response 

analyses of particular axisymmetric solid structures are investigated by changing the power law exponents. It 

is observed that the displacements, stresses and natural frequencies are severely affected by the variation of 

axial and radial power law exponents. Good accuracy is obtained with fewer elements in the present study 

since Fourier series expansion eliminates the need of finite element mesh in circumferential direction and 

continuous material property distribution within the elements improves accuracy without refining the mesh 

size in axial and radial directions. 
 

Keywords:  computational mechanics; finite element method (FEM); functionally graded; numerical 

methods; parametric analysis 

 
 
1. Introduction 
 

Functionally graded materials (FGMs) are the combination of two or more different materials. 

The volume fractions of these materials vary uniformly along certain directions. Therefore, FGMs 

have a non-uniform microstructure and a continuously variable macrostructure. They were first 

introduced by a Japanese research group to address the need of aggressive environment of thermal 

shock (Koizumi 1993). FGMs possess a number of advantages that make them attractive in 

potential applications, including a potential reduction of in-plane and transverse stress through the 

thickness, an improved residual stress distribution, enhanced thermal properties, higher fracture 

toughness and reduced stress intensity factors (Birman and Byrd 2007).  

Several studies are available in the literature on FGM structures. Praveen and Reddy (1998) 

investigated the static and dynamic thermoelastic responses of plates made of functionally graded 

materials. Loy et al. (1999), Pradhan et al. (2000), Asgari and Akhlaghi (2011) obtained natural 

frequencies of FGM cylinders under various conditions. Han et al. (2001) analyzed transient 
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waves in FGM cylinders. Shakeri et al. (2006) analyzed radial wave propagation in FGM cylinders 

with infinite length by FEM. They considered the FGM cylinder as a multilayer cylinderwith 

constant material properties for each layer. Hosseini et al. (2007) analyzed the same problem 

considering variable material properties in the layers. Foroutan and Moradi-Dastjerdi (2011) 

carried out dynamic analysis of FGM cylinders that were subjected to an impact load by a mesh 

free method. 

Several numerical models have been used to investigate FGMs. For instance, Paulino and Jin 

(2000) used integral equations, Aboudi et al. (1999), Pindera and Dunn (1997) used higher order 

theory and Goldberg and Hopkins (1995), Sutradhar et al. (2002) used boundary element method. 

Also, conventional finite elements are used by Li et al. (2001), Marur and Tippur (2000). 

Moreover, graded finite elements are developed for the analysis of FGM structures. The graded 

finite elements incorporates the material property gradient at the size scale of the element, while 

conventional elements produce a step-wise constant approximation to a continuous material 

property field. Graded elements are implemented by means of direct sampling properties at the 

Gauss points of the element. Santare and Lambros (2000), Kim and Paulino (2002), Buttlar et al. 

(2006), Santare et al. (2003), Taghvaeipour et al. (2012) are the researchers developed graded 

elements.  

In this study a graded harmonic finite element formulation based on three-dimensional 

elasticity theory for the structural analysis of 2D functionally graded axisymmetric structures is 

presented. The first phase of the study is focused on determining volume fraction and material 

distribution in 2D-Functionally graded materials. In Section 3, a ring of quadrilateral cross section 

with nine nodes is considered as graded harmonic model which is based on a displacement field 

described by Fourier series for axisymmetric structures. Obtaining of FEM model of the problem 

using Hamilton’s principle is mentioned in Section 4. Formulations of the element stiffness matrix, 

mass matrix and element force vector are expressed in Section 5, respectively. Finally, a number 

of various functionally graded axisymmetric problems are solved to demonstrate static, free and 

forced vibration responses. 

 

       

2. Volume fraction and material distribution in 2D-FGM 
 

Two-dimensional FGMs are usually made by continuous gradation of three or four distinct 

material phases where one or two are ceramics and the others are metal alloy phases. 

The volume fractions of the constituents vary in a predetermined composition profile. Now 

 

 

 

Fig. 1 Axisymmetric cylinder with two-dimensional material distribution 
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(a) (b) 

Fig. 2 Volume fraction distribution of  (a) c2 and (b) m1 for nr=2 and nz=3 

 

 

consider the volume fractions of 2D-FGM at any arbitrary point in the 2D-FG axisymmetric 

cylinder with inner radius ri, outer radius ro, and finite length L as shown in Fig. 1. In the present 

cylinder the inner surface is made of two distinct ceramics and the outer surface of two metals. 

While c1, c2 denote the first and second ceramic, m1 and m2 denote for the first and second metal, 

respectively.  

The volume fraction of the first ceramic material is changed from 100% at the lower surface to 

zero at the upper surface by a power law function. Also this volume fraction is changed 

continuously from inner to outer surface. Volume fractions of the other materials change similarly 

in two directions. The volume fraction distribution function of each material can be expressed as 
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where power law exponents nr and nz are non-zero parameters that represent the basic constituent 

distributions in radial-r and axial-z directions (Asgari et al. 2009). Volume fraction distributions of  

475



 

 

 

 

 

 

Ali I. Karakas and Ayse T. Daloglu 

 
(a) (b) 

Fig. 3 Variation of (a) modulus of elasticity and (b) mass density through the cylinder for nr=2 and nz=3 

 

 

Fig. 4 Displacement components and an axisymmetric finite element 

 

 

two basic materials for the typical values of nr=2 and nz=3 are shown in Fig. 2 as an example by 

taking ri=1 m, ro=1.5 m, and L=1 m. 

Material properties at any point can be obtained by using the linear rule of mixtures, in which a 

material property, P, at an arbitrary point (r, z) in the 2D-FGM cylinder is determined by linear 

combination of volume fractions and material properties of the basic materials as 

 c1 c1 c2 c2 m1 m1 m2 m2P( , ) = P V + P V + P V + P Vr z  (2) 

The variation of a material property such as Young’s modulus through the cylinder is shown in 

Fig. 3 for the typical values of nr=2 and nz=3. 
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3.  Graded harmonic model 
 

For axisymmetric structures, a ring of quadrilateral cross section with nine nodes is considered 

(see Fig. 4). The center of all nodal circles lies on the z-axis, which is the axis of revolution. 

The present model is based on a displacement field described by Fourier series as  
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where m is the circumferential harmonic number, Nh is the total number of harmonics and symbols 

ur, uθ 
and uz indicate the radial, circumferential and axial displacement components, respectively, 

see Fig. 4 (Cook et al. 1989). In Eq. (3) all barred quantities are amplitudes approximated using 

the finite element method, which are functions of r, z but not of θ. This leads to a harmonic finite 

element in the (r, z) plane. Single barred amplitudes represent symmetric displacement 

components while double barred amplitudes represent anti-symmetric displacement terms. The 

negative sign in the circumferential displacement is important to achieve the same stiffness matrix 

for m≠0. The amplitudes of the displacement components for a finite element can be interpolated as 
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where [N] is the matrix of assumed shape functions, { }md  and { }md  are nodal displacement 

amplitudes vectors and m
u
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and m
u
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are the matrices of harmonic functions for displacements. 

Details are given in Appendix. The shape functions for the displacements within a graded 

harmonic finite element and the strain-displacement relations are the same as standard 

conventional elements. The strain displacement relations in cylindrical coordinates is given by  
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where [Bm] is the matrix which relate the nodal displacement amplitudes with corresponding 

strains for the mth  harmonic and mg


 
   and mg



 
  

 are the matrices of harmonic functions for 

strains (Cook et al. 1989).  

The constitutive equation for functionally graded materials are written as 

 { } [ ( , )]{ }D r z   (6) 

where [D(r, z)] is the elasticity matrix as given in (Cook et al. 1989) for a three dimensional 

isotropic material. However, Young’s modulus and Poisson’s ratio are not constant material 

properties for each finite element. They are specified at each Gaussian integration point according 

to Eq. (2). In other words, the elasticity matrix is assumed to be a function of spatial coordinates 

within the element to describe the actual material property gradient.  

 

 

4. Equation of motion  
 

The finite element model of the problem can be obtained directly from Hamilton’s principle.  

 
2

1
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t
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where U and T are strain and kinetic energy respectively, and W is work done by surface tractions. 

These functions are expressed as  
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where A and V  denote the area and volume of the domain under consideration and Fs  is the 

surface traction vector. Surface tractions can be expresses in terms of Fourier harmonics as 
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where     and sm smq q
 
are the symmetric and anti-symmetric surface load amplitude vectors for 

harmonic m, respectively. The Hamilton’s principle is applied for each element by substituting 

Eqs. (8)-(11) and (4)-(6) into Eq. (7) and the following expression is obtained for harmonic m  
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can be omitted from Eq. (12) since they are some arbitrary variational 

displacement amplitudes of the nodal points of an element. Then this equation of motion can be 

written for harmonic m as 
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where [ mk ], [ mm ] and { smf } are the element stiffness matrix, mass matrix and force vector for 

harmonic m and single barred terms in Fourier series expansion, respectively. 

 

 

5. Graded finite element equations 
 

5.1 Formulation of the element stiffness matrix 
 

Two stiffness matrices [ mk ] and [ mk ]are calculated for both single and double barred terms in 

Fourier series expansion from the strain energy in Eq. (12) as 
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where Ae is the cross-sectional area of the element on the r-z plane. It can be observed that each 

term in the products of  ( , )
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 will be a function 

of (E, v) multiplied by either cos2mθ or sin2mθ. Thus, integration over the circumferential direction 

θ can be carried out explicitly using orthogonality of trigonometric functions as 

  
2

00

[ ( , )]   for m>0
( , )

[ ( , )]    for m=0

T

m m

D r z
g D r z g d

D r z



 
 





        


  (16) 

 

479



 

 

 

 

 

 

Ali I. Karakas and Ayse T. Daloglu 

  
2

00

[ ( , )]   for m>0
( , )

[ ( , )]    for m=0

T

m m

D r z
g D r z g d

D r z



 
 




            
  (17) 

where 0[ ( , )]D r z  and 0[ ( , )]D r z
 
are given in Appendix. It should also be mentioned that, due to the 

choice of negative sign in the second expression in Eq. (3), the stiffness matrix for double barred 

terms is identical to that of single barred terms, that is [ mk ]=[ mk ]=[km] for m>0. Additionally, [ 0k ] 

and [ 0k ] can be used for particular cases of plane axisymmetric and plane axi-antisymmetric cases 

for m=0, respectively. So, the stiffness matrices are obtained from the following expressions using 

Gauss integration procedure as 

    
3 3

00

1 1

( , ) ( , ) ( , ) ( , ) ( , )
T

k l m k l k l m k l k l k l

k l

k w w B D B r J         
 

   
     (18) 

    
3 3

0 0

1 1

( , ) ( , ) ( , ) ( , ) ( , )
T

k l m k l k l m k l k l k l

k l

k w w B D B r J         
 

   
     (19) 

      
3 3

1 1

( , ) ( , ) ( , ) ( , ) ( , )   for m >0
T

m k l m k l k l m k l k l k l

k l

k w w B D B r J         
 

  (20) 

where ξk and ηl are the Gauss points, wk and wl are the corresponding integration weights and 

[D(ξk, ηl)] is the value of elasticity matrix at the respective Gauss points.  

 

5.2 Formulation of the element mass matrix 
 

The consistent mass matrix of an element is calculated from the derivation of the kinetic energy 

in Eq. (12). The mass matrices for single and double barred terms of an element for the Fourier 

term m can be taken out as 

    
2

0

( , )

e

TT
m m m

u u
A

m r z N g g d N rdrdz



  
                  

   (21) 

    
2

0

( , )

e

T
T

m m m
u u

A

m r z N g g d N rdrdz



  
                       

   (22) 

The integrals can be carried out explicitly with respect to circumferential direction as in the 

case of the stiffness matrix equations. The integrals will result in a factor   for harmonics greater 

than zero for both single and double barred terms. Therefore, [ mm ]=[ mm ]=[mm] is valid for m>0. 

Likewise stiffness equations, Gauss numerical integration procedure is used and the following 

element mass matrices are obtained for harmonics as  

 

3 3

0

1 1

1 0 0

2 ( , ) ( , ) 0 0 0 ( , ) ( , ) ( , )

0 0 1

T
k l k l k l k l k l k l

k l

m w w N N r J           
 

 
      
  

  (23) 
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3 3

0

1 1

0 0 0

2 ( , ) ( , ) 0 1 0 ( , ) ( , ) ( , )

0 0 0

T
k l k l k l k l k l k l

k l

m w w N N r J           
 

 
   

    
  

  (24) 

   
3 3

1 1

( , ) ( , ) ( , ) ( , ) ( , )T
m k l k l k l k l k l k l

k l

m w w N N r J           
 

     for (m>0)                  (25) 

where ρ(ξk, ηl) represents the mass density evaluated at Gauss points k, l. 

 

5.3 Formulation of the element force vector 
 

The consistent surface traction vector is calculated from the derivation of the external work 

done by surface load in Eq. (12). The consistent surface traction vectors for the Fourier term m due 

to surface force can be expressed as 

      
2

0

TT

m msm smu u
f N g g d q ds



  
              

   (26) 

      
2

0

T
T

m msm sm
u u

f N g g d q ds



  
                 

   (27) 

where, 2 2ds dr dz  . Taking integrals with respect to the circumferential direction θ and using 

one-dimensional Gauss integration the following expressions are obtained 
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 for  m=0                     (28) 
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                      for  m>0                           (29) 

where JΓ is the associated arc length Jacobian. 

 

 

6. Verification of the graded harmonic element 
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Table 1 Comparison of deformations of a FGM hollow cylinder subjected to various static loadings (L=2 m, 

ri=0.2 m, ro=0.4 m Ec1=Ec2=110 GPa, Em1=Em2=400 GPa, vc1=vc2=0.34, vc1=vc2=0.28, nr=3, nz=0) 

 Maximum elongation(m) 

 (2)a (5) (10) 

Taghvaeipour et al. (2012) 2.620e-7 2.760e-7 2.870e-7 

Present 2.759e-7 2.876e-7 2.914e-7 

 Maximum deflection(m) 

 (10) (12) (15) 

Taghvaeipour et al. (2012) -7.420e-6 -7.520e-6 -7.610e-6 

Present -7.590e-6 -7.598e-6 -7.606e-6 

 Maximum rotation(rad) 

 (2) (5) (10) 

Taghvaeipour et al. (2012) 14.52e-7 14.60e-7 14.35e-7 

Present 15.26e-6 15.75e-6 15.87e-6 

 Isotropic metal Isotropic ceramic 

Exact 8.25e-6 31.43e-6 
aThe bracketed numbers indicate the number of element 

 
Table 2 Comparison of natural frequencies (Hz) for clamped-clamped functionally graded hollow cylinders 

(L=2 m, ri=0.2 m, Ec1=Ec2=110 GPa, Em1=Em2=400 GPa, vc1=vc2=0.34, vc1=vc2=0.28, ρc1=ρc2=8960 kg/m3, 

ρm1=ρm2=19300 kg/m3, nr=3, nz=0, h=ro-ri ) 

h/ri 

First bending mode Torsion mode 

Present 

(6-117) 

Taghvaeipour et al. (2012) 

Present (3-63) 

Taghvaeipour et al. (2012) 

Superele. Brick Superele. Brick 

(30a-744b) (3000-3410) (30-744) (3000-3410) 

0.2 357 369 357 624 639 622 

0.4 381 391 379 631 646 629 

0.6 401 413 400 636 652 634 

0.8 420 434 418 641 656 639 

1 437 453 436 644 660 642 

1.2 453 470 452 647 662 645 

1.4 467 486 462 649 665 647 

1.6 479 500 477 651 667 649 

1.8 490 513 487 652 668 650 

2 500 525 497 654 670 652 

 

 

A functionally graded hollow cylinder subjected to various static loads is considered to verify 

the graded harmonic element. One end of the cylinder is fixed and the free end is subjected to an 

axial tension of F=10 kN, a lateral load of P=10 kN, and an axial torque of T=24 kN.m. The 

maximum elongation, deflection and rotation of the cylinder are given in Table 1. The results 

obtained in the study are compared with the ones obtained by Taghvaeipour et al. (2012) and good 

agreements are obtained except for maximum rotations. Large differences in rotations are proved 

to be due to the typing errors in the values presented by Taghvaeipour et al. (2012). It should be 

noted that the results for functionally graded material have to be in between the results for 
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isotropic constituent materials. However, the rotations provided in (Taghvaeipour et al. 2012) do 

not fall in between the exact rotations obtained from mechanics of materials using small 

deformation theory for isotropic cylinders made of constituent metal and ceramic materials as 

given in Table 1. Also, it can be seen from Table 1 that the graded harmonic element has higher 

convergence rates.  

Additionally, the natural frequencies for the first bending mode and torsion mode of clamped-

clamped functionally graded cylinders with varying wall thickness to inner radius ratios are 

compared with the results obtained from the graphs provided by Taghvaeipour et al. (2012). The 

natural frequencies are presented in Table 2. It is seen that the present harmonic model requires 

very few elements to provide good accuracy. It should be emphasized that the number of graded 

harmonic elements can be increased due to nonlinear shape of bending mode for better results.  

 

 

7. Numerical examples  
   

After the verification of the proposed graded harmonic element, a number of various 

functionally graded axisymmetric problems are analyzed to investigate static, free and forced 

vibration responses. Mechanical properties of the constituent materials of two distinct ceramics 

and two distinct metals are presented in Table 3 to be used for the following examples. 

 
7.1 Non-axisymmetrically loaded circular plate 

 

The first problem is a simply-supported (SS) circular plate bent by a non-axisymmetric 

uniformly distributed load as shown in Fig. 5. The radius of the plate is ro=10 m and thickness is 

 

 
Table 3 Mechanical properties of constituent materials 

Constituents Material E (GPa) ρ (kg/m3) v 

m1 Ti6Al4V 115 2715 0.342 

m2 Al 1100 69 4515 0.330 

c1 SiC 440 3210 0.140 

c2 Al2O3 150 3470 0.210 

 

 

Fig. 5 Loading and sample discretization of the circular plate problem 
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Table 4 Fourier coefficients for non-axisymmetric loading 

zsmq  zsmq  

8.3333 (m=0) 15.9154 (m=2) 

−13.7832 (m=4) −10.6103 (m=6) 

6.8916 (m=8) 3.1830 (m=10) 

−3.4458 (m=16) 2.2736 (m=14) 

2.7566 (m=20) −3.5367 (m=18) 

−1.9690 (m=28) 1.4468 (m=22) 

1.7229 (m=32) 1.2242 (m=26) 

−1.3783 (m=40) −2.1220 (m=30) 

1.2530 (m=44) 0.9362 (m=34) 

 

 

Fig. 6 Axial displacements along the bottom plate surface at θ=45o 

 

 

h=1 m. The distributed load of magnitude Po=50 kN/m2 acts downward at the second and eighth 

slice of circular plate which is divided into thirty degree slices. The axial loading is approximated 

using Fourier coefficients for corresponding single and double barred harmonics. The axial load 

components for corresponding harmonics are given in Table 4. Sample finite element 

discretization and support conditions are pictured in Fig. 5.  

Fig. 6 and 7 depict the axial deflections and radial stresses along the bottom surface of the 

circular plate for a number of various power law exponents equal in radial and axial directions. It 

is seen from Fig. 6 that the axial displacement increases with decreasing power law exponents in 

both directions and the maximum displacement is obtained for nr=nz=0.1. However, the maximum 

radial stress is obtained for nr=nz=0.5. Therefore, it can be concluded that the nonhomogeneous 

distribution of material using different can affect the maximum values. The desired properties can 

be obtained by optimizing the power law components. For example, the nonhomogeneous material 

distribution can be organized in accordance with the loading position in the structure to control the 

response to the loading. Fig. 8 shows the radial stress distribution contour on the bottom plate 

surface for a particular power law exponent, nr=nz=2, in both the directions. 
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Fig. 7 Radial stresses along the bottom plate surface at θ=45o 

 

 

Fig. 8 Radial stress (x102 kPa) distribution on the bottom plate surface (nr=nz=2) 

 

 

7.2 Rotating thin disc 
 

The second problem is a hollow, thin circular disc of thickness h=0.01 m, inner radius ri=0.04 

m, and outer radius ro=0.1 m, which spins about the z axis with constant angular frequency of 

ω=1000 rad/s. Sample finite element discretization and support conditions are shown in Fig. 9. 

The motion is accommodated by constraining nodes at the bottom surface to be on rollers as 

shown in Fig. 9. All other nodes are kept free. The only load is a centrifugal body force acting 

along radial direction (Karakaş 2012). 
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Fig. 9 Sample discretization and support conditions of the rotating disc 

 

 

Fig. 10 Radial displacements along the middle disc surface for nr=2 

 

 

Fig. 11 Radial stresses along the middle disc surface for nr=2 
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Fig. 12 Hoop stresses along the middle disc surface for nr=2 

 

 

Figs. 10, 11 and 12 show the radial displacement, radial and hoop stresses along the wall 

thickness of the middle surface of the rotating disc for a number of various power law exponents 

in axial direction when radial power law exponent is nr=2. As can be seen radial displacement, 

radial and hoop stresses decrease with increasing axial power law exponent nz. Increasing the 

volume fraction of m1 and c1 material in the nonhomogeneous material by increasing axial power 

law exponent nz decreases the displacement and stresses considerably as shown in the figures. 

Therefore, it can be stated that the maximum magnitude of responses can be controlled by using 

different volume fraction configurations in functionally graded nonhomogeneous material. 

 

7.3 Free vibration of finite length hollow cylinders 
 

The third problem is the natural frequency analysis of a simply-simply supported thick hollow 

functionally graded cylinder of wall thickness h=0.2 m, inner radius ri=0.2 m, and length L=1 m. 

Additionally, the fundamental natural frequencies are obtained for various ratios of wall thickness 

to inner radius. 

Fig. 13 shows that the natural frequencies of the thick-walled cylinder increase with increasing 

circumferential harmonic number m and axial power law exponent nz. Fig. 14(a) shows the 

variations in the fundamental natural frequencies with wall thickness to inner radius ratio h/ri and 

axial power law exponent nz. The fundamental natural frequencies increase with increasing volume 

fractions of m1 and c1 materials in nonhomogeneous material gradation of the cylinders and h/ri 

ratio as shown in Fig. 14(a). Therefore, it can be concluded that by altering nonhomogeneous 

material distribution the free vibration characteristics of structures can be controlled as desired.  

The circumferential harmonic number m at which the fundamental frequency occurs is 

observed to decrease until a particular h/ri ratio as seen in Fig. 14(b). This means that when h/ri is 

beyond a certain value, which is h/ri=0.3 in this case, the fundamental natural frequencies would 

occur at the circumferential harmonic number m=1. The value of the axial power law exponent nz 

does not affect the circumferential harmonic number at which the fundamental natural frequency 

occurs. In other words, for each h/ri ratio corresponding to all axial power law exponents the 

fundamental natural frequencies occur at the same circumferential harmonic number m. 
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Fig. 13 Variation of natural frequency with circumferential harmonic number for various axial power 

law exponents (nr=2, h/ri=1) 

 

 
(a)                                                                                       (b) 

Fig. 14 Variation of (a) fundamental natural frequency (kHz) and (b) circumferential harmonic number m 

with h/ri for various axial power law exponents (nr=2) 

 

 

7.4 Dynamic analysis of a hollow infinite cylinder 
 

A FGM cylinder of inner radius ri=0.25 m and outer radius ro=0.5 m subjected to an internal 

pressure expressed by 

        

o

πt
P(t)=P sin( )   for   t 0.0002s

0.0002

P(t)=0                        for   t > 0.0002s.              


 (30) 
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Fig. 15 Pressurized cylinder: sample discretization and support conditions 

 

 

Fig. 16 Radial displacement of the midpoint (r=0.375 m) of the FGM infinite cylinder (nz=0) 

 

 

where Po=4 GPa/s and t is time in second is considered as the last example. The cylinder extends 

indefinitely along the axial direction and is in a plane strain state along that direction. Nodes move 

in the radial direction only as shown in Fig. 15. A slice of thickness h=0.1 m is extracted and 

discretized for the analysis (Fig. 15). The material variation in radial direction is only considered 

since the cylinder is infinitely long in axial direction. The differential equations of motion are 

solved using Newmark-beta method. 

Fig. 16 shows the radial displacement of the midpoint of the cylinder (r=0.375 m). This figure 

indicates that for larger amounts of nr, the amplitude and period of vibration decrease. Figs. 17 and 

18 depict time variations of radial and hoop or circumferential stresses at the same point. These 

figures reveal that the stress wave speed gets larger as nr gets smaller. Also the maximum radial 

and hoop stresses occur for nr=0.1 and nr=10, respectively. It is evident from these figures that  
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Fig. 17 Radial stress of the midpoint (r=0.375 m) of the FGM infinite cylinder (nz=0) 

 

 

Fig. 18 Hoop stress of the midpoint (r=0.375 m) of the FGM infinite cylinder (nz=0) 

 

 

both of amplitude and time delay of the response are strongly affected by the power law exponent 

nr. Therefore, it can be stated that the magnitude and occurrence time of maximum dynamic 

responses can be controlled by the modification of nonhomogeneous material distribution of the 

structure to be considered. 

 

 

8. Conclusions 
 

This paper presents the development and applications of the graded harmonic finite element for 

one or two dimensional functionally graded (FG) axisymmetric structures. The theoretical 
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formulation based on three-dimensional elasticity theory of a nine-node graded harmonic ring 

element is presented. Material properties of the graded elements are calculated at each integration 

point using a power law distribution model. For the verification of the graded element static 

deformation and frequency analyses are conducted. The results show good agreement with those 

obtained by other elements that presented in the literature. The static, free and dynamic analyses of 

FG axisymmetric structures are performed later. At first, static deformation and stress analyses of 

a non-axisymmetrically loaded FG circular plate and a rotating FG disc are conducted. Then, the 

graded element is used for frequency analysis of various hollow FG cylinders. At last, a FG 

cylinder with infinite length under impact dynamic loading is studied. The dynamic responses are 

developed and the variations of different parameters with power law exponents are obtained. It is 

observed that static and dynamic displacements, stresses and natural frequencies are severely 

affected by the variation of axial and radial power law exponents. Therefore, using various 

gradation of nonhomogeneous functionally graded material the magnitude of critical 

displacements and stresses can be controlled as well as the locations and timings of maximums. In 

this way the opportunity of controlling the failure of structures can be obtained. Also, the free 

vibration characteristics of the structures can be altered as desired by changing material 

distribution properties. Such favorable properties of FGM materials and the responses of structures 

can be obtained by using the developed graded harmonic ring finite elements as shown in the 

numerical examples. Finally, it can be concluded that the graded harmonic model requires very 

few elements to provide good accuracy since Fourier series expansion eliminates the need to mesh 

in circumferential direction and continuous material property distribution within the elements 

improves accuracy without refining the mesh size in axial and radial directions.    
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Appendix 
 

The shape function matrix is 

  1 2 9[ ] [ ] [ ] ....... [ ]N N N N   where   
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and its components are 
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where ( 1,1,1, 1,1,1,1, 1) and ( 1, 1,1,1, 1,1,1,1)

i i i

i i i

i i i

i i

N

N

N

N

    

    

   

 

 

  

  

  

  

       

 (2) 

The matrices of harmonic functions for displacements and strains are 
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where c=cos mθ, s=sin mθ and dots are zeros . 

The strain-nodal displacement amplitude matrix 
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Sub-matrix for the ith node and harmonic m is 
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Elasticity matrices for harmonic m=0 (dots are zeros)  
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