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Abstract.  In this paper, an optimization process using Genetic Algorithm (GA) that mimics biological 

processes is presented for optimum design of planar frames with semi-rigid connections by selecting suitable 

standard sections from a specified list taken from American Institute of Steel Construction (AISC). The 

stress constraints as indicated in AISC-LRFD (American Institute of Steel Construction - Load and 

Resistance Factor Design), maximum lateral displacement constraints and geometric constraints are 

considered for optimum design. Two different planar frames with semi-rigid connections taken from the 

literature are carried out first without considering concrete slab effects in finite element analyses and the 

results are compared with the ones available in literature. The same optimization procedures are then 

repeated for full and semi rigid planar frames with composite (steel and concrete) beams. A program is 

developed in MATLAB for all optimization procedures. Results obtained from this study proved that 

consideration of the contribution of the concrete on the behavior of the floor beams provides lighter planar 

frames. 
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1. Introduction 
 

Optimum design of steel structures is quite important to obtain more economical designs. 

Minimum weight design of steel structural systems involving discrete design variables are quickly 

carried out by numerous methods such as Genetic Algorithm (GA), Harmony Search Algorithm 

(HAS), Ant Colony Algorithm (ACA), Particle Swarm Optimizer (PSO) and Artificial Bee Colony 

Algorithm (ABC). Optimal design of frames with fully rigid or semi-rigid connections via these 

algorithm methods based on mathematical programming has been widely studied by many 

researchers in recent years. 

Rajeev and Krishnamoorthy (1992) researched discrete optimization of structures using genetic 

algorithms. They studied various planar and space truss systems. Simoes (1996) focused on 

optimization of frames with semi-rigid connections. Daloglu and Armutcu (1998) studied optimum 

design of plane steel frames using genetic algorithm. Erbatur et al. (2000) examined optimal 
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design of planar and space structures with genetic algorithms. Kameshki and Saka (2001) 
researched optimum design of nonlinear steel frames with semi-rigid connections using a genetic 
algorithm.  Hayalioglu and Degertekin (2004) focused on genetic algorithm based optimum design 
of non-linear steel frames with semi-rigid connections. Filho et al. (2004) studied wind pressures 
in framed structures with semi-rigid connections. Choi and Kim (2006) studied optimal design of 
semi-rigid steel frames using practical nonlinear inelastic analysis. Wang and Li (2007) studied 
stability analysis of semi-rigid composite frames. Kaveh and Talatahari (2007) used a discrete 
particle swarm ant colony optimization for design of steel frame structures. Esen and Ulker (2008) 
researched optimization of multi storey space steel frames. Degertekin et al. (2009) researched 
optimum design of geometrically non-linear steel frames with semi-rigid connections using a 
harmony search algorithm. Degertekin and Hayalioglu (2010) focused on harmony search 
algorithm for minimum cost design of steel frames with semi-rigid connections and column bases. 
Degertekin et al. (2011) researched optimum design of geometrically nonlinear steel frames with 
semi-rigid connections using improved harmony search method. Gorgun and Yılmaz (2012) 
researched geometrically nonlinear analysis of plane frames with semi-rigid connections 
accounting for shear deformations. Togan et al. (2011) researched optimization of trusses under 
uncertainties with harmony search. Aydogdu and Saka (2012) studied ant colony optimization of 
irregular steel frames according to LRFD-AISC. Kaveh and Talatahari (2012) studied a hybrid 
CSS and PSO algorithm for optimal design of structures. Rafiee et al. (2013) focused on optimum 
design of steel frames with semi-rigid connections using Big Bang-Big Crunch method. Hadidi 
and Rafiee (2014) researched harmony search based, improved Particle Swarm Optimizer for 
minimum cost design of semi-rigid steel frames.  

In the literature, there are numerous studies on the weight optimization of steel frames with 
fully rigid or semi-rigid connections. However, it is hard to see enough studies about optimization 
of semi-rigid steel frames considering concrete slab effects on the behavior of beams. So, in this 
study, optimum design of semi-rigid planar frames is studied with and without taking the effect of 
concrete slab into the consideration on FE analyses. Results obtained from the optimization of the 
frames with composite beams showed that the consideration of the concrete slabs contribution on 
the behavior of beams ended up with less steel weight. 
 
 
2. Semi-rigid connections and FEM  
 

Moment capacity changes between full rigid and pin connections (Dogan 2010). As shown in  
 
 

Fig. 1 Rotation of a semi-rigid connection 
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Fig. 2 Moment-rotation curves of semi-rigid connections 

 

Fig. 3 The two types of connections and rotational stiffness values 
 
 

Fig. 1, in the semi-rigid connections, bending moment (M) at the beam-to-column connection 
leads to some rotation of the joint depending on types of semi-rigid connections. And, the types of 
semi rigid connections play a crucial role in the amount of moment capacity as seen in Fig. 2 
(Hayalioglu et al. 2004). 

In this study, the examples of the planar frames with two types of these semi-rigid connections, 
previously studied by Hadidi and Rafiee (2014), are carried out and the results are compared with 
the ones available in literature. The cases are studied with and without considering concrete slab 
effects in finite element analyses. Connection details and rotational stiffness values of these two 
types are shown in Fig. 3. 

Stresses and displacements of each element in the semi-rigid frame are determined by Finite 
Element Method (FEM). Local stiffness matrix of each member, (kl), is calculated first. According 
to first-order analysis, the local stiffness matrices of beams with semi-rigid end connections are 
defined by Eq. (1) (Simoes 1996, Filho et al. 2004). Then, global stiffness matrix for whole 
structure, (K), is obtained from Eq. (3) by using coordinate transformation matrix, (T). Thus, the 
stresses and displacements of each element are defined. 
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where E is the elastic modulus, L is the length of member, A is the cross-section area of member, I 
is the inertia moment of member, α1 and α2 are fixity factors as defined in Eq. (2). 

1
1

1
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
                                              (2) 

where S1 and S2 are rotational spring stiffness values of the ends of the semi-rigid connected 
beams.  

tK = T k Tl                                                              

 

(3) 

 
 
3. Formulation of optimum design  
 

Minimum weight of planar frame is considered as objective function in the discrete optimum 
design problem. The objective, penalized objective and fitness functions are shown as below 
(Daloglu and Armutcu 1998) 

ng nk

k i i
k =1 i=1

minW = A ρ L                                                                    (3) 

   x x0i i ig c g  

                                                                

(4) 

        x 0 0i ig c  

                                                                     

(5) 

       
1

φ x = W x 1+P
m

i
i

c


 
 
 

                                                                 (6) 

i max min iF = ( φ(x) + φ(x)  ) - φ(x)                                                            (7) 

where W is the weight of the frame, Ak is cross-sectional area of group k, ρi and Li are density and 
length of member i, ng is total numbers of groups, nk is the total numbers of members in group k. 
gi is the constraints, ci is constraint violations, P is a penalty constant, φ(x) is penalized objective 
function, Fi is fitness function. 

The objective function is subjected to the stress constraints of AISC-LRFD (1995), maximum 
lateral displacement constraints geometric constraints for column-to-column and beam-to-column 
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as follows, 
The stress constraints taken from AISC–LRFD (1995) are presented in Eqs. (8) and (9). 
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where nm is the total number of members, nl is the total number of loading conditions, Pu is the 
required axial strength, Pn is the nominal strength, Mux is the required flexural strength about major 
axis, Mnx is the nominal flexural strength about major axis, ϕ is resistance factor for compression 
(0.85) and for tension (0.90), ϕb is resistance factor for flexure (0.90). 

 The nominal compressive strength is calculated as below 

n g crP A F                                                                  (10) 

for 1.5c          2

0.658 c
cr yF F                                                (11) 

for 1.5c          
2

0.877
cr y

c

F F


 
  
 

                                               (12) 

y
c

FKL

r E



                                                                (13) 

where Ag is the cross-sectional area; K is the effective length factor; E is the elastic modulus; r is 
the governing radius of gyration; L is the member length; Fy is the yield stress of steel. The 
effective length factor K for unbraced frames is determined as follows (Dumonteil 1992) 
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where GA and GB are the relative stiffness factors at Ath and Bth ends of columns. 
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(16)

where Ic is moment of inertia of column section corresponding to plane of buckling, Lc is unbraced 
length of column, Ig is inertia of beam corresponding to plane of bending, Lg is unbraced length of 
beam, S is rotational spring stiffness of corresponding end, αuf   is a coefficient which shows the 
connection condition and it is equal to 1 for rigid connections. It is calculated by Eq. (16) (Dhillon 
and O’Malley1999, Degertekin et al. 2011) if the beams are not rigidly connected to columns. kθ in 
the related equation is corresponding spring stiffness, and expressed as M/θr. However, in this 
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study, estimated rotational stiffness of connection, S, is used instead of kθ in Eq. (16). 
Other constraints are as below: (Hadidi and Rafiee 2014) 

• Displacement constraints are shown in Eq. (17)  

  1 0jl
jl

ju

g x



                          
1,...,

1,...,

j m

l nl




                                        (17) 

where δjl is the displacement of of jth degree of freedom under load case l, δju is the upper bound, 
m is the number of restricted displacements, nl is the total number of loading cases. 

• Column-to-column geometric constraints (size constraints) are expressed in Eq. (18) 

  1 0un
n

ln

D
g x

D
                            n=2,…,ns                                      (18) 

where Dun is the depth of upper floor column, Dln is the depth of lower floor column. 
• Beam-to-column geometric constraints are shown in Eq. (19) 

  ,
,

,

1 0fbk i
bb i

fck i

b
g x

b
                       i= 1,…,nbf                                                             (19) 

where nbf  is the number of joints where beams are connected to the flange of column, bfbk,i and bfck,i 
are the flange widths of beam and column, respectively. 
 
 
3. Genetic algorithm  
 

Genetic Algorithm is used conducting natural biological procedures such as reproduction, 
crossover and mutation as proposed by Goldberg (1989). In this study, double point crossover is 
applied. Optimum design steps for the frames are listed below: 

1. Start with random initial population comprised of individuals which are coded as binary 
digits. 

2. Decode each individual and select corresponding profiles from available section lists. 
3. Analyze with finite element method (FEM) according to selected profiles. 
4. Determine objective, penalized objective and fitness functions. 
5. Apply reproduction, double-point crossover and mutation operators. 
6. Replace the initial population with the new population. 
7. Repeat all steps until the convergence is obtained. 
Detailed information about GA steps can be found in the literature Daloglu and Armutcu 

(1998), Kameshki and Saka (2001), Hayalioglu and Degertekin (2004), Degetekin et al. (2011). 
 
 
4. Composite beams 
 

Concrete slabs on steel beams are taken into account in the analysis. Effective width of 
concrete slab as shown in Fig. 4 is determined as follows (Salmon and Johnson 1980), 
for an interior beam 
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Fig. 4 Effective width of composite beam 
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for an exterior beam 
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where bE is effective width of concrete slab, L is the span length of steel beam, bf is the flange 
width of steel beam, bo is the interval between two beams, ts is the thickness of concrete slab. The 
effective width of concrete slab is transformed by Eq. (24) 

E( ) Eb b c
transformed

s

E

E
                                                          (22) 

where Ec is the elastic modulus of concrete, Es is the elastic modulus of steel. Composite beam 
section properties such as center of gravity of the cross section, moment of inertia about major and 
minor axes…etc, are determined for the analyses. 
 
 
5. Design examples 

 
Two different semi-rigid planar frames from literature are designed for comparison purposes. 

Minimum weight optimizations of the frames with and without considering concrete slab effects in 
FEM analyses are carried out. Concrete slab is placed as seen in Fig. 4 in numerical examples of 
optimum design of semi-rigid frames with composite beams. Thickness of concrete slab is taken to 
be 10 cm and the modulus of elasticity, E, is 30 GPa. Optimum cross sections for both cases are 
selected from a W-section list which consists of 64 sections (W8×15, W 8×21, W8×24, W8×28, 
W8×31, W8×35, W8×40, W10×15, W10×22, W10×26, W10×33, W10×39, W10×54, W10×77,  

ts 

bo bo 

bE 

 

bE 
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Fig. 5 Nine-storey, single-bay frame 
 
 

W12×19, W12×26, W12×30, W12×35, W12×40, W12×45, W12×50, W12×53, W12×58, 
W12×72, W12×96, W14×26, W14×30, W14×34, W14×38, W14×43, W14×48, W14×53, 
W14×61, W14×68, W14×74, W14×82, W14×90, W14×120, W14×159, W14×193, W14×257, 
W14×311, W14×370, W14×426, W16×26, W16×31, W16×36, W16×40, W18×35, W18×40, 
W18×50, W18×76, W21×50, W21×62, W21×132, W24×68, W24×103, W27×94, W27×161, 
W30×108, W30×148, W30×191, W33×221, W36×194). 
 

5.1 Example1: Nine-storey, single-bay frame 
 

A nine-storey, single-bay frame shown in Fig. 5 was previously studied by Hadidi and Rafiee 
(2014) using Harmony search based, improved Particle Swarm Optimizer (HS-PSO) for minimum 
steel weight without composite beams incorporating stress constraints of AISC-LRFD, maximum 
lateral displacement constraints, column-to-column and beam to column size constraints. In this 
study, the frame is studied under the same constraints. Also, the frame is grouped and loaded as 
seen in Fig. 5. The loads W, W1 and W2 are 17.8 kN, 27.14 kN/m and 24.51 Kn/m, respectively and 
the design parameters are E=200 GPa, yield stress fy=248.2 MPa, material density ρ=7.85 ton/m3 
(Hadidi and Rafiee 2014). The maximum top storey drift is restricted to 154 mm.  
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Table 1 Optimum cross sections of the full rigid frame  

Group no 

Hadidi and Rafiee (2014) 
(without composite beams) 

Present Study 

Full rigid 
Full Rigid 

without composite beams with composite beams
1 24×62 14×68 14×74 21×62 
2 24×55 14×48 14×48 14×48 
3 14×30 14×30 12×40 12×40 
4 24×55 24×68 21×62 21×50 
5 21×50 24×55 21×50 18×40 
6 21×44 21×44 18×40 14×34 
7 18×35 18×35 14×38 12×26 

Total weight kg 10.529 11.281 11230 9594 

Top storey 
sway mm 

73 74 86 61 

 
Table 2 Optimum cross sections of the semi rigid frame  

Group no 

Hadidi and Rafiee (2014) 
(without composite beams) 

Present Study 

Semi Rigid Semi Rigid 

Double 
Web Angle 

End Plate with 
Column Stiffeners

Double Web Angle 
End Plate with Column 

Stiffeners 
without 

composite 
beams 

with 
composite 

beams 

without 
composite 

beams 

with 
composite 

beams 
1 40×149 14×109 33×118 14×99 24×103 27×94 24×68 21×62 
2 24×62 14×74 24×55 14×74 24×68 24×68 14×61 12×58 
3 12×40 14×30 14×30 14×30 16×36 16×36 14×61 12×58 
4 21×44 24×68 21×48 24×68 24×68 21×62 21×62 21×50 
5 21×50 24×55 24×55 24×55 21×50 18×40 14×53 14×48 
6 16×45 18×46 21×44 18×46 21×50 14×38 12×58 12×58 
7 18×35 18×35 18×35 18×35 18×35 12×26 18×35 18×35 

Total 
weight kg 

13182 13281 12136 12983 13072 11665 12652 11552 

Top storey 
sway mm 

73 76 69 77 75 63 98 69 

 
 

The example is carried out with and without composite beams. Minimum weights, maximum 
top story drifts, steel sections of optimum designs for full and semi rigid steel frames are presented 
in Table 1 and Table 2, respectively. Also in this table, the results obtained twice by Hadidi and 
Rafiee (2014) are presented for comparison. Figs. 6(a), 7(a) and 8(a) present the variation of the 
total steel weight with iterations for both cases (with and without composite beams) and Figs. 6(b), 
7(b) and 8(b) show the values of the effective length factor (K) of the columns of steel frame for 
both cases. 
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(a) The variation of the total steel weight (b) The effective length factor (K) of the columns 

Fig. 6 Fully rigid steel frame with and without composite beams 
 

(a) The variation of the total steel weight (b) The effective length factor (K) of the columns 

Fig. 7 Semi rigid steel frame with Double Web Angle connection with and without composite beams 
 

(a) The variation of the total steel weight (b) The effective length factor (K) of the columns 

Fig. 8 Semi rigid steel frame with end Pate with Column Stiffness connection with and without 
composite beams 

 
 

It is observed from Table 1 and Table 2 that the optimum design results of Genetic Algorithm 
are very close to the ones available in literature. Top storey sway values in Table 1 and Table 2 are 
far below the limit. Therefore, stress and size constraints play active roles in determining the 
optimum design of the frames. As seen in the figures and the tables above, the minimum weights 
obtained for the fully rigid steel frame without composite beams is 16% and 12.6% lighter than the 
semi-rigid frames with Double Web Angle and End Plate with Column Stiffeners connections, 
respectively. Rotational spring stiffnesses of these two types of semi rigid connections are shown 
in Fig. 3. As regards the figures of the effective length factor (K) of the columns, a decrease in  
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Fig. 9 Ten-storey, four-bay frame 

 
 

rotational spring stiffness of semi rigid connection significantly increases K values of the columns 
and so, this situation increases the design weight. 

It is apparently seen from the tables above, the minimum weight obtained for the full rigid 
frame with composite (steel and concrete) beams is 14.6% lighter compare to the weight of the 
same frame with regular beams without considering composite effect. Furthermore, in the optimal 
designs of fully rigid frame, maximum top storey displacement decreases from 86 mm to 61 mm 
by considering concrete slab effects. The design weights of semi rigid frames for the case with 
composite beams are 8-10% lighter than the case without composite beams. As regards the figures 
above, in the optimal design of the case with composite beams, considering concrete slab effects in 
finite element analyses significantly reduces the effective length factor values of the columns, and 
so design weight decreases. 

 
5.2 Example2: Ten-storey, four-bay frame 

 
A ten-storey, four-bay frame with 90 members shown in Fig. 9 was previously studied by 

Hadidi and Rafiee (2014) using HS-PSO for minimum steel weight. The frame members are 
collected in 12 groups and the loads are imposed as shown in Fig. 9. Loads W, W1 and W2 are 
44.49 kN, 47.46 kN/m and 42.91 kN/m, respectively and material properties are E=200 GPa, yield 
stress fy=248.2 MPa, material density ρ=7.85 ton/m3 (Hadidi and Rafiee 2014). Maximum top 
storey drift is restricted to 158 mm. The example is carried out for optimum weight considering the  
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Table 3 Optimum cross sections of the full and semi rigid frame  

Group 
no 

Hadidi and Rafiee (2014) 
(without composite beams) 

Present Study 

Full 
rigid 

Semi Rigid Full Rigid Semi Rigid 

Double 
Web 

Angle 

End Plate 
with 

Column 
Stiff. 

without 
composite 

beams 

with 
composite 

beams 

Double Web Angle 
End Plate with 

Column Stiffeners 
without 

composite 
beams 

with 
composite 

beams 

without 
composite 

beams 

with 
composite 

beams 
1 14×74 14×132 14×132 14×68 24×68 24×103 30×108 14×74 21×62 
2 14×132 14×120 14×120 14×159 21×132 30×148 21×132 21×132 30×108
3 14×61 14×61 14×99 12×53 12×58 14×90 14×53 14×61 21×62 
4 14×82 14×109 14×82 14×82 14×90 27×94 21×132 14×82 14×74 
5 14×43 14×48 14×68 12×53 12×40 14×53 14×48 14×48 12×58 
6 14×48 14×61 14×48 14×48 14×48 14×61 14×43 14×48 12×50 
7 14×43 14×43 14×68 8×31 10×39 8×35 12×40 14×48 8×24 
8 14×43 14×48 14×30 10×39 8×31 12×58 10×33 8×31 8×31 
9 21×44 21×48 21×44 21×50 21×50 21×50 21×50 24×68 21×62 

10 21×44 16×50 21×44 14×53 16×40 21×50 18×35 14×53 18×40 
11 21×44 16×45 16×45 18×40 18×35 16×40 14×34 18×40 14×38 
12 18×40 18×40 18×46 18×50 18×35 14×38 14×30 14×38 18×35 

Total 
weight 

kg 
35125 39435 38288 37653 33718 39611 35433 38669 34400 

Top 
storey 
sway 
mm 

56 72 68 61 35 54 45 56 38 

 

(a) The variation of the total steel weight (b) The effective length factor (K) of the columns 

Fig. 10 Fully rigid steel frame with and without composite beams 
 
 

frame with and without composite beams. Minimum weights, maximum top story drifts, steel 
sections of optimum design for fully rigid and semi rigid steel frames are presented in Table 3. 
Also in this table, results obtained by Hadidi and Rafiee (2014) are presented for comparison. Figs. 
10(a), 11(a) and 12(a) show the variation of total steel weight with iterations for both cases and  
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(a) The variation of the total steel weight (b) The effective length factor (K) of the columns 

Fig. 11 Semi rigid steel frame with Double Web Angle connection with and without composite beams 

 

(a) The variation of the total steel weight (b) The effective length factor (K) of the columns 

Fig. 12 Semi rigid steel frame with End Plate with Column Stiffness connection with and without 
composite beams 

 
 
Figs. 10(b), 11(b) and 12(b) present the values of effective length factor (K) for the columns of 
steel frame for both cases. 

As shown in Table 3, the optimum design results of present study are very close to the results 
obtained by Hadidi and Rafiee (2014) for the case of frames with regular beams or without 
composite beams. Maximum top storey displacements are significantly less than upper limit. 
Therefore, stress and size constraints are important determinants of optimal designs for full and 
semi rigid frames.  As seen in Table 3 and Figs. 10, 11 and 12, minimum weight for the fully rigid 
steel frame without composite beams is about 10% heavier than the design with composite beams 
and it is about 5% and 2.6% lighter than the optimum designs of semi rigid frames (Double Web 
Angle and End Plate with Column Stiffeners connections) without composite beams. Studying 
Figs. 11b and 12b it can clearly be observed that the effective length factor, K, for columns depend 
on rotational spring stiffness of semi rigid connections and a decrease in the rotational spring 
stiffness results with an increase in K and so the buckling lengths of columns. So, this situation 
leads to the selection of larger cross-section profiles for columns, Table 3. Consideration of 
concrete slab effects on the story beams significantly reduces the effective length factor of 
columns and maximum top storey displacements. Also in the optimal design of frames with 
composite beams, selected sections of beams are usually smaller and minimum steel weight is 
reduced by about %10. 
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6. Conclusions 
 

In the present study, Genetic Algorithm is used for optimum design of full and semi rigid 
frames with and without composite beams. Stress constraints of AISC-LRFD, maximum lateral 
displacement constraints and geometric constraints are applied. Also, in the optimum design of 
plane frames with composite beams, concrete slab effects are considered in finite element 
analyses. All procedures are also repeated for the designs of semi rigid frames with Double Web 
Angle and End Plate with Column Stiffeners connections. Two different examples taken from 
literature are resized for the cases of plane frames with and without composite beams. Results 
obtained from analyses are presented in tabular and graphical formats.  

• Consideration of the contribution of concrete slabs on behavior of beams ended up with less 
steel weight. Minimum steel weight is reduced by about %10 or both examples here. 

• Effective length factor (K) of columns depend on rotational spring stiffness of semi rigid 
connections and a decrease in rotational spring stiffness results with an increase in K, and buckling 
length of columns. This situation increases design weight. In the first example, the design weight 
of fully rigid frame without composite beams is 16% and 12.6% lighter than the semi-rigid frames 
with Double Web Angle and End Plate with Column Stiffeners connections, respectively. These 
values become about 5% and 2.6% in the second example, 

• In the optimum design of plane frames with composite beams, consideration of concrete slab 
effects in finite element analyses significantly reduces the effective length factor values of the 
columns and maximum top storey displacements.  Furthermore, selected sections of the beams are 
usually smaller. 
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