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Abstract.  This article presents a theoretical parametric analysis on the ultimate torsional behaviour of 
axially restrained reinforced concrete (RC) beams. This analysis is performed by using a computing 
procedure based on a modification of the Variable Angle Truss Model. This computing procedure was 
previously developed to account for the influence of the longitudinal compressive stress state due to the axial 
restraint conditions provided by the connections of the beams to other structural members. The presented 
parametric study aims to check the influence of some important variable studies, namely: torsional 
reinforcement ratio, compressive concrete strength and axial restraint level. From the results of this 
parametric study, nonlinear regression analyses are performed and some design charts are proposed. Such 
charts allow to correct the resistance torque of RC beams (rectangular sections with small height to width 
ratios) to account for the favorable influence of the axial restraint. 
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1. Introduction 
 

In common design procedures of reinforced concrete (RC) beams under torsion, the influence 

of the axial restraint provided by the connections of the beams to other structural members is 

usually neglected. These other structural members (beams, columns, walls, etc.) usually composes 

the structure in which the beams are inserted (for instance, building frames). In non-cracked stage, 

experimental results show that the beam’s elongation is negligible. This is because the torsional 

longitudinal tensile stresses in the longitudinal direction are mainly carried by the entire concrete 

area of the cross section. However, experimental results show that, after concrete cracking, RC 

beams under torsion undergo a non-negligible longitudinal elongation (for instance: Hsu 1969 for 

plain beams, Bernardo and Lopes 2009 for hollow beams). This is mainly due to the high tensile 

stresses in the longitudinal reinforcement located in the crack zones (tensile stresses in the 

longitudinal direction are mainly carried by longitudinal reinforcement). Experimental results also 
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show that the beam’s elongation increases from the cracking torque until maximum torque is 
reached. Then, if beams are axially restrained it is expected that an increasing longitudinal 
compressive stress state will act in addition to the pure shear stress state due to torsion. The 
magnitude of this longitudinal compressive stress state will depend on the loading level (in the 
cracking stage of the beam) and also on the level of the axial restraint provided by the stiffness of 
the connections to the other structural members. 

For the design of RC beams under shear forces, current codes of practice (for instance 
European Code, Eurocode 2 2010) include clauses to compute the increase of shear strength due to 
the existence of a longitudinal compressive stress state. For torsion, such clauses are usually not 
provided. However, since shear stresses are high in RC beams under torsion, it is expected that the 
torsional strength of the beams also increases due to the existence of a longitudinal compressive 
stress state. 

The Variable Angle Truss-Model (VATM) was previously proposed by Hsu and Mo (1985). 
This torsional model uses a nonlinear softened stress () – strain () relationship for the concrete 
in the struts instead of a conventional – relationship for uniaxial compression. 

VATM is able to predict the global behaviour of RC beams under torsion throughout the entire 
loading history. However, very good results are observed only for high loading levels (Bernardo et 
al. 2012a) and mainly for torque values. This is because for low loading levels the beam is not 
extensively cracked or not cracked at all (VATM assumes that the RC beam is fully cracked at all 
loading stages). When compared with other and recent theoretical models to compute the 
resistance torque of RC beams (for instance, Jeng and Hsu 2009, Cevik et al. 2012), VATM 
provides a simple mathematical treatment of the torsional problem. VATM is recognized to also 
provide a simple physical understanding of the torsion phenomenon in RC beams. 

Based on the observations stated in the beginning of this section, it is expected that the axial 
restraint modifies the behaviour of RC beams under torsion mainly in the post-cracking stage. 
Then, it is expected that VATM provides a reliable model to be modified to account for the 
influence of the variable longitudinal compressive stress state in the beam due to the axial restraint 
condition. This modification was already presented and validated experimentally and numerically 
(Taborda 2012, Bernardo et al. 2014) and led to a new version of VATM called “modified 
VATM”. From this new model, Taborda (2012), Bernardo et al. (2014) presented a simple 
computing procedure which was implemented with the help of the computing programming 
language Delphi. This computing procedure is able to compute the Torque (T) - Twist () curve 
for axially restrained RC beams under torsion. 
 
 
2. Research significance 
 

As referred in other studies (Taborda 2012, Bernardo et al. 2014), no previous theoretical or 
experimental studies on axially restrained RC beams under torsion where found in the consulted 
literature. 

As referred in Section 1, a new computing procedure was previously proposed and validated 
(both experimentally and numerically with finite element models) by Taborda (2012) and 
Bernardo et al. (2014). This computing procedure is able to predict very well the ultimate torsional 
behaviour of axially restrained RC beams under torsion, namely the effective resistance torque. 
However, its use for practical purposes involves computational programming. This is because 
modified VATM (as for original VATM) is a nonlinear model and involves an iterative calculus 
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procedure, since some interdependent variables are initially unknown for each loading level. For 
practical purposes (design procedures), an appropriate and simplest tool becomes necessary to 
correct the calculation value of the resistance torque computed, for instance, from actual codes 
rules. This tool will allow structural designers to perform optimized designs of RC beams under 
torsion. This tool was not proposed by the authors (Taborda 2012, Bernardo et al. 2014) and still 
remains to be proposed in the literature. 

For this reason, the modified VATM is used in this article to propose such a tool for practice. 
Firstly, based on the modified VATM, this article presents a theoretical parametric analysis. In this 
analysis, the influence of some important variable studies on the torsional behaviour of axially 
restrained RC beams is analyzed, namely: torsional reinforcement ratio, compressive concrete 
strength and axial restraint level. The first two variables fairly govern the torsional behaviour of 
RC beams under torsion for high level loading (Bernardo and Lopes 2008, 2011). Secondly, from 
the results of the parametric study, nonlinear correlation analyses are performed and some design 
charts are proposed. Such design charts allow to correct the calculation value of the resistance 
torque of RC beams (rectangular sections with small height to width ratios) in order to account for 
the favorable influence of the axial restraint. 

It should be pointed out that, in this study, only rectangular RC beams with current dimensions, 
current beam’s length and small aspect ratio (height/width) for the cross section, will be studied. 
Then, this study is mainly focused on current beams used in building’s frames. In fact, in current 
building structures high axial restraints confinement constitutes a common situation due to the 
high static indetermination degree of the 3D frames. It is also known that the structural design of 
such beams with high torsional moments usually lead to sections with small height to width ratio. 

Finally, it should be also pointed out that this study deals exclusively with pure torsion. In 
actual structures, the interaction between torsion and other internal forces is a common situation. 
However, the behaviour of beams under pure torsion needs to be well known. Firstly, the design 
procedures of RC sections are usually carried on separately for each internal force. So, a design for 
pure torsion is always carried on. Secondly, theoretical and reliable models for special cases with 
pure torsion are still need. Such models can be very useful to be applied in other studies focused in 
more complex situations, namely to members with force interactions (Belarbi et al. 2009, Valipour 
and Foster 2010). 
 
 
3. Modified VATM for axially restrained beams 
 

This section summarizes the formulation and the calculus procedure for the modified VATM 
for axially restrained beams under torsion. Some experimental and numerical results previously 
used by the authors to validate this theoretical model are also presented. More detailed information 
about the derivation of the formulation for the modified VATM, as well as the comparative 
analyzes performed to validate the model, can be found in Taborda (2012) and Bernardo et al. 
(2014). In these studies, the modified VATM was extended to prestressed concrete beams under 
torsion (longitudinal uniform prestress). In the present study, the formulation and calculus 
procedure of the modified VATM will be particularized to RC beams. Such beams constitute a 
particular case of VATM for PC beams when neither prestress force nor prestress reinforcement 
exist. 

As illustrated in Table 1, the elongation l of the beam under torsion (with length l), in the 
cracked stage, is computed assuming firstly that no axial restraint exists (“free condition”). Then, a  
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Table 1 Initial calculus procedures (Taborda 2012, Bernardo et al. 2014) 

Beam with no axial restraint (free condition) 
 

l

T T

l/2 l/2l  
ll l   (1) 

Beam with axial restraint (idealized condition) 
 

1 2

l

T TFc Fc

 
cF l k  (2) 

Where: 
Fc  = axial and centered compressive force due to axial restraint; 
k  = stiffness of the beam´s connection to the other structural members; 
l  = elongation of the beam (free condition); 
l  = strain in the longitudinal reinforcement. 

 
 

calculation based on the original VATM calculus procedure is firstly carried out (for the free 
beam). The elongation l is related with the tensile strain in the longitudinal reinforcement (Eq. 
(1), see Table 1), εl, which is computed from VATM. After this first calculation, the influence of 
the axial restraint is simulated with linear springs (with total stiffness k=k1+k2) located at the top 
sections of the beam (“idealized condition”, see Table 1). In this new condition, in addition to the 
torsional moment T, an axial and centered force (Fc) will be applied to the beam as a result of the 
restraint of the beam’s elongation. This force (Eq. (2), see Table 1) is proportional to the free 
beam’s elongation (l) and stiffness (k), and will reduce the beam’s elongation in the free 
condition. It is assumed that the stiffness k is an initial input data for the calculus procedure. The 
calculation of the axially restrained beam (under the interaction T+Fc) is then performed with the 
modified VATM calculus procedure. 

Fig. 1 shows a rectangular hollow beam (with symmetrical ordinary longitudinal reinforcement 
in the corners) under a torsional moment T and an axial compressive force Fc due to the axial 
restraint. VATM states that, in each internal section, two forces are observed: the forces in the 
longitudinal bars and the forces in the diagonal concrete struts with an angle  to the horizontal 
(Hsu 1984). The resultant of these two forces is the shear flow q in the transversal section plane, 
which coincides with the center line of the effective wall thickness, td. From Bred’s Thin Tube 
Theory, the shear flow q can be related with the torsional moment T and the area Ao limited by the 
center line of the flow of shear stresses (which coincides with the center line of the wall thickness, 
td): q=T/(2A0) (Hsu 1984). For concrete in compression in the struts, VATM uses nonlinear – 
relationships which account for the softening effect (influence of the transversal tension strains) by 
incorporating reduction factors for the stress () and strain (). 

Computing the theoretical T– curve from the modified VATM for axially restrained RC 
beams under torsion requires three equilibrium equations. These equations are necessary to 
compute the torque, T, the effective thickness of the concrete struts of the equivalent hollow 
section, td, and the angle of the concrete struts from the longitudinal axis of the beam, , (Eqs. (3)-
(5) in Table 2). The equilibrium equations from VATM (Hsu and Mo 1985b) for free beam’s 
condition constitutes a particular case of the modified VATM when Fc=0. 

Computing the theoretical T– curve from the modified VATM for axially restrained RC  
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Fig. 1 Rectangular hollow beam under T+Fc (Taborda 2012, Bernardo et al. 2014) 
 

 
beams under torsion also requires three compatibility equations. These equations are necessary to 
compute the strain of the longitudinal reinforcement, l, the strain of the transversal reinforcement, 
t, and the twist,  (Eqs. (6)-(8) in Table 2). The compatibility equations from VATM (Hsu and 
Mo 1985b) are equal to Eqs. (6)-(8). However, for axially restrained beams the compressive strain 
in the outer fiber of the concrete strut ds (Fig. 1) must be replaced by the effective compressive 
strain ds,ef to account for the axial restraint (Eqs. (9)-(11) in Table 2. 

The stress of the concrete struts, d, is defined as the medium stress of a non-uniform diagram 
(Fig. 1) 

1d ck f                                  (12) 

Where: 
 = reduction coefficient for the stress to account for the softening effect; 
k1 = ratio between the medium stress (B, see Fig. 1) and the maximum stress (A, see Fig. 1); 

cf   = average concrete compressive strength. 

The k1 parameter is an average stress and it can be obtained by integrating the – relationship 
of the compressive concrete in the struts (Eqs. (13)-(14) in Table 3). In the computational 
procedure based on the modified VATM, parameter k1 is calculated with numerical integration. 

Table 3 resumes the mathematical equations for the – relationship for concrete in 
compression in struts (Eqs. (13)-(14)) as well as the mathematical equations for the reduction 
factor (=) (Eqs. (15)-(18)). Table 3 also presents the mathematical equations for the – 
relationship for ordinary reinforcement in tension (Eqs. (19)-(22)). The choice for these 
relationships was justified in previous studies (Bernardo et al. 2012a, 2014). 

As for the VATM, the computation of the T– curves based on the modified VATM requires an 
iterative computation procedure since the variables td,  and = are initially unknown and 
interdependent. To begin the calculus procedure, the input variable is ds. This option allow for a 
simple and efficient iterative calculus procedure (Hsu and Mo 1985a, Bernardo et al. 2012). The  
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Table 2 Modified VATM for RC beams under axial restraint (Taborda 2012, Bernardo et al. 2014) 

Equilibrium equations: 

ο2   d dT A t sin cos    (3)    2 l l c

d d

A F
cos

p t







  (4)    l l c t t
d

d d

A F A
t

p s

 
 


   (5) 

Compatibility equations: 
2

,

1

  2
d

l ds ef

A

p T cotg





 


 

  
 

 (6)    
2

,

1

  2
d

t ds ef

A

p T tg





 


 

  
 

 (7)    ,

 2
ds ef

dt sin cos




 
  (8) 

Effective compressive strain in the outer fiber of the concrete strut: 

, ,ds ef ds ds c     (9)   ,
,

l c
ds c cos





  (10)   

   ,
c

l c
c c h l s c

F

E A A A E E
 

    (11)   

Where: 
Ao  = area limited by the center line of the flow of shear stresses (center line of the strut thickness td);
Al  = total area of the longitudinal reinforcement; 
Ac  = area limited by the outer perimeter of the section; 
Ah  = hollow area (for plain sections: 0hA  ); 

At  = area of one leg of the transversal reinforcement; 
Ec; Es  = Young´s Modulus for concrete and ordinary reinforcement, respectively; 
Fc  = axial and centered compressive force due to axial restraint; 
po  = perimeter of the center line of the flow of shear stresses (center line of the strut thickness td); 
s  = longitudinal spacing of the transversal reinforcement; 
td  = effective thickness of the concrete struts; 
T  = torsional moment; 
  = angle of the concrete struts from the longitudinal axis of the beam; 
ds  = compressive strain in the outer fiber of the concrete strut; 
ds,c  = shortening in the outer fiber of the diagonal concrete strut due to Fc; 
ds,ef  = effective compressive strain in the outer fiber of the concrete strut; 
l  = strain in the longitudinal reinforcement; 
l,c  = shortening of the longitudinal reinforcement due to Fc; 
  = twist; 
d  = stress in the concrete strut; 
l  = stress in the longitudinal reinforcement; 
t  = stress in the transversal reinforcement. 
 
 

iterative procedure for the modified VATM for axially restrained RC beams under torsion is 
presented in Fig. 2. In a first step, and for each ds input value, the original VATM calculus 
procedure is used to compute the response of the RC beam under torsion without axial restraint 
(free beam’s condition). After this first calculation, the strain in the longitudinal reinforcement, l, 
is computed. Then, the beam’s elongation L and the longitudinal force Fc (due to the axial 
restraint) are computed. Subsequently, the effective compressive strain in the outer fiber of the 
concrete strut ds,ef is computed and the calculus procedure for the modified VATM is started. 

The theoretical failure of the section was defined from the maximum (conventional) strains of 
the materials (concrete and steel). Either the strain of the concrete struts, ds (Fig. 1), reaches its 
maximum value (cu) or the steel strain, s, reaches the usual maximum value of s=100/00. In this 
study, εo and cu will be calculated from EC2 (2010). 
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Table 3 Nonlinear – relationships for materials 

Concrete in compression in the struts: (Belarbi and Hsu 1991, Zhang and Hsu 1998) 
2

 2            d d
d c df if  

   

 
    

   

    
       
     

 (13) 

2

 1            
2

d
d c df if 

  
  

  
    

  

          
 (14) 

 
1400

1

c

c

R f
  





 




 (15)   ,

, /
l sy l l sly

t sy t t sty

f A f

f uA f s





   (16)   

1  

1  1 /

  
  

  
   

   (17)  
 
5.8

0.9
MPa  

c

c

R f
f

  


  (18)

 

Ordinary reinforcement in tension (  f): (Belarbi and Hsu 1994) 

1

0.975
0.025

1.1
1

s s
s s s

m m

s s

sy

E
f E

E

f






 
  
       

 (19)   
1

25
9 0.2

m
B

 


 (20) 

1.5

1 cr

sy

f
B

f

 
   

 
 (21)   3.75  ( )cr cf f psi  (22)     

 

Where: 

cf  ; fcr  = average concrete compressive strength and tensile strength of the concrete respectively; 

fs  = tensile stress in the reinforcement; 
fsly;fsty  = yielding stress (fsy) of the longitudinal and transversal ordinary reinforcement, respectively; 
u  = perimeter of the transversal ordinary reinforcement (

1 12 2u x y  ); 

x; y  = external dimensions (width and height) of the rectangular section; 
x1; y2  = minor and major dimension of the hoop; 
;  = reduction factors for stress and strain, respectively; 
c1  = principal tension strain (

1c l t d      , Hsu 1984); 

d  = compressive strain in the concrete strut; 

   = strain corresponding to the pick stress (
cf  ); 

s;su  = tension strain and ultimate strain in the reinforcement, respectively; 
  = ratio between the resisting forces in the longitudinal and transversal reinforcement; 
l;t  = longitudinal and transversal reinforcement ratio ( /l sl cA A  , / ( )t st cA u A s  ,

cA xy ). 

 
 
Based on the global calculus procedure presented in Fig. 2, a computing tool based on VATM 

and previously developed with the help of the computing programming language Delphi (Andrade 
et al. 2011) was modified in order to include axially restrained beams under torsion. The 
computing tool based on the modified VATM is able to predict the ultimate behaviour of axially 
restrained RC beams under torsion. In previous studies (Taborda 2012, Bernardo et al. 2014),  

s

s su
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Fig. 2 Flowchart for the calculation of T– curves (modified VATM calculus procedure) 
 
 

some theoretical results obtained with this computing tool were compared with experimental 
results of test beams under pure torsion available in the literature and also with numerical results 
from nonlinear 3D finite element analysis. Some results from these comparative analysis are 
shown below. 

As previously referred, the authors didn’t found experimental studies focused on axially 
restrained RC beams under torsion. Only some experimental results with prestressed concrete (PC) 
beams under torsion (with uniform longitudinal prestress) were shown to be able to be used for 
comparison (Bernardo 2003). Such beams incorporate external longitudinal prestress 
reinforcement anchored at the top sections. So, in addition to the initial compressive stress due to 
the prestress force, a compressive stress state arises due to the axial restraint provided by the axial  
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(a) T– curves (b) Geometry and detailing 

Fig. 3 Beam D1 (Bernardo et al. 2014) 
 
 

stiffness of the prestress reinforcement. Such beams can be studied as axially restrained PC beams 
under torsion. As an example, Fig. 3(a) shows the T– curves for one (Beam D1) of the two 
prestressed concrete beams under torsion tested by Bernardo (2003). Beam D1 (with 5.9 meters 
long) has a rectangular hollow cross section (Fig. 3(b)). External prestressing was applied through 
three 0.6 inches wires centered in the section (Fig. 3(b)). The ordinary reinforcement were ribbed 
bars sold commercially as A500 Class. The prestress reinforcement used in Beam D1 were wires 
sold commercially as S1670/1860 Class. The average concrete compressive strength was 80.8 
MPa and the initial stress in the prestressing reinforcement was 640 MPa. 

Fig. 3(a) includes two theoretical T– curves. The first one was calculated from the original 
VATM (“VATM”). The second T– curve was calculated from the modified VATM 
(“mod.VATM”) to account for the axial restraint provided by the axial stiffness of the longitudinal 
prestress reinforcement. Fig. 3(a) shows that the modified VATM slightly improves the previsions 
of the T– curves for the ultimate behaviour of Beam D1. The slight differences between the 
theoretical T– curves were probably due to the low level of axial restraint provided by the low 
longitudinal prestress reinforcement area. Nevertheless, some axial restraint effect exists and the 
theoretical T– curves from the modified VATM are closer to the experimental one. 

To validate the modified VATM, Bernardo et al. (2014) also performed a comparative analysis 
with some numerical results. Such results were obtained from a 3D nonlinear finite element model 
(3D FEM) developed with LUSAS software. This comparative analysis was focused on the 
ultimate behaviour of a RC hollow beam under torsion (with no axial restraint). This beam, Beam 
A2 from Bernardo and Lopes (2009), has the same geometry as for Beam D1 (see details of Beam 
A2 in Section 4.1). 

The 3D FEM aimed to simulate the global behaviour of the RC Beam A2 under torsion and 
under several axial restraint levels. The 3D FEM consisted of thick steel plates in the tops of the 
beam (sections under torsional loading and with bearing supports), and RC walls composing the 
hollow section (Fig. 4(a)). The concrete walls and steel plates were modeled with eight-node solid 
elements with 3 degrees of freedom (translations) in each node (HX8 element). The steel 
reinforcement was modeled using a 3D isoparametric bar with two nodes and 3 degrees of freedom 
(translations) in each node (BRS2 element). Perfect bond was considered between concrete and 
reinforcement bars, so solid and bar steel elements share the same nodes. The loading of the 3D  
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(a) 3D FEM Mesh - Concrete + Steel plates (b) 3D FEM Mesh – Reinforcement 

X
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Z

(c) 3D FEM Deformation 

Fig. 4 Beam A2 (Bernardo et al. 2014) 
 
 

FEM was simulated with a binary of imposed displacements in one of the top section, in order to 
simulate the applied torque. The opposite top section was simply supported in some nodes to fully 
restrain twists. Axial restraint was simulated with a longitudinal and external tie (BRS2 elements) 
linked to the steel plates at the top sections of the beam. The 3D FEM add a total of 5540 nodes, 
2978 bar elements and 4044 solid elements. 

A plastic-damage-contact model (Multi-Crack) was used to model the concrete behaviour both 
in compression and tension. For reinforcement in tension, the non-linear average – relationship 
from Belarbi and Hsu (1994) was used (see Table 3). 

The incremental-iterative solution was based on modified Newton-Raphson iterations. In order 
to improve convergence characteristics, namely for high level loading, the constant load control 
method switched to arc-length method by imposing a stiffness ratio limit. Automatic increment 
reductions were also used when increments fails to converge. The convergence criterions used 
were the residual force norm, displacement norm and the external work norm. 

A more detailed information about the 3D FEM, the properties of the materials and 
convergence criteria can be found in Bernardo et al. (2014). 

The known experimental results of Beam A2 (without axial restraint) were previously used to 
calibrate the 3D FEM mainly with respect to the torsional moments (Fig. 5(a)). Since the 
comparative analysis was mainly focused on the resistance torque, the calibration with respect to 
the twists was considered less important. After that, a comparative analysis between 3D FEM and 
the modified VATM focused on the ultimate behaviour of Beam A2 with several axial restraint 
levels was carried out. Figs. 5(b)-(c) summarize the obtained T– curves for Beam A2 with several 
axial restraint levels, computed from the modified VATM and from 3D FEM. The range of values 
considered for the longitudinal axial stiffness k (kN/m) are indicated in the graphs. Fig. 5(d) 
presents the evolution of the torsional strength (maximum torque, Tr) with respect to the axial 
restraint levels (k). Fig. 5(d) shows that the modified VATM and 3D FEM give very similar values 
for Tr (the maximum difference was only 6.6%). Fig. 5(d) also shows that the increase in the 
torsional strength, as the axial restraint level increases, is notable. 
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(a) Calibration of 3D FEM (b) T– curves - modified VATM 

(c) T– curves- 3D FEM (d) Resistance torques 

Fig. 5 Results for Beam A2 (Bernardo et al. 2014) 
 
 
The results previously obtained by Bernardo et al. (2014), and previously summarized, validate 

the modified VATM to be used to compute the resistance torque of axially restrained RC beams. 
 
 
4. Theoretical parametric analysis 
 

This section presents a theoretical parametric analysis based on the modified VATM computing 
procedure previously presented. The aim is to study the influence of some important variable 
studies on the torsional behaviour of axially restrained RC beams, namely: torsional reinforcement 
ratio, compressive concrete strength and axial restraint level. The first two variables fairly govern 
the torsional behaviour of RC beams under torsion for high level loading (Bernardo and Lopes 
2008, 2011). 

It should be noted that neither the aspect ratio (height/width of the cross section) nor the beam´s 
length were directly considered as variable studies. 

The modified VATM model is focused on the section analysis of the beam, and not on the 
overall beam analysis. For this reason, overall properties of the beams, such as span length and 
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stiffness of the connections to other structural members cannot be considered as direct variable 
studies. For this reason, in this study, the influence of the referred variables are computed 
separately (such as for the stiffness) or included in a complementary analysis (such as performed 
with the span length, see Section 4.5). 

The aspect ratio was one of the variables study considered in the early studies on rectangular 
RC beams under torsion (for instance, Hsu 1968). From such studies, it was concluded that, for 
aspects ratio not very far from unity, the influence of this parameter is very small when compared 
with other variables study (such as material strengths and reinforcement ratios). Furthermore, it is 
also well known that when torsion constitutes a major internal force in design, the cross section of 
the beams are usually designed with similar depth and width (aspect ratio close to unity). 

In fact, the aspect ratio can be somehow indirectly considered in the torsional reinforcement 
ratio, which constitutes one of the three variables study considered in this article. The total 
torsional reinforcement ratio is the sum of the longitudinal (l) and transversal (t) torsional 
reinforcement ratio. As stated in Table 3, both parameters depends on the width (x) and high (y) of 
the rectangular section (l=Asl/Ac and t=Astu/(Acs), with Ac=xy). This explains why the 
experimental results of rectangular sections (with aspect ratios not much different) can be grouped 
to validate theoretical models used to compute the resistance torque (Leu and Lee 2000). 

Since this article is mainly focused on current rectangular sections designed for primary 
torsional moments (with aspect ratios not very far from unity), the influence of the aspect ratio was 
neglected as a direct variable study. This will allow to reduce the complexity of the nonlinear 
regression analyzes presented below. 

The parametric analysis presented below will focus on the influence of the axial restraint level 
in the global behaviour of RC beams under torsion. Such influence on some parameters which 
characterize the internal deformation and stress state of RC beams under torsion, as well as for 
some other parameters included in the formulation of the modified VATM, is also analyzed. 

 
4.1 Reference beam 
 
For the purpose of Section 4, the experimental RC hollow beam A2 (or A-47.3-0.76) from 

Bernardo and Lopes (2009) will be used as reference beam for the theoretical parametric analysis. 
This beam was also used by Bernardo et al. (2014), as reference beam, to validate the modified 
VATM from a nonlinear 3D finite element analysis (Section 3). The geometry and detailing of 
Beam A2 is presented in Fig. 6. The ordinary reinforcement used in Beam A2 (A500 Class) were 
ribbed bars (diameters of 8, 10 and 12 mm). Elastic modulus of the steel, Es, was assumed to be 
200 GPa. 

Table 4 summarizes the geometrical and mechanical properties of the experimental Beam A2 
(parameters needed for the modified VATM calculus procedure), namely: the external width (x) 
and height (y) of the rectangular cross hollow section, the thickness of the walls (t), the distances 
between centerlines of legs of the closed stirrups (x1 and y1), the total area of longitudinal 
reinforcement (Asl), the distributed area of one leg of the transversal reinforcement (Ast/s, where s 
is the spacing of transversal reinforcement), the longitudinal and transversal reinforcement ratio (l 
and t), the longitudinal versus transversal reinforcement ratio (mb=Asls/(Astu)), the average 
concrete compressive strength (f′c), the average yielding stress of longitudinal and transversal 
reinforcement (fly and fty). Young´s Modulus of concrete (Ec), concrete strain correspondent to peak 
stress (ɛo) and ultimate compressive concrete strain (cu) were calculated from EC2 (2010). 
Ultimate tensile reinforcement value (su) was considered equal to 1% (usual value). 
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1.
20

LONGITUDINAL VIEW
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Fig. 6 Geometry and detailing of test Beam A2 (Bernardo and Lopes 2009) 
 

Table 4 Properties of test Beam A2 (Bernardo and Lopes 2009) 

Beam 
x ; y 
cm 

t 
cm 

x1 
cm

y1 
cm 

Asl 
cm2 

Ast/s
cm2/m

l 
%

t 
% 

mb
cf   

MPa
fly 

MPa
fty 

MPa 
Ec

(1) 
(1)

 
% 

cu
(1)

% 

A2 60 10.7 53.8 53.1 14.0 6.3 0.39 0.37 1.04 47.3 672 696 36.1 0.20 0.35
 (1) Calculated from EC2 (2010) 
 
Table 5 Range values for the axial stiffness 

1 2

l

k1 + k2=k

h

b

L

Axial restraint level b×h (m×m) k (kN/m) 

1 - 0 

2 0.368×0.60 10000 

3 0.464×0.60 20000 

4 0.531×0.60 30000 

5 0.585×0.60 40000 

6 0.630×0.60 50000 

7 0.669×0.60 60000 

8 0.705×0.60 70000 

9 0.737×0.60 80000 

 
 

4.2 Influence of the axial restraint level on the T -  curves　  
 
In this section, the theoretical analysis will focus the torsional behaviour of the reference beam 

A2, namely the ultimate behaviour, for several axial restraint levels. This will be performed by 
studying the T– curves. In this section, the unique variable study will be the axial stiffness k 
provided by the connection of the beam to other structural members. To define the wide range of 
values for parameter k, a simple and common structural frame was assumed (Table 5). The values 
for parameter k were based on the restraint provided by the flexural elastic stiffness of the columns  
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Fig. 7 T– curves for Beam A2 
 
 

(L=6.0 m). Table 5 resumes the range of values considered for the external dimensions of the cross 
section of the columns, as well as the correspondent axial stiffness k values considered for the 
analysis of the beam. The width of the column section was assumed to be constant and equal do 
the beam´s width (0.60 m). Authors believe that the range of values for parameter k in Table 5 is 
sufficiently wide to include current axial restraint conditions from current building structures. 

 Fig. 7 presents the T– curves for the reference beam (Beam A2) under several axial restraint 
levels (axial stiffness k from Table 5) computed from the modified VATM. The points 
corresponding to the yielding of the longitudinal (“Asl”) and transversal (“Ast”) reinforcement are 
highlighted. Since VATM consider the member fully cracked from the beginning of the loading, 
the theoretical T– curves from Fig. 7 can only be considered reliable for high level of loading 
(cracked stage). Then, analysis will only focus on the ultimate behaviour of the beam. 

Fig. 7 clearly shows that the maximum torque and the torsional stiffness in cracked stage 
increase as the axial restraint level increases. From Fig. 7 it can also be stated that the inelastic 
twists, namely the twist corresponding to maximum torque and also maximum twist, decreases as 
the axial restraint level increases. This shows that some negative influence of axial restraint exists 
on ultimate deformation capacity. So, torsional ductility decreases as axial restraint level increases. 
This is probably due to the influence of the compressive longitudinal stress state in the concrete 
struts associated to the axial restraint, which reduces the deformation capacity of the compressive 
concrete. The previous observations confirm the same ones previously observed by Bernardo et al. 
(2014) and based on a 3D nonlinear finite element analysis. 

From Table 4, it can be stated that Beam A2 was designed to have a balanced volume of 
longitudinal versus transversal reinforcement (lt). For this reason, both longitudinal and 
transversal reinforcement yield almost at the same time when no axial restraint exists (Fig. 7). This 
was experimentally observed for Beam A2 when subjected to pure torsion until failure (Bernardo 
and Lopes 2009). Such condition is no longer observed when axial restraint exists. For k=10000 
kN/m it is observed that the yielding of the longitudinal reinforcement is delayed when compared 
with transversal reinforcement. For k20000 kN/m the longitudinal reinforcement no longer 
yields. This is due to the influence of the compressive longitudinal stress state which opposes to 
the tensile stresses in the longitudinal reinforcement induced by the torsional moment. Transversal  
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(a) Resistance torque and twist (b) Yielding torque and twist 

Fig. 8 Variation of torques and twists as function of the axial restraint level 
 
 

reinforcement seems to be not very affected by the axial restraint, since this reinforcement always 
reaches the yield point. 

Based on the T– curves presented in Fig. 7, Fig. 8(a) presents graphically the variation in 
percentage of the resistance torque (maximum torque Tr) and corresponding twist (Tr). Fig. 8(b) 
presents graphically the variation in percentage of the yielding torque for transversal reinforcement 
(Tty) and corresponding twist (Tty). In Figs. 8(a)-(b), the results are presented for each axial 
restraint level and are relative to the situation with no axial restraint (k=0). The same analysis is 
not presented for the yielding torque for longitudinal reinforcement (Tly) and corresponding twist 
(Tly) due to the previous observations. For k=0, VATM gives the following values to characterize 
the ultimate behaviour of beam A2: Tr=248.9 kNm, Tr=2.69 º/m, Tty=234.7 kNm and Tty=1.76 
º/m. 

Fig. 8 shows that the influence of the axial restraint level is similar for Tr and Tty, as well as for 
Tr and Tty. Fig. 8 also confirms the previous general conclusions stated from the analysis of Fig. 
7: the torsional moments increase as the axial restraint level increases and the twists decrease as 
the axial restraint level increases. However, Fig. 8 shows that the variation of the studied key 
parameters is not linear and also that the variation seems to decreases slightly as the axial restraint 
level increases. 

From the previous analyzes it can be stated that the influence of the axial restraint level on the 
ultimate behaviour of RC beams under torsion is relevant. Then, such influence should be 
considered in design procedures, namely when computing the resistance torque (the effect in this 
parameter is favorable) and torsional ductility (the effect in this property is not favorable). 
 

4.3 Influence of the axial restraint level on key parameters from modified VATM 
 
In this Section, some behavioral curves that show the evolution of some key parameters 

computed from the modified VATM, as function of the axial restraint level, are presented. Some 
of these parameters characterize the internal deformation and stress state and allow to understand 
the influence of the axial restraint level on the torsional behaviour of a RC beam. As for the 
previous section, the unique variable study will be the axial stiffness k provided by the connection  
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(a) td–ds,ef curves (b) –ds,ef curves 
 

 

(c) –ds,ef curves 

Fig. 9 Theoretical curves 

 
 

of the beam to the other structural members. All the presented curves stop at the point 
corresponding to the theoretical failure of the section. As referred in Section 3, this point was 
defined from the maximum (conventional) strains of the materials (concrete and steel). 

Figs. 9(a)-(c) show the evolution of the effective thickness of the wall of the equivalent hollow 
section (td), the concrete struts’ angle () and the reduction coefficient to account for the stiffening 
effect () with the compressive effective strain at the struts’ surface (ds,ef), respectively. For all the 
presented graphs, the theoretical curves start at the point corresponding to ds=0.0005 (first input in 
the computational procedure from Fig. 2). This initial value ds=0.0005 is corrected to account for 
the axial restraint. For this reason, the first value of ds,ef slightly increases as k increases. 

Fig. 9(a) shows that for a given load level (or ds,ef value), the effective thickness td increases as 
k increases. This is logical, since as the axial restraint level increases the internal compressive  
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(a) ds,ef– curves (b) l– curves 
 

 

(c) t–curves 

Fig. 10 Theoretical curves 
 
 

forces in the longitudinal direction also increase. These compressive forces need to be equilibrated 
by the concrete struts. Fig. 9(a) also shows that the growing rate of td, as ds,ef increases, also 
increases with k. For this reason, td–ds,ef curves become nonlinear as k increases. For k>60000 
kN/m, the actual wall´s thickness of the hollow beam (reference beam A2) shown to be 
insufficient to allow internal equilibrium from the concrete struts. For this reason, the outer fiber 
of the concrete struts has not reached the conventional ultimate strain value (0.35%). This problem 
is also observed in Figs. 9(b)-(c) and is only related with hollow sections. 

As expected, Fig. 9(b) shows that when k=0 the concrete struts’ angle  starts very close to 45º. 
This is because longitudinal and transversal torsional reinforcement are balanced. For a given load 
level (or ds,ef value), the angle  tends to decrease as k increases. This is due to the influence of 
the longitudinal compressive stress state due to the axial restraint. Since the tension stresses in the 
longitudinal reinforcement are countered by the compressive longitudinal force due to the axial 
restraint, the balanced condition between the longitudinal and transversal reinforcement in no 
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longer valid. The previous observation agrees with similar tendencies, which were observed in 
longitudinally prestressed beams under torsion (Bernardo 2003). These beams carried an initial 
compressive stress due to the prestressing. In fact, for prestressed beams and for torsional design, 
ACI code imposes a concrete struts’ angle lesser than 45º. Fig. 9(b) also shows that for k>0 the 
concrete struts’ angle still continue to decrease as the load increases (or as ds,ef increases). This 
is because the longitudinal compressive stress due to the axial restraint increases as the load 
increases. From Fig. 9(b), it can be stated that higher the load (or ds,ef) and higher the axial 
restraint level (k), lesser the concrete struts’ angle. 

Finally, Fig. 9(c) shows that for a given load level (or ds,ef value), the reduction coefficient 
slightly decreases as k increases. This seems to show that the effect of the softening effect in the 
concrete struts is slightly lesser as the axial restraint level (or the corresponding longitudinal 
compressive force) increases. 

Figs. 10(a)-(c) show the evolution of the compressive effective strain at the struts’ surface 
(ds,ef), the tensile strain in the longitudinal reinforcement (l) and the tensile strain in the 
transversal reinforcement (t) with the twist (), respectively. For all the presented graphs, the 
theoretical curves start at the point corresponding to ds=0 since the deformation is null for no 
loading condition. 

Fig. 10(a) shows that the deformation of the struts reaches more quickly its ultimate value as 
the axial restraint level increases. This is because the longitudinal compressive stresses increase as 
the axial restraint level increases. Fig. 10(a) also confirms that, as previously referred in Section 
4.2, torsional stiffness increases as the axial restraint level increases. 

For k=0, Figs. 10(b)-(c) show that the strains on the steel reinforcement, both longitudinal and 
transversal, vary almost linearly with twist. Moreover, the contribution of each reinforcement type 
is very similar. This is because longitudinal and transversal reinforcement are balanced. As 
previously referred, this balanced condition is no longer valid when k>0. For this situation, while 
transversal reinforcement behaves similarly as for k=0, longitudinal reinforcement behaves very 
differently. For a given twist level, Figs. 10(b)-(c) show that, as k increases, the strain in 
transversal reinforcement increases and the strain in the longitudinal reinforcement decreases. 

Finally, Fig. 10 generally shows that the internal forces in the truss model change and 
transversal reinforcement and concrete struts are more stressed. This is due to the longitudinal 
compressive stresses induced by the axial restraint. 
 

4.4 Influence of the variables study on the resistance torque 
 
In this Section, the influence of some variables study on the resistance torque of axially 

restrained RC beams is analyzed, namely: total torsional reinforcement ratio (totl+t), 
compressive concrete strength (fc) and axial restraint level (k). Among all the ultimate key 
parameters from T– curves previously analyzed (resistance torque, yielding torques and 
corresponding twists), only resistance torque will be studied here. This is because, as previously 
referred, torsional design procedures in actual codes of practice are mainly focused to compute this 
parameter. Again, Beam A2 will be used as reference RC beam for this section and resistance 
torque will be calculated from modified VATM.  

For the purpose of this section, a wide range of values for tot, fc and k where considered, 
namely: 

• total torsional reinforcement ratio (tot): 0.6, 0.8, 1.0, 1.2, 1.4 and 1.6%; 
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• compressive concrete strength (fc): 30, 50, 70 and 90 MPa; 
• axial restraint level (k): 0, 10000, 20000, 30000, 40000, 50000, 60000, 70000 and 80000 

kN/m. 
For the axial stiffness (k) the same range of values defined in Section 4.2 was used. For the 

compressive concrete strength (fc) a wide range of values was chosen in order to include both 
normal-strength and high-strength concrete. For the total torsional reinforcement ratio (tot), a wide 
range of values was chosen in order to include different failure modes observed in experimental 
studies of RC beams under torsion. From such studies (for instance, Bernardo and Lopes 2009), 
the following range of values for tot can be related with a specific torsional failure mode (for any 
compressive concrete strength range):  

• tot  0.6 to 0.8%: ductile failure (yielding of torsional reinforcement); 
• tot  1.0 to 1.2%: brittle failure (breaking off of concrete corners); 
• tot  1.4 to 1.6%: brittle failure (crushing of concrete in struts). 
Each k value was combined with all possible combinations of tot and fc values. Then, 192 

combinations were considered and calculated with the modified VATM calculus procedure. 
Figs. 11(a)-(f) show the influence of the compressive concrete strength (fc) and axial restraint 

level (k) on the resistance torque (Tr). Each figure is relative to a given value for the total torsional 
reinforcement ratio tot (0.6 to 1.6%). Fig. 11 confirms that resistance torque increases as axial  

 
 

(a) tot=0.6% (b) tot=0.8% 

(c) tot=1.0% (d) tot=1.2% 

Fig. 11 Influence of fc and k on Tr 
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(e) tot=1.4% (f) tot=1.6% 

Fig. 11 Continued 
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Fig. 12 Variation of resistance torque as function of the axial restraint level 
 
 

restraint level increases, although the growing rate of the resistance torque is higher for lower axial 
restraint levels. Another conclusion from Fig. 11 is that the favorable effect of the axial restraint 
seems to be higher for higher compressive concrete strengths. This is true for any level of the total 
torsional reinforcement ratio. The previous observation can be verified in Fig. 12 which represents, 
as an example, the variation in percentage of the resistance torque for tot=1.0%. From Fig. 12 it 
can be observed that, for instance, for k=80000 kN/m and for fc=30 MPa the resistance torque 
increases approximately 20%. For k=80000 kN/m and for fc=90 MPa the increase of the resistance 
torque is now approximately 50%. 

Figs. 13(a)-(d) show the influence of the total torsional reinforcement ratio (tot) and axial 
restraint level (k) on the resistance torque (Tr). Each figure is relative to a given value of the 
compressive concrete strength (30 to 90 MPa). As already expected, Fig. 13 shows that beams 
with higher torsional reinforcement ratio show higher resistance torque. For constant values for tot 
and fc, Fig. 13 shows that resistance torque increases with axial restraint level. For a given stiffness 
level (k), beams with ductile failure (tot0.6 to 0.8%) show a higher resistance torque increment 
when compared with beams with brittle failure (tot higher than 1.0%). This tendency seems to be 
less evident when the compressive concrete strength increases. 
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(a) fc=30 MPa (b) fc=50 MPa 

 
(c) fc=70 MPa (d) fc=90 MPa 

Fig. 13 Influence of tot and k on Tr 
 
 
Also from Fig. 13, if ductile beams (for instance, tot=0.6) and failure beams (for instance, 

tot=1.6) are compared, the increment of the resistance torque is higher for ductile beams and for 
lower axial restraint levels. This is because, for brittle beams and k=0, the failure is due to the 
crashing of the concrete struts. Then, axial restraint is not very effective to increase the resistance 
torque because the maximum resistance of the concrete was already reached. For ductile beams, 
since the failure is due to the yielding of the reinforcement, the longitudinal compressive stresses 
due to the axial restraint allow the beam to reach higher torsional resistance. This is because the 
yielding of the longitudinal reinforcement is delayed and concrete struts can reach higher 
compressive stresses. 

 
4.5 Torsion design charts 
 
From the parametric study presented in the previous sections, it can be state that the axial 

restraint has a favorable influence on the resistance torque. This section aims to perform some 
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regression analyses in order to propose some design charts to help for the torsional design of 
axially restrained RC beams (rectangular sections with small height to width ratios). The objective 
is to correct the resistance torque computed for beams without axial restraint (for instance by using 
code’s rules). As previously referred (Section 2), torsional design procedures in actual codes of 
practice are mainly focused to compute the resistance torque. Then, the proposed design charts 
will only cover this parameter. 

A correction parameter, Car, is defined in this study to compute the effective resistance torque 
(to account for the axial restraint). Since the resistance torque is higher due to the axial restraint, 
then Car≥1. From the previous sections, the correction parameter Car can be computed as follow 

, /ar r ef rC T T                                (23) 

Where: 
Tr,ef = effective resistance torque computed from modified VATM with the influence of axial 

restraint (k  0); 
Tr = resistance torque computed from VATM with no influence of axial restraint (k = 0). 
A general equation for parameter Car will be defined from nonlinear regression analysis 

between the variable studies analyzed in the previous section, namely: total torsional 
reinforcement ratio (tot), compressive concrete strength (fc) and axial restraint level (k). In fact, a 
new variable is also introduced in this section, namely the length of the beam (l). This is because, 
in the modified VATM, the elongation (l) of the beam depends on the beam´s length in order to 
compute the compressive longitudinal force due to the axial restraint (Fc) (see Eqs. (1)-(2) from 
Table 1). The results of the parametric analysis presented in Sections 4.3 and 4.4 are only valid for 
reference beam A2 which length is 5.9 m (Fig. 6). Then, to generalize the equation for parameter 
Car, the beam´s length l must be also considered as a variable. 

Initially, all the 4 variables (tot, fc, k and l) were simultaneously introduced to perform the 
regression analysis in order to found a general equation for parameter Car. However, the high 
number of combinations to be considered led the authors to adopt a different strategy. In a first 
stage, the 3 variables study previously analyzed in Sections 4.3 and 4.4 were correlated and a 
general equation for parameter Car was found. In this stage, only a section analysis of the beam is 
performed. In a second stage, an additional regression analysis is performed in order to introduce 
the new variable l and a correction equation is found to compute the final value for Car parameter. 
In this stage, a global analysis of the beam is performed since the beam´s length l is also 
considered. 

Due to the tendencies observed for the points in graphs from Figs. 11 and 13, the initial 
analysis (first stage) with variables tot, fc, and k led to nonlinear regression analysis. To perform 
this analysis, the statistical software “R” with “stats” package was used. Although the problem 
under study is deterministic, the high level of data do be processed led the authors to treat the 
problem as a statistical one in order to facilitate the data process. The several values considered for 
tot, fc and k, and for Car computed from Eq. (23), were inserted into a data frame and a script was 
created for “R” in order to perform a nonlinear and multivariable regression analysis (Venable et 
al. 2012). Parameter Car was considered as the dependent variable and tot, fc and k parameters 
were considered as the independent variables. Based on the method of least squares, a polynomial 
surface of degree 13 was found to compute Car. The coefficient of determination of this 
polynomial is approximately equal to unity. This means that almost 100% of the variability of the 
dependent variable is explained by the created model with the independent variables tot, fc, and k. 
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(a) fc=30 MPa (b) fc=50 MPa 

(c) fc=70 MPa (d) fc=90 MPa 

Fig. 14 Charts to compute the correction coefficient Car 
 
 

The maximum absolute residue (difference between the sample values for Car and the 
corresponding values predicted by fitted polynomial) was found to be very low (0.000488). It 
should be noted that this accuracy can only be considered valid for the range of values and 
combinations considered for the variable studies. Thus, it can be state that the polynomial surface 
is quite accurate. For other values or other combinations, it is expected that the accuracy is still 
very good. 

Since the polynomial found for Car has 171 monomials, it is not transcribed in this article. From 
this polynomial some charts were drawn in order to compute Car from tot, fc, and k values. Such 
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Fig. 15 Chart to compute the final correction coefficient Car,f 

 
 

charts are presented in Figs. 14(a)-(d). 
The charts from Fig. 14 were organized in function of the compressive concrete strength. For 

this reason each graph of Figs. 14(a)-(d) is relative to a compressive concrete strength level (fc=30 
to 90 MPa). From Figs. 14(a)-(d), the correction coefficient Car can easily be estimated graphically 
(from output data in the ordinates axis of the graphs). For this, the graph must be previously 
chosen (as function of fc) and the values for k (input data in the abscissa axis) and tot (to choose 
the curve) must be known. Values of Car for intermediate values for fc, k and tot can be estimated 
from linear interpolation. For k<10000 kN/m, the estimation of Car can be obtained by extending 
and adjusting the curves so that they cross the origin of the coordinate axis (see Fig. 14). 

In order to incorporate the influence of the beam´s length (l), correction polynomials were 
found for Car and for the following range of length values: 2, 4, 6, 8 and 10 m. These correction 
polynomials will allow to compute the final correction coefficient (Car,f) to account for the beam´s 
length. The considered range of values for l is sufficiently wide to include common lengths used 
for RC beams in building´s structures. To found the correction polynomial, software IBM SPSS 
Statistics was used (the same results were obtained with statistical software “R”). For each beam´s 
length value, 129 combinations with tot, fc, and k values were considered. From a quadratic 
nonlinear regression analysis, a correction polynomial was found for each beam´s length value. 
The determination coefficients for the correction polynomial were found to be very good 
(R20.99). From the correction polynomial, a new chart was drawn to compute the final correction 
coefficient Car,f (output data in the ordinates axis) from Car (input data in the abscissa axis) and l 
(to choose the curve), see Fig. 15. 

From the final correction coefficient Car,f, the effective resistance torque is computed from the 
following equation 
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, ,r ef ar f rT C T                               (24) 

The following steps should be followed to compute the effective resistance torque of an axially 
restrained RC beam under torsion (rectangular sections with small height to width ratios): 

1. Compute the resistance torque (Tr) of the RC beam without axial restraint (for instance, from 
code’s rules); 

2. From fc, k and tot values and from charts in Fig. 14, compute the correction coefficient Car; 
3. From Car and l values and from chart in Fig. 15 compute the final correction coefficient Car,f; 
4. From Eq. (24) compute the effective resistance torque (Tr,ef) of the axially restrained RC 

beam. 
 
 
5. Conclusions 
 

In this article, theoretical parametric analyzes were performed in order to check the influence of 
the axial restraint level in RC beams under torsion. To perform these analyzes, a computing 
procedure previously presented by the authors and based on the modified VATM calculus 
procedure was used. Such calculus procedure was summarized in this article. Some variable 
studies were considered to perform the parametric analyzes, namely: the torsional reinforcement 
ratio, the compressive concrete strength and the axial restraint level. The parametric analyzes were 
focused on some key parameters and also on the ultimate behaviour, namely the resistance torque, 
of axially restrained RC beams under torsion. From this parametric study, nonlinear correlations 
analyzes were performed. Some design charts were also proposed to compute the effective 
resistance torque of RC beams (rectangular sections with small height to width ratios) in order to 
account for the favorable influence of the axial restraint. 

From this study, the following main conclusions can be drawn: 
• The influence of the axial restraint level on the ultimate behaviour of RC beams under torsion 

is relevant. 
• For constant values for the torsional reinforcement ratio and compressive concrete strength, 

the resistance torque and the torsional stiffness in cracked stage increase as the axial restraint level 
increases. This is true for any level of the total torsional reinforcement ratio. The increase of the 
resistance torque is higher for ductile beams and for lower axial restraint levels. This tendency 
seems to be less clear when the compressive concrete strength increases. 

• The twist corresponding to the resistance torque, as well as the maximum twist, decreases as 
the axial restraint level increases. So, torsional ductility decreases as axial restraint level increases. 
The variation of the previous key parameters, as function of the axial restraint level, is not linear 
and seems to decrease slightly as the axial restraint level increases. 

• In RC beams under torsion designed with balanced reinforcements, longitudinal and 
transversal reinforcement did not yield at the same time when axial restraint exists. The yielding of 
the longitudinal reinforcement is delayed (or not exist at all for high axial restraint levels) when 
compared with transversal reinforcement. 

• For a given load level, the effective thickness of the struts increases as the axial restraint level 
increases. The growing rate of the effective thickness of the struts also increases as the axial 
restraint level increases. 

• For a given load level, the concrete struts’ angle (close to 45º when k = 0 if the longitudinal 
and transversal reinforcements are balanced) decreases as the axial restraint level increases. When 
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axial restraint exists, the concrete struts’ angle still continue to decrease as the load increases. 
Higher the load and higher the axial restraint level, lesser the concrete struts’ angle. 

• For a given load level, the reduction coefficient to account for the softening effect in the 
compressive concrete struts slightly decreases as the axial restraint level increases. The effect of 
the softening effect in the concrete struts is slightly lesser as the axial restraint level increases. 

• The deformation of the struts reaches more quickly its ultimate value as the axial restraint 
level increases. 

• When axial restraint exists, the contributions of transversal and longitudinal reinforcement 
change in the truss model, even if both reinforcements type are balanced. For a given twist level, 
as the axial restraint level increases, the strain in the transversal reinforcement increases and the 
strain in the longitudinal reinforcement decreases. 

From the theoretical parametric analyzes and from the nonlinear correlations performed, some 
design charts were proposed to compute the effective resistance torque of axially restrained RC 
beams with current sections (rectangular sections with small height to width ratios). Such charts 
allow to account for the favorable influence of the axial restraint in the resistance torque. 

It should be noted that the main results and design charts presented in this study were obtained 
based on the study of reference beam A2 (with RC hollow square section). 

For plain sections, it is known that the concrete core has a negligible influence in the ultimate 
torsional behaviour of RC beams (Hsu 1968). It is also known that VATM gives good previsions 
regardless of the section type (plain or hollow) (Hsu and Mo 1985, Bernardo and Lopes 2009, 
Bernardo et al. 2012). So, the results of this study can also be extended to square plain sections. 

For rectangular sections, the height to width ratio, if not very far from unity, has no notable 
influence as variable study (Hsu 1968). Usually, high torsional moments lead to sections with 
small height to width ratio. So, the results of this study can also be extended to rectangular 
sections (both plain and hollow) with small height to width ratios. 

However, for sections with aspect ratio very far from unity, as well as for beams with very 
large sections and very large spans (for instance, bridge decks), including prestressed beams, new 
and specific studies are needed in order to extend the results presented in this article. For instance, 
in such cases aspect ratio and scale effect should also be considered as direct variables study. 
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