
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 54, No. 6 (2015) 1097-1109 

DOI: http://dx.doi.org/10.12989/sem.2015.54.6.1097                                         1097 

Copyright ©  2015 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8        ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

A novel harmony search based optimization of reinforced 
concrete biaxially loaded columns 

 

Sinan Melih Nigdeli1, Gebrail Bekdaş1, Sanghun Kim2 and Zong Woo Geem
3 

 
1
Department of Civil Engineering, Istanbul University, 34320 Avcılar, Istanbul, Turkey 

2
Department of Civil and Environmental Engineering, Temple University, Philadelphia 19122, USA 

3
Department of Energy IT, Gachon University, Seongnam 461-701, South Korea 

 

 
(Received September 12, 2014, Revised March 11, 2015, Accepted March 13, 2015) 

 
Abstract.  A novel optimization approach for reinforced concrete (RC) biaxially loaded columns is 

proposed. Since there are several design constraints and influences, a new computation methodology using 

iterative analyses for several stages is proposed. In the proposed methodology random iterations are 

combined with music inspired metaheuristic algorithm called harmony search by modifying the classical 

rules of the employed algorithm for the problem. Differently from previous approaches, a detailed and 

practical optimum reinforcement design is done in addition to optimization of dimensions. The main 

objective of the optimization is the total material cost and the optimization is important for RC members 

since steel and concrete are very different materials in cost and properties. The methodology was applied for 

12 cases of flexural moment combinations. Also, the optimum results are found by using 3 different axial 

forces for all cases. According to the results, the proposed method is effective to find a detailed optimum 

result with different number of bars and various sizes which can be only found by 2000 trial of an engineer. 

Thus, the cost economy is provided by using optimum bars with different sizes. 
 

Keywords:  reinforced concrete; biaxially loaded columns; optimization; metaheuristic algorithms; 

harmony search algorithm 

 
 
1. Introduction 
 

In design of reinforced concrete (RC) members, design of cross-sections and reinforcement are 

determined according to the knowledge of design engineer by assuming and checking the 

requirements defined in several design codes used in the region of the construction. Optimization 

of cross-sections and reinforcements can sustain a great economy in construction. Until now, 

several computational approaches have been proposed in design of RC members, but generally, 

these optimum designs were chosen from several preselected patterns of reinforcements. For that 

reason, the subject is already an active research area, especially for RC members subjected to 

bending in two directions in addition to axial and shear forces. 

Metaheuristic algorithms have been proposed for optimization of RC members. Genetic 
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algorithm (GA) inspired from natural selection is a widely employed algorithm in optimization of 

RC members such as beams (Govindaraj and Ramasamy 2005, Fedghouche and Tiliouine 2012), 

columns (Camp et al. 2003) and frames (Lee and Ahn 2003, Govindaraj and Ramasamy 2007). 

Two metaheuristic algorithms such as GA and simulated annealing (SA) are combined in the 

optimum design methodology for RC continuous beams by Leps and Sejnoha (2003). A hybrid 

optimization algorithm combining GA and discretized form of the Hook and Jeeves method was 

proposed for optimization of RC flat slab buildings by Sahab et al. (2005). Simulated annealing 

was employed in a multi-objective optimization approach for RC frames (Paya et al. 2008). A 

hybrid simulated annealing method was developed for optimum design of RC buildings by Li et 

al. (2010). Two heuristics (random walk and the descent local search) and metaheuristics (the 

threshold accepting and the simulated annealing) were used together for the optimum design of RC 

frames of bridges (Perea et al. 2008). Also, RC frames are optimized for minimization of 

embedded CO2 emissions by employing SA (Paya-Zaforteza et al. 2009) and big bang-big crunch 

(BB-BC) (Camp and Huq 2013). RC retaining walls were optimized by employing several 

metaheuristics such as SA (Yepes et al. 2008), BB-BC (Camp and Akin 2012), harmony search 

(HS) (Kaveh and Abadi 2011) and charged system search (Talatahari et al. 2012). Tall piers for 

railway bridge viaducts were optimized by using an ant colony optimization based method by 

Martínez-Martín et al. (2013). 

Harmony search algorithm inspired by musical performances were employed in the optimum 

design approaches for continuous beams (Akin and Saka 2010), RC frames (Akin and Saka 2012), 

T-shaped RC beams (Bekdaş and Nigdeli 2012) and RC columns (Bekdaş and Nigdeli 2014). 

Several metaheuristic algorithms were combined for optimum design of RC frames by Kaveh and 

Sabzi (2011). BB-BC algorithm was employed in the optimization methodology proposed by 

Kaveh and Sabzi (2012) for RC beams.  

In this paper, a novel optimization process is proposed for cost optimization of RC biaxially 

loaded columns. The methodology covers the design constraints given in ACI-318 (building code 

requirements for structural concrete) (2005) and includes several stages employing random search 

iterations and harmony search algorithm. The proposed method uses different stages in control of 

design constraint related with different types of analyses. In these stages, optimum suitable values 

are iteratively searched by considering design constraints before ending the progress of all stages. 

Thus, the iteration process is shortened. Differently from other optimization approaches used for 

RC members, a detailed optimum design of reinforcement bars are done without using a defined 

number or size. Each bar may have a different size and the optimum number of bars is optimally 

changeably. 

 

 

2. Methodology 
 

A novel computation approach employing harmony search (HS) is developed for RC biaxially 

loaded columns (Fig. 1). In classical HS, the design variables are assigned with random numbers 

and analyses are conducted by iterative analyses. Then, the optimum solutions are found. In the 

proposed methodology, HS algorithm is combined with several random search stages because of 

two reasons. As the first reason, the design variables, which are not suitable for the constraints 

given in design codes, must be neglected after the design stages are conducted in classical HS. If a 

design variable is not suitable for a single constraint, all analyses are unnecessarily done. When 

additional iterative stages are employed in the methodology, this problem is prevented. As the  
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Fig. 1 RC biaxially loaded column 

 

 

second reason, there are various design variables, which are related to each other and also the 

required internal forces are various in types such as axial force, flexural moments in two direction 

and shear force. Due to different criteria in design codes for axial forces, flexural capacity and 

shear capacity, the design must be optimum for all influences. By conducting random iteration 

stages during the generation of possible design variables, all design variables may be optimum and 

the best optimum solution can be searched according to the rules of HS. In classical HS algorithm, 

number of iterations may be too much to conduct or the possibility of finding optimum design 

variables may be not possible. 

HS algorithm is an effective metaheuristic algorithm in optimization of engineering problems. 

HS algorithm was founded by imitating three possible choices of a musician such as playing any 

famous note from the performer’s memory (usage of harmony memory), playing similar notes to 

known ones (usage of pitch adjusting) and composing new notes randomly (usage of 

randomization). The algorithm developed by Geem et al. (2001) has been also applied to problems 

in structural engineering such as cellular beams (Erdal et al. 2011), retaining walls (Kaveh and 

Abadi 2011), truss structures (Togan et al. 2011, Degertekin 2012, Gholipour et al. 2013) tuned 

mass dampers (Bekdaş and Nigdeli 2011), frame structures (Kaveh and Sabzi 2012, Martini 2011), 

modification of ground motions (Kayhan 2012) and RC members (Bekdaş and Nigdeli 2014, 

Bekdaş 2014, 2015).  

The music inspired metaheuristic algorithm; HS uses a stochastic random search instead of a 

gradient search. Thus, it can be simply applied to engineering problems using discrete and 

continuous variables (Lee et al. 2005, Lee and Geem 2005). By using stochastic derivatives, the 

number of iterations is reduced and functions, which cannot be analytically derived, are solved 

(Geem 2008). 
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Table 1 Constraints on strength and dimensions of wall 

Definition Symbol 

Flexural moment in both directions Mdx and Mdy 

Shear force Vd 

Axial force Nd 

Length of column l 

Strain corresponding ultimate stress of concrete εc 

Max. aggregate diameter Dmax 

Yield strength of steel fy 

Compressive strength of  concrete 𝑓𝑐
′ 

Elasticity modulus of steel Es 

Specific gravity of steel γs 

Specific gravity of concrete γc 

Cost of the concrete per m
3
 Cc 

Cost of the steel per ton Cs 

 

 

The methodology of proposed method using random iteration stages and HS is briefly 

explained in this section. First, the design constants are defined. The constants are given in Table 1 

with their symbols and definitions. Also, the compressive strength of concrete may be taken as a 

design variable. The possible strengths of concrete and the costs are depended to the location of 

the construction yard. In this paper, the compressive strength of concrete is taken as a design 

constant because the concrete with optimum strength may not be found in near region of the 

construction. In that situation, transportation cost may increase the total cost or the concrete may 

not be transported before the hardening begins. 

The design is done for the requirements of ACI-318 (building code requirements for structural 

concrete). The compressive stress block to neutral axis depth is taken as equivalent rectangular 

block as described in ACI-318. The elasticity modulus of concrete (Ec) is calculated according to 

the 𝑓𝑐
′ as seen in Eq. (1). 

 
cc f4700E   (1) 

The ranges of design variables are also defined. The design variables are cross-sectional 

dimensions of the column and size of the reinforcements such as longitudinal and shear. After the 

definition of design constants and ranges, the generation of initial harmony matrix (HM) is started. 

This matrix is generated by harmony vectors containing possible optimum values of design 

variables. A constant number (harmony memory size) of harmony vectors constructs the HM 

matrix. The set of design variables are given in Eq. (2). n represents the number of longitudinal 

reinforcements and it is also randomly chosen. If the minimum and maximum limits of the design 

variables are respectively defined with xi,min and xi,max, a design variable is randomized as seen in 

Eq. (3) and randomly generated value is rounded to a physical value. In Eq. (3), rand (0, 1) is a 

randomly generated number between 0 and 1. 
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Table 2 Design constraints 

Description Constraints 

Maximum shear force (Vnmax) g1(X): Vd≤ Vnmax=min{5.5bh; 0.2𝑓𝑐
′𝑏ℎ} 

Maximum axial force (Nmax) g2(X): Nd≤ Nmax= 0.5𝑓𝑐
′𝑏ℎ 

Maximum steel bars spacing, aϕmax g3(X): aϕ ≤ aϕmax=150 mm 

Minimum steel bars spacing, aϕmin g4(X): aϕ ≥ aϕmin=max{1.5ϕ; 40 mm; (4/3)Dmax} 

Minimum steel area, Asmin g5(X): As≥ Asmin= 0.01bh 

Maximum steel area, Asmax g6(X): As≤Asmax= 0.06bh (seismic design) 

Flexural strength capacity, Mdx and Mdy g7(X): Mdx≥ Mux and Mdy≥ Muy 

Concrete cover, cc g8(X): cc ≥ 30 mm 

Axial force capacity, Nd g9(X): Nd≥ Nu 

Shear strength capacity, Vd g10(X): Vd≥ Vu 

Minimum shear reinforcement area, Avmin g11(X): Av≥ Avmin=(bs/3fy) 

Maximum shear reinforcement spacing, smax g12(X): s ≤ smax=d/2 or d/4 if 𝑉𝑠 ≥ 0.33√𝑓𝑐
′𝑏𝑑 

 

 

rand(0,1))xx(xx iiii min,max,min,  .                     (3) 

In generation of harmony vectors, several random iteration stages are conducted. First, cross 

section dimensions (b and h) are randomized. For ductility conditions, the design constraints such 

as g1(X) and g2(X) must be checked. The cross sectional dimensions are iteratively randomized 

until these conditions are satisfied. All constraints are given in Table 2. The effective height of the 

column is defined with d. The symbol; ϕ is used as the diameter size of the related bar in the 

constraints. 

Then, the sizes of longitudinal reinforcements are randomized. Also, the number of 

longitudinal reinforcements is defined with a random number. This random number is between 2 

and the maximum allowed number of reinforcements that satisfy the placement conditions given in 

g3(X). A symmetric design is done for both upper and lower faces of column. In optimization 

process, reinforcement bars can be placed in one or two lines. The clear distance (aϕ) between the 

reinforcement bars are checked for conditions such as g3(X) and g4(X). The randomization is 

iteratively conducted until orientations of bars are suitable for ACI-318. 

First, the randomizations of bars are done for the direction in which value of the flexural 

moment is maximum. Then, additional reinforcements in the other direction are randomized if the 

constraint; g3(X) is not satisfied for the other direction. The reinforcement design ensuring the 

placement conditions are also checked for minimum and maximum reinforcement areas given as 

g5(X) and g6(X), respectively. Design of reinforcement is iteratively conducted until these criteria 

are suitable for ACI-318. 

The required flexural moment is compared with the flexural moment capacity (g7(X)) for the 

randomly assigned design variables. In the analyses, the effective height (d) of the column is 

calculated according to the size of reinforcements and clear cover of the column (g8(X)). In this 

stage, an iterative analysis is done by searching the value of the distance from extreme 

compressive fiber to neutral axis (c) for axial forces and flexural moment in two directions. The 

deformation of the column is calculated for both directions and the results are superposed. Then 

location of the neutral axis is found. Then, the exact axial force and flexural moment capacities are 
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found and constraints; g9(X) and g7(X) are checked. If the conditions are not met, the optimum cost 

of the design is penalized with a big value (10
6
 $). When the design is suitable for ACI-318, shear 

reinforcements can be randomized and shear force capacity (g10(X)), minimum shear reinforcement 

area (g11(X)) and minimum shear reinforcement spacing (g12(X)) are checked. In g12(X), Vs is the 

shear force capacity provided by shear reinforcement.  

After design variables are assigned with suitable values according to ACI-318, the optimum 

material cost of the column is calculated (Eq. (4)). The function given in Eq. (4) is the objective 

optimization, which are needs to be minimized. In this objective function, ust is length of shear 

reinforcement. 

 ssst
v

scs Cl)u
s

A
A(lC)Abh()X(f    (4) 

The initial harmony memory matrix (HMM) is constructed by merging initial harmony vectors 

and initial HMM is modified according to rules of HS algorithm in order to provide convergence 

to the optimum solution. A new vector is generated by using the same procedure as described 

before. In classical HS, with a possibility defined as harmony memory considering rate (HMCR), a 

new vector is generated around an existing vector in HM matrix. In this study, this rule is modified 

because the design variables are randomized with 50 mm differences for cross sectional 

dimensions and the size of reinforcements are randomized with 2 mm differences for practical 

production in construction yard. Also, the design constraints may not be provided if the 

randomizations are done around an existing vector. In replacement to this property, the ranges of 

design variables are updated according to the best design. The possibility of this modification is 

HMCR in the current study. If solution ranges are updated, lower bounds of the design variables 

are taken as the current best solutions with 50% possibility. Otherwise, the upper bound of 

solution ranges is updated and generation of design variables are limited with current best solution. 

Thus, the convergence to the optimum value is provided. If the cost of the newly generated 

harmony vector is lower than the existing worst one, the worst one is replaced with the newly 

generated vector. The iteration of generation a new vector (modification of HM matrix) continues 

for a constant iteration number. At the end of the iterative stage, the optimum cost and design 

variables are found. The flowchart of the method is given in Fig. 2.  

 

 

3. Numerical examples 
 

The optimization is conducted for different internal forces. Three different axial forces were 

investigated for 12 cases of biaxial flexural moment given in Table 3. For axial forces 1000 kN, 

1500 kN and 2000 kN were taken in the analyses. The shear force value is taken as 100 kN for all 

cases. Design constants and ranges of design variables are shown in Table 4. The cost of material 

may vary according to the region of the construction. As a numerical example, the cost of steel for 

1 ton is taken as 10 times of concrete per unit m
3
. 

The optimum results for 1000 kN axial force and all biaxial moment cases (numerical example 

1) are illustrated in Table 5. For case 1, additional reinforcements are not needed but web 

reinforcements are found when the flexural moment is increased. For cases 2-10, the web 

reinforcements are generally assigned with minimum diameter sizes. For that cases, the flexural 

moment in the direction which is not critical, is low. Only web reinforcement is needed in order to 

ensure design constraint given as g3(X), in order to maintain the maximum distance between the  
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Fig. 2 Flowchart of the methodology 
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Table 3 Biaxial flexural moments for different cases 

Case My (kNm) Mx (kNm) 

1 100 100 

2 200 100 

3 300 100 

4 400 100 

5 500 100 

6 600 100 

7 700 100 

8 800 100 

9 900 100 

10 1000 100 

11 500 500 

12 800 800 

 
Table 4 Design constants and ranges of design variables 

Symbol Unit Value 

b mm 300-600 

h mm 300-600 

l mm 3000 

εc - 0.003 

ϕ mm 16-30 

ϕv mm 8-14 

Dmax mm 16 

fy MPa 420 

𝑓𝑐
′ MPa 25 

Es MPa 200000 

γs t/m
3
 7.86 

γc t/m
3
 2.5 

Cc $/m
3
 40 

Cs $/t 400 

 

 
reinforcements bars. Since the flexural moments are same for the last two cases (11 and 12), 

additional reinforcements are needed as web reinforcements in order to carry both flexural 

moments. A typical drawing for the results of Case 2 and 1000 kN axial force is given in Fig. 3. 

In Table 6, the optimum results are given for 1500 kN axial force and all biaxial moment cases 

in numerical example 2. The optimum cross sectional dimensions are generally larger than the 

results in Table 5 for 1500 kN because of the increase of axial force. The optimum costs for 

numerical example 2 are near to the costs of the numerical example 1 for several cases such as 2, 7 

and 12. The increase of axial force has a little advantage on reduction of tensile stresses. 
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Table 5 Optimum design of columns for numerical example 1 

Case 

no 
b (mm) h (mm) 

Bars in each face 

(critical direction) 

Web reinforcement 

in each face (the 

other direction) 

Shear reinforcement 

diameter/distance 

(mm) 

Total 

Cost 

($) 

1 350 350 1Φ18+1Φ16+1Φ20 - Φ8/150 32.57 

2 300 500 1Φ22+1Φ18 2Φ16 Φ8/220 40.85 

3 300 600 1Φ18+1Φ16+1Φ22 1Φ16 Φ8/270 44.32 

4 300 600 2Φ24+ 1Φ16+1Φ20 1Φ16 Φ8/270 55.20 

5 400 600 1Φ16+ 2Φ18+1Φ22+1Φ20 1Φ18+1Φ16 Φ8/270 67.23 

6 350 600 5Φ18+2Φ20+1Φ30 1Φ16 Φ8/270 81.11 

7 500 600 3Φ20+1Φ16+1Φ18+3Φ22 1Φ16 Φ8/240 91.54 

8 550 550 4Φ22+1Φ26+1Φ28+1Φ16+1Φ18 1Φ16+1Φ18 Φ8/210 107.81 

9 500 600 5Φ22+1Φ24+2Φ18+1Φ20+3Φ16 1Φ16+1Φ18 Φ8/240 119.39 

10 500 600 
1Φ20+3Φ24+1Φ22 

2Φ28+1Φ18+1Φ30 
3Φ18+1Φ16 Φ8/240 137.53 

11 550 600 1Φ20+1Φ30+1Φ18+1Φ26 1Φ22+1Φ18 Φ8/210 90.15 

12 600 600 1Φ30+ 1Φ18+1Φ16+4Φ26+1Φ20 3Φ22+1Φ30 Φ8/200 150.34 

 

 

Fig. 3 Reinforcement orientations for Case 2 and 1000 kN axial force 

 
Table 6 Optimum design of columns for numerical example 2 

Case 

no 
b (mm) h (mm) 

Bars in each face 

(critical direction) 

Web reinforcement in 

each face (the other 

direction) 

Shear reinforcement 

diameter/distance 

(mm) 

Total 

Cost 

1 450 300 3Φ18+1Φ16 - Φ8/120 38.43 

2 350 450 3Φ18+1Φ16 - Φ8/190 40.66 

3 400 500 3Φ18+ 1Φ16 1Φ16 Φ8/220 49.69 

4 300 600 1Φ24+ 2Φ22 4Φ16 Φ8/270 62.58 

5 500 550 1Φ22+ 1Φ24+1Φ30+1Φ20 1Φ18 Φ8/240 76.57 

6 500 600 2Φ24+1Φ22+2Φ18 3Φ16 Φ8/240 85.16 

7 550 600 2Φ16+3Φ22+1Φ20 2Φ16+1Φ18 Φ8/210 91.50 

8 500 600 2Φ26+2Φ28+1Φ22+1Φ16+1Φ18 3Φ16 Φ8/240 110.03 

9 550 600 10Φ18+6Φ16 2Φ16 Φ8/210 122.04 

10 550 600 
3Φ22+2Φ16+2Φ20 

2Φ18+2Φ24+1Φ26+1Φ30 
2Φ16 Φ8/210 141.99 

11 600 600 1Φ20+ 1Φ22+1Φ26 1Φ24+1Φ28 Φ8/200 91.60 

12 600 600 3Φ22+ 2Φ20+3Φ26+1Φ24+1Φ18 2Φ20+1Φ24+1Φ16 Φ8/200 148.53 
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Table 7 Optimum design of columns for numerical example 3 

Case 

no 
b (mm) h (mm) 

Bars in each face 

(critical direction) 

Web reinforcement 

in each face (the 

other direction) 

Shear reinforcement 

diameter/distance 

(mm) 

Total 

Cost 

1 400 400 2Φ20 1Φ18 Φ8/170 39.69 

2 350 500 1Φ22+1Φ16 2Φ16 Φ8/220 43.07 

3 400 500 3Φ18+ 1Φ16 1Φ16 Φ8/220 49.69 

4 350 600 1Φ22+ 1Φ28+1Φ16 1Φ16 Φ8/270 54.84 

5 450 600 3Φ18+ 1Φ22+1Φ16 2Φ18 Φ8/260 70.90 

6 350 600 3Φ20+2Φ24+1Φ22+ 1Φ18 1Φ18+1Φ16 Φ8/270 83.51 

7 500 600 1Φ28+3Φ20+1Φ26+ 1Φ16 2Φ18 Φ8/240 92.65 

8 500 600 8Φ18+1Φ16+1Φ20 1Φ16 Φ8/240 103.48 

9 450 600 
1Φ30+4Φ20+1Φ22+ 

2Φ26+1Φ24 
2Φ16 Φ8/260 119.47 

10 550 600 
2Φ26+1Φ28+1Φ24+ 

2Φ22+1Φ20+2Φ18 
3Φ16+1Φ18 Φ8/210 129.82 

11 550 600 1Φ28+ 1Φ18+1Φ30+1Φ26 1Φ20 Φ8/210 89.80 

12 600 600 1Φ20+ 5Φ18+2Φ28+2Φ24 
2Φ28+ 

1Φ26+1Φ18 
Φ8/200 162.86 

 

 

The optimum results are presented for the third numerical example with 2000 kN axial force 

and all biaxial moment cases in Table 7. When the results are compared with the results of the 

numerical example 2, a significant reduction on the optimum total cost values are generally seen 

for case 3. In this numerical example axial compression force is effective to reduce tensile stresses 

and for that reason concrete sections which are useful for compressive stresses, are the biggest for 

numerical example 3. In case 12 of numerical example 3, a significant increase of the total cost is 

seen. In that case the limits of the cross section dimensions are found as the optimum ones. For 

that reason, reinforcement bars working on compressive are also needed. 

 
 
4. Discussions and conclusions 
 

A detailed reinforcement design is provided instead of an optimum reinforcement ratio. Thus, 

the optimum solutions are not theoretical. The solutions are practical optimums. Harmony search 

is a widespread algorithm for structural problems. It is easy to apply and adaptation of HS for the 

design problem is suitable. The problem uses discrete variables and the algorithms using the 

modification of all design variables is not possible since the number of bars is a random design 

variable in design. Also, all reinforcement bars as many as a random bar number are optimized 

with different sizes. Additionally, it is not possible to find a theoretical optimum solution for 

different numbers of bars or different bar sizes. Also, the cost optimization problem is non-linear 

since concrete and steel are different in price and behavior. In that situation, only cross-sections or 

reinforcements may have theoretical optimums.  

The optimum analyses results are done for 3 different axial forces and different cases of biaxial 

bending moments are investigated. In the first 10 cases, a minor bending moment is used in one 

direction while the moment in the other direction is increased between 100 kNm and 1000 kNm.  
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Table 8 Optimum objective function for various runs 

Run 1 2 3 4 5 6 7 8 9 10 11 12 

f(X) ($) 87.16 86.23 85.25 85.16 85.16 86.39 85.51 85.16 85.16 85.16 85.16 86.89 

iteration 579 1105 37 505 359 757 1186 169 934 309 128 1661 

 

 

Fig. 4 Convergence to the optimum value 

 

 

As seen from the results of these cases, the essential reinforcements are assigned in only critical 

direction and reinforcements with small diameters are placed for other direction in order to ensure 

the maximum clear distance between the reinforcement bars. Since the effect of biaxial bending is 

not clearly seen in these cases, additional two cases are also presented. In these cases, the flexural 

moment is equal for two directions and reinforcements are near to each other for both directions.  

In several cases of numerical examples, the optimum cost is getting lower than other cases by 

the increase of the axial force. In that situation, compressive stresses are effective in more 

locations of the cross section and the concrete cross sectional size is enlarged. Due to reduction of 

tensile stresses, the areas of the reinforcements are getting lower than other cases. By increasing 

concrete volume and decreasing the steel tonnage, minimization of the cost is provided. 

The optimum results of numerical examples were searched for 2000 iterations. By using the 

proposed methodology, 2000 possible designs of an engineer are checked for the minimum 

material cost. In Fig. 4, the convergence plot is given for the case 6 and 1500 kN axial force. As 

seen in the plot, the objective function is over 125 $ for the first 10 iterations. In technical practice 

of an engineer when designing a biaxially loaded column, it is not practical to conduct analyses 

more than 10. For that reason, the optimum value (85.16 $) is nearly 32% lower than engineering 

practices. The optimization of the same case is done for several times in order to test the sensitivity 

of the optimum results. The optimum objective function of various optimum trials are given in 

Table 8 and the iterations where the optimums are found are shown. According to the results, the 

standard derivative is 0.76 (normalized one is equal to 0.0088) for that case. The same optimum 

results are found for different run. 

The duration of a generation is different because the proposed method uses additional random 

searches for different stages of optimization. The duration of a generation is between 2 and 6 
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second by using a Matlab code at a 3.4 GHz quad core personal computer with 32 GB RAM.   

The optimum results show sensibility to internal forces by increasing the cross section 

dimension or reinforcement area. This situation proves that, the proposed methodology is effective 

to find the final optimum values. Due to economical difference of concrete and steel, cross-

sectional dimensions (especially height for maximum flexural moment capacity) are getting bigger 

and approach to the limits of the optimization ranges. The method is feasible for RC members 

such as columns under biaxial bending in addition to compressive and shear stresses. 
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