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Abstract.  In this study, a 2-D finite element formulation in the frame of nonlocal integral elasticity is 

presented. Subsequently, the bending problem of a nanobeam under different types of loadings and 

boundary conditions is solved based on classical beam theory and also 3-D elasticity theory using nonlocal 

finite elements (NL-FEM). The obtained results are compared with the analytical and numerical results of 

nonlocal differential elasticity. It is concluded that the classical beam theory and the nonlocal differential 

elasticity can separately lead to significant errors for the problem under consideration as distinct from 3-D 

elasticity and nonlocal integral elasticity respectively. 
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1. Introduction 
 

Nowadays, nano-sized structures (Wang et al. 2006, Wang et al. 2008, Ghannadpour and 

Mohammadi 2006, Ghannadpour et al. 2014, Wang and Wang‎ 2007) are widely used in the 

industrial and commercial productions due to the outstanding physical and chemical characteristics 

and also economic advantages in terms of mass production capability of these structures. For 

instance, nanobeams, nanoplates, and nanoshells have common application in nano-

electromechanical systems (NEMS) and micro-electromechanical systems (MEMS) devices. In 

recent years, continuum and semi-continuum models have drawn extra attention in studying of 

nanostructures since the experimental studies and atomic-scale modeling of large scale 

nanostructures require considerable time and computation efforts. 

One of the widely accepted micro-continuum theories is nonlocal elasticity, which appeared in 

the late sixties. For example, Kröner‎ (1967) investigated elastic materials with regards to the long 

range cohesive forces and Krumhansl‎ (1968) applied continuum approach based on atomic lattice 

theory. Nonlocal differential elasticity and nonlocal integral elasticity (Hu et al. 2008) are two 
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general forms of nonlocal elasticity theory. In fact, nonlocal integral elasticity is reduced to 
nonlocal differential elasticity in special condition for particular class of materials. Nevertheless, 
the latter has attracted more attention due to its simplicity. 

Not only in nanoscale problems but in cases where the nature of physical phenomena is 
happening at atomic or microstructure level, the local theory fails to accurately predict the results 
(Eringen 2002). In the latter cases, it is worth referring to the weakness of local theories in dealing 
with elastic continuum in the presence of geometrical singularities (Eringen and Kim 1974, 
Polizzotto  2002). 

Applications of nonlocal elastic continuum methods in elastic behavior of nanostructures have 
been widely studied. Peddieson et al. (2003), who investigated the bending behavior of an Euler-
Bernoulli beam with differential version of nonlocal elasticity theory, published the first work on 
the flexural properties of nanobeams. 

Wang and Liew  (2007) investigated the influence of scale effect on static deformation of micro- 
and nano-rods or tubes based on nonlocal Euler-Bernoulli beam theory and Timoshenko beam 
theory. They showed that the scale effect would not manifest itself for microstructures with length 
of the order of micro-meters, however, will be noticeable for nanostructures in their static 
responses. 

Berrabah et al. (2013) proposed a unified nonlocal shear deformation theory to study bending, 
buckling and free vibration of nanobeams. They assumed that the in-plane and transverse 
displacements consist of bending and shear components in which the components do not 
contribute toward each other. They presented analytical solutions for the deflection, buckling load, 
and natural frequency for a simply supported nanobeam and compared the result with those 
predicted by the nonlocal Timoshenko beam theory. 

Polizzotto  (2001) examined three variational principles, nonlocal counterparts of classical ones, 
i.e. the total potential energy, the complementary energy, and the mixed Hu-Washizu principles. In 
his work, a proper framework for applying numerical methods such as FEM and symmetric 
boundary element method in nonlocal elasticity has been suggested. 

Adali  (2008) derived variational principles and also natural and geometric boundary conditions 
for multi-walled carbon nanotubes considering small scale effects using the semi-inverse method 
via the nonlocal differential elasticity.  

The problems of the nonlocal elastic mechanic can be solved via analytical and numerical 
methods. The analytical solutions are often complex even for one-dimensional problems and hard 
to solve for two- and three-dimensional ones with general boundary conditions  (Pisano et al.  
2009). Therefore, the only effective method for dealing with nonlocal elasticity problems is 
applying numerical solutions such as FEM and Ritz method. The only available study on the 
nonlocal elastic problems using nonlocal differential elasticity theory and FEM has been published 
by phadikar and Pradhan (2010). They reported the formulation of the Galerkin finite element for 
nonlocal differential elastic Euler-Bernoulli Beam and Kirchhoff plate.  

Finite element method based on the nonlocal integral elasticity was formulated by the 
Polizzotto  (2001) for the first time. He called it nonlocal finite element method (NL-FEM). Pisano 
et al.  (2009) used NL-FEM to analyze a nanoplate under tension and compared the results with 
local elasticity theory ones. 

In this study, a 2-D finite element formulation in the frame of nonlocal integral elasticity is 
presented. Subsequently, the bending problem of a nanobeam under different types of loadings and 
boundary conditions is solved based on classical beam theory and also 3-D elasticity theory using 
NL-FEM. The obtained results are compared with the analytical and numerical results of nonlocal 
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differential elasticity. 
 
 
2. Nonlocal finite element method 
 

In general, a response object is nonlocal if it depends not only on its own independent object 
but also on independent objects of other points. For a linear homogeneous isotropic continuum as 
shown in Eq. (1), nonlocality reduces to only stress-strain relation (Eringen and Kim 1974, 
Eringen et al.  1977). In fact the stress at a reference point is assumed to be a functional of the 
strain field or local stress field at each point in the body with a weighted average. 

          
( ) ( , ) ( )dV( ) V

V

      x x x x x x  (1)

where σ(x) is second-order stress tensor, σ(x′) is second order local stress tensor and α(x, x′) is a 
positive scalar function which is called attenuation function, weighted function, or nonlocal 
modulus showing the level of effect of x′ strain on x strain that depends on |x−x′| and a/l where a 
is an internal characteristic length (e.g., lattice parameter, granular distance) and l is an external 
characteristic length (e.g., crack length, wave length). The attenuation function may be determined 
by experiments or atomic lattice dynamics for a special material and various weighting functions 
have been suggested for it such as triangular, spike, bilateral exponential, Cauchy distribution, 
error function, bell shape function and conical shape function. However, as Bažant et al.  (1984) 
showed the fourier transform of the weighting function must be positive for all real ω, i.e. 

          
*( ) ( ) 0i se s ds  

 


   (2)

Some of the previous functions such as triangular weighting function, used in some literature 
(Eringen and Balta 1978, Eringen 1978 and Eringen and Kim 1977) don’t satisfy Eq. (2) so they 
cannot be used. For correction of these attenuation functions, they were combined with a spike in 
the form of Delta Dirac function. 

Eringen showed that integropartial differential equations of linear theory of nonlocal elasticity 
could reduce to singular partial differential equations if nonlocal modulus be Green’s function of a 
linear differential operator. For example for the following two-dimensional moduli 

           
2 2

0( , ) (2 ) ( . / )l K l    x x x  (3)

Where τ=e0a/l (e0 is a constant appropriate to each material) and K0 is the modified Bessel 
function, integral Eq. (1) could be converted into the partial differential Eq. (4) (Eringen 1983). It 
is obvious that the solution of a latter partial differential equation is far easier than solving an 
integropartial differential equation. It is noted that the modulus of Eq. (3) is a two-dimensional 
modulus and it is more appropriate to use Eq. (3) in two-dimensional form. But, due to the beam 
theory assumptions, most of researchers concerning beam bending analysis have used Eq. (4) in 
one-dimensional form. 

          
2 2 2(1 )l  t σ  (4)

Where t and σ are the nonlocal stress tensor and local stress tensor respectively. 
In this paper, the results from the nonlocal integral finite element method have been compared 

to the results from nonlocal differential theory, so the attenuation function corresponds to that 
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expressed in Eq. (3) and as this function meets the requirement of the Eq. (2), it is not necessary to 
combine it with Dirac delta function. 

Polizzotto has extracted the nonlocal form of variational principles and has provided a suitable 
framework to expand local finite element method to nonlocal finite element method. Relations 
associated with nonlocal finite element according to papers of Polizzotto  (2001) and Pisano et al.  
(2009) are briefly summarized in the following. 

The nonlocal total potential energy functional can be written as 

      

  1
( ) ( , ) ( ) : : ( )dV dV

2

( ). ( )dV ( ). ( )dS
t

s s

V V

V S

      

 

 
 

u x x x u x D u x

b x u x t x u x
 (5)

Where ( )b x  is the volume force in V and ( )t x  is the surface force on St. ( )u x is the 
external displacement applied on Su. 

Now divide the domain into n elements and approximate displacement field u(x) and relevant 
strain field, considering appropriate shape functions as below. 

          n n( ) ( ) ; ( ) ( ) ; Vn n n   u x N x d x B x d x  (6)

Where Nn(x) are shape functions. In the case of simple tension problem, continuity class C0 is 
enough, however, in order to analyze bending problem by using classical beam theory, continuity 
class for the elements should be minimum C1. dn is node displacement vector of the n-th element. 
By substituting Eq. (6) into Eq. (5), energy functional is written as follows 

           
( )

T
n

1 1

T T T
n n n

1

1
( ( , ) ( ) ( )dV dV)

2

( ( ) ( )dV ( ) ( )dS)

e e

n m

e

n t n

N N
T
n m mV V

n m

N

V S
n


 



   

 

  

  

d x x B x DB x d

d N x b x N x t x

 (7)

Where S t(n)=St∩∂Vn. By considering Eq. (7), nonlocal element stiffness matrices and element 
force vector can be given in the shapes 

         ( )

T T
n n

( , ) ( ) ( )dV dV

( ) ( )dV ( ) ( )dS

n m

n t n

nonloc T
nm n mV V

n V S

   

 

 
 

k x x B x DB x

f N x b x N x t x
 (8)

By inspecting Eq. (8) it is seen that nonlocal element force vector is similar to local one, but 
local element stiffness matrix which is obtained for n-th element, has been converted into nonloc

nmk  

and as a result there will be 2
eN  element stiffness matrices instead of Ne which is the number of 

matrices in the local case. With increasing distance, the value of α(x, x′) is rapidly reduced and so 
it is effective only within a limited distance that is called influence zone  (Eringen 2002) or 
influence distance  (Pisano et al. 2009). For a given influence distance and assigned geometrical 
boundaries, the final number of element stiffness matrices will be less than 2

eN .  
In finite element method, integrations are usually performed by numerical methods. In the case 

of mathematically simple shape functions, the analytical integrations are also possible. However, 
due to the presence of weight function α(x, x′) in the nonlocal finite element formulation, the  
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Fig. 1 Modification of kernel at beam end sections (Pisano et al.  2009) 

 
 

numerical integration is mandatory. In this study, for the evaluation of integrations, n-point 
Gaussian quadrature rule has been used. For one-dimensional elements, 3 Gauss sampling points 
and for two-dimensional elements 3×3 points have been used. 

There are a lot of discussions in the literature to correct the integral kernels, especially in the 
vicinity of the end supports (from infinite domain support to finite domain support). For example 
Challamel et al. (2014) have obtained the shape of kernels for simply supported-simply supported, 
free-free and clamped-free boundary conditions. However in this study, as can be seen in Fig. 1, 
the kernels near the supports are modified by truncating the part of the kernels which is located 
beyond the length of beam. 

 
 

3. One-dimensional tension problem 
 

For the verification study of the developed nonlocal integral finite elements formulation, a bar 
with length L, thickness t and uniform cross-section area S, under a uniform tension loading equal  
to   is considered. For the subject case, no analytical solution is available. However, the  
numerical solution of Fredholm integral equation as outlined below is attempted in order to 
compare with the results obtained by the developed nonlocal integral finite elements formulation. 
It is noted that the similar problem is solved by Pisano and Fuschi (2003) with a different type of 
attenuation function which is leaded to the Fredholm integral equation of the second kind. Having 
taken Eq. (9) into consideration, the tension in the entire bar will be constant and equal to the 
applied load. The stress-strain relationship at a general point is given by the following equation 

      0
( , ) ( )d

L
E x x x x       (9)

The above equation is in the form of Fredholm integral equation of the first kind (Eq. (10)) that 
does not have an analytical answer in general form and should be solved by numerical methods 
(e.g., Baker 1977, Lewis 1973). One of the methods being used to solve equations of this type over 
the recent years is Legendre wavelets method (Maleknejad and Sohrabi  2007). Since in this 
section the results of nonlocal integral method are not to be compared with those of nonlocal 
differential method, any desired attenuation function can be implemented. In this section, both of 
the nonlocal finite element method as well as Legendre wavelets numerical method are developed 
by implementing attenuation function as bi-exponential function. The results from both methods 
are compared in Fig. 2. The correlation between the results is quite satisfactory. 

        
( ) ( , ) ( )

b

a
f K x t t dt x  (10)
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Fig. 2 Strain distribution for a bar in tension with NL-FEM (solid line) and Legendre wavelets 
method (points). μ is the scale coefficient that incorporates the small-scale effect and is equal to lτ 

 

 
Fig. 3 Strain distribution for a bar in tension with various influence distance parameter 

 
 
It is noted that for a particular case of Eq. (10) in which the integration limits are infinite and 

K(x,t) is only a function of the difference of its arguments, namely K(x,t)=K(x−t), Fredholm 
integral equation of the first kind will have an analytical solution. In this case a constant f(x) 
function would result in a constant ϕ(t) solution. In other words, if the bar under consideration is of 
infinite length, the nonlocal effects will disappear. Therefore, the structural boundaries have 
resulted in the nonlocal characteristics of the bar. 

In Fig. 3 Strain distribution for a bar with various LR has been shown. As it could be seen, with 
increasing LR, greater area of the bar is affected by nonlocal effects. Maximum strain occurring in 
boundaries is constant and does not depend on the amount of μ due to kernel function being 
normal. On the other hand, the strain is constant in area far from boundaries and is almost equal to 
its local value. Next sections will show that in the study of a beam under bending, as thickness of 
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beam is much less than the other dimensions, considering nonlocal effects along thickness is 
considerably important so that not considering such effects may causes significant error in 
answers. 

 
 

4. Beam bending analysis using nonlocal integral elasticity 
 
In this section, the bending of a beam is investigated by using nonlocal integral finite element 

method based on either classical beam theory or the three-dimensional elasticity theory. A variety 
of boundary conditions and loadings are considered. The obtained results are compared with the 
corresponding ones from nonlocal differential theory. 

For completeness and the future reference, a note on the nonlocal differential theory is given 
below. The constitutive law according to nonlocal differential theory for the beam is given by  

           

2
2

2

d xx
xx xxE

dx

     (11)

Where μ is the scale coefficient that incorporates the small-scale effect and is equal to lτ or e0a. 
The nonlocal bending moment is obtained through multiplication of Eq. (11) by zdA and 
integration over area A. 

          

2 2
2

2 2

d d wM
M EI

dx dx
    (12)

Where M is the second moment of area and w is the transverse displacement. On combining Eq. 
(12) and the field equilibrium equation, the governing equation for the bending of nonlocal Euler-
Bernoulli beam is given by (Ghannadpour et al. 2014 ) 

          

4 2
2

2 2

d w d q
0EI q

dx dx
    (13)

This equation can be solved by different numerical methods such as Ritz method (Ghannadpour 
et al. 2014) and General Differential Quadrature (GDQ) method (Pradhan and Phadikar  2009). 
Moreover, Wang et al.  (2008) have analytically solved the Timoshenko beam bending problem 
based on the nonlocal differential theory. It is noted that in the nonlocal one-dimensional Eq. (13), 
the nonlocality effects are only governed by the variation of the ratio of scale coefficient to the 
length. It is obvious that in a more general theory the effects of nonlocality due to the variation of 
the ratio of scale coefficient to other smaller dimensions such as thickness can be taken into 
account. 

 
4.1 Beam bending analysis with NL-FEM based on classical beam theory 

 
The classical beam hypothesis implies that the displacement field has the form 

           

   

   

0
0

0

,

,

w
u x z u x z

x
w x z w x


 




 (14)

Where u(x,z) and w(x,z) are components of displacements at a general point, whilst u0(x) and 
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w0(x) are similar components at the middle surface. 
Using Eq. (14) in the Green’s expression for nonlinear strains and neglecting lower order terms 

in a manner consistent with the usual Von Karman assumption gives the following expressions for 
strain at a general point 

         
0 1z     (15)

Where 

            

2
0 10 0, xx

u w

x x
 

 
  
 

 (16)

So 

          
0 1

n n( ) ( ) ( ) ; Vn n nz    x B x d B x d x  (17)

Based on Eqs. (7) and (15), nonlocal total potential energy functional is given by 

           
( )

T 0 0
n

1 1

T 1 1
n

1 1

T T T
n n n

1

1
( ( , )( ) ( ) ( )d d )

2

1
( ( , )( ) ( ) ( )d d )

2

( ( ) ( )dV ( ) ( )d )

e e

n m

e e

n m

e

n t n

N N
T

n m mx x
n m

N N
T

xx n m mx x
n m

N

x S
n

bt x x x x x x

bI x x x x x

bt x x x x x





 

 



   

  

 

  

  

  

d B DB d

d B DB x d

d N b N t

 (18)

Thus nonlocal stiffness matrices is obtained as follows 

           

nonloc nonloc nonloc
nm 0nm 1nm

nonloc 0 0
0nm

nonloc 1 1
1nm

( , )( ) ( ) ( )d d

( , )( ) ( ) ( )d d

n m

n m

T
n mx x

T
xx n mx x

bt x x x x x x

bI x x





 

  

  

 
 

k k k

k B DB

k x x B x DB x

 (19)

nonloc
0nmk  is zero under pure bending condition which is the case in the current study. A two-node 

element with 2 DOFs per node has been used. In view of Eqs. (3) and (11), an attenuation function 
is given by 

           
2

0 0( , ) (2 ) ( / )x x K x x         (20)

Where 

          

0
2

0

1

(2 ) ( / )K x x


 








 
(21)

Fig. 4 shows the effects of μ on attenuation function distribution. It should be noted that the 
distance of influence is usually about a few atoms (up to maximum 10 atoms  (Eringen 2002)), so 
the large value of μ/L (for example, larger than 0.1) means that the beam can be as short as  
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Fig. 4 Effects of μ on attenuation function distribution 

 
Table 1 Non-dimensional maximum deflections for a clamp-clamp nanobeam with two loading conditions 

μ/L=0.1 

 1k  1q 

n=number of elements maxw  maxw  

10 0.005106 0.002616 
20 0.005908 0.003053 
50 0.006417 0.003345 

100 0.006418 0.003348 
μ/L=0.05 

 1k   1q   

n=number of elements maxw  maxw  

10 0.003023 0.001522 
20 0.004351 0.002201 
50 0.005286 0.002688 

100 0.005520 0.002814 
150 0.005577 0.002846 

 
 

approximately one hundred atoms. In the latter case, according to the beam theories in which a 
relatively small thickness to length ratio is assumed, the beam thickness will be in the order of a 
few atoms only. In other words, the beam is too thin to allow for either differential or integral 
nonlocal theories to be applicable. 

A numerical code has been developed based on the proposed nonlocal integral finite element 
method. A convergence study is carried out for a clamp-clamp nanobeam with two scaling effect  
parameter μ/L of 0.1 and 0.05. A central point load parameter 2 1k FL EI   and a distributed 
load parameter 3 1q qL EI   are considered. The non-dimensional deflection maxw , is 
presented in Table 1. 
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Table 2 Non-dimensional maximum deflection for a nanobeam with various boundary conditions and 
various scaling effect parameter under uniformly distributed load (L/t=100). 

μ/L Method 
Boundary conditions 

SS-SS CL-CL CL-FR 

0 

1-D NL-FEM 0.0130 0.0026 0.1250 

(Wang et al. 2008) 0.0130 0.0026 0.1250 

(Ghannadpour et al. 2014) 0.0130 0.0026 0.1250 

0.1 

1-D NL-FEM 0.0132 0.0033 0.1408 
(Wang et al. 2008) 0.0142 0.0026 0.1200 

(Ghannadpour et al. 2014) - 0.0026 - 

0.2 

1-D NL-FEM 0.0144 0.0052 0.1747 

(Wang et al. 2008) 0.0180 0.0026 0.1050 

(Ghannadpour et al. 2014) 0.0180 0.0026 0.1050 

 
 
It is noted that for the subject problem the local finite element analysis can deliver converged 

results with very few elements. In the case of nonlocal finite element, however, it is seen in the 
above table that the convergence rate is rather slow due to the presence of attenuation function. In 
fact, the convergence rate depends directly on kernel shape used, and for instance, for a bilateral 
exponential function the convergence is achieved relatively faster than that for a Bessel function. 
Also, the convergence rate depends directly on scaling effect parameter value. In other words, a 
smaller scaling effect parameter requires more elements than those are necessary for a larger 
scaling parameter. It is noted that based on the problem under consideration, in the remaining of 
the paper different numbers of finite elements are utilized in order to achieve converged results.  

In Table 2, maximum deflection for a beam with various boundary conditions, namely simply 
supported-simply supported (SS), clamped-clamped (CL-CL) and clamped-free (CL-FR), under a 
uniformly distributed load is presented. In order to compare the results with those from other 
references, similar values of scaling parameter are selected, although meaningless in some cases. 
Wang et al . (2008) has obtained the results based on the analytical solution of beam bending 
nonlocal differential equation, and Ghannadpour et al.  (2014) has solved the corresponding 
nonlocal differential equation by using Ritz method. 

It is seen in the table for simply supported beam (SS-SS) in both nonlocal differential and 
nonlocal integral theories, by increasing the scaling effect parameter, the maximum deflection 
increases. However, the latter increase is more pronounced in the case of differential theory. 
Furthermore, for the case of fully clamped beam (CL-CL), the increase in the scale factor has 
caused no changes in the results of differential theory, whilst for the same beam, the deflections 
obtained from the integral theory have increased with a considerable rate even higher than that for 
the simply supported case. This behavior can be explained on the following grounds. By further 
review of Eq. (13) corresponding to the governing nonlocal differential equation for Euler-
Bernoulli beam, it is seen that μ is multiplied by the term d2q/dx2 only, and the boundary 
conditions of the beam are also obtained as that follows (Wang et al.  2008). 

          

2
2

2
0, for a simple supported end

d w
w M EI q

dx
     (22)
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Table 3 Ratio of the critical buckling load parameter of the nanobeam to the corresponding local beam with 
various boundary conditions and various scaling effect parameter (Ghannadpour et al. 2014) 

μ/L 
Boundary conditions 

SS-SS CL-SS CL-CL CL-FR 

0 1 1 1 1 
0.2 0.7169 0.5532 0.3877 0.9101 
1 0.0919 0.0471 0.0247 0.2883 

 
 

0, 0 for a clamped end
dw

w
dx

 
 

(23)

2
2

2
0, 0 for a free end

d w dM
M EI q V

dx dx
      

 
(24)

Therefore, for either simply supported or free boundary condition, regardless of the loading 
type (whether point or distributed), the nonlocal effects will appear in the bending solution due to 
the parameter μ2 being present at the above boundary condition equations. On the contrary, for a 
clamped boundary condition since the term μ has not appeared in the corresponding boundary 
condition equation, the nonlocality can only come to play when the term d2q/dx2 in Eq. (13) is non-
zero (for example when the loading is in the form of a sinusoidal distributed load). Therefore, 
since only a uniformly distributed load is considered in Table 2, the nonlocal effects have caused 
no changes in the results based on nonlocal differential theory for a clamped beam. However, it is 
widely known that the nonlocal effects appear due to the long range interactions between particles 
of material, thus for any type of loadings or boundary conditions these effects are expected to be 
present. The latter expectation is fulfilled by the results presented in Table 2 corresponding to the 
nonlocal integral theory. The above shortcoming of differential theory is somewhat removed by 
Challamel and Wang  (2009) who presented a gradient elasticity model, in which the local and 
nonlocal curvature elastic relations are combined, in order to solve the bending problem of an 
Euler-Bernoulli cantilever nanobeam with a point load. Of course, in this model an additional 
parameter is added to the equations of bending that needs to be obtained experimentally. 

Having seen earlier in Table 2 that the nonlocal effects are more pronounced for a clamped 
beam as distinct from a simply supported one, a similar behavior is also observed in Table 3 with 
respect to the beam buckling solution obtained by using differential theory (Ghannadpour et al.  
2014). Given the fact that there is a direct correlation between the buckling load of a beam and its 
bending stiffness value, the higher variation of the buckling load in the case of fully clamped beam 
implies a higher change in the bending stiffness of the same beam. This is attributed to the fact that 
the nonlocality causes reduction in the stiffness near the geometrical boundaries. Thus, in the case 
of classical beam theory in which the nonlocalitly is considered only along length, the nonlocal 
effects will cause reduction in the stiffness at regions near to the end supports. Of course, for a 
stiffer support such as a clamped one, the nonlocal effects will be more pronounced. 

In Table 4, maximum deflection for a beam with different boundary conditions under sinusoidal 
load is presented. The comparison between the current FEM results and those of Wang et 
al.  (2008) is generally satisfactory. 

 
4.2 Beam bending analysis with NL-FEM based on 3-D elasticity theory 
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In the previous section, nonlocality along thickness was ignored due to the application of the 
classical beam theory. In this section, the same beam bending problem is solved by using two-
dimensional elements so that the nonlocal effects along thickness are also taken into consideration. 
In Fig. 4(a), a typical finite element mesh arrangement for a beam and in Fig. 4(b), a typical 
element is shown. 

In the nonlocal finite element method, the distances between Gaussian points of a given 
element to the Gaussian points of all other elements, which are affected by the kernel function, 
must be measured. However, this task becomes less demanding when a regular mesh with equal 
size elements are used. In this study, 8-nodes C0-quadratic isoparametric Serendipity elements with 
2 DOFs per node and 3×3 Gauss sampling points have been used. 

With introducing a natural coordinate system ξ=(ξ,η) being x(ξ)=x(ξ,η)={x(ξ,η) z(ξ,η)}T, Eq. (8) 
can be given the shape (based on Pisano et al.  2009) 

       



   

 ddbT
jm

T
in

nonloc
ijnm )(det)()())()(( )()(

1

1

1

1

1

1

1

1
)( ξJξDBξBξxξxk  

       ddb )(det ξJ  
(25)

 
 

Table 4 Non-dimensional maximum deflection for a nanobeam with various boundary conditions and 
various scaling effect parameter under sinusoidal load by nonlocal integral elasticity and nonlocal 
differential elasticity 

μ/L Method 
Boundary conditions 

SS-SS CL-CL CL-FR 

0 
1-D NL-FEM 0.0102 0.0022 0.0738 

Based on Wang et al. (2008) 0.0102 0.0022 0.0738 

0.1 
1-D NL-FEM 0.0103 0.0027 0.0839 

Based on Wang et al. (2008) 0.0112 0.0024 0.0706 

0.2 
1-D NL-FEM 0.0114 0.0043 0.1054 

Based on Wang et al. (2008) 0.0143 0.0030 0.0611 
 

 
(a) (b) 

Fig. 5 Typical finite element mesh arrangement and typical element for a beam. (Pisano et al. 2009) 
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Table 5 Non-dimensional maximum deflection for nanobeams with various boundary conditions and various 
scaling effect parameter under distributed load by 2-D nonlocal integral elasticity, 1-D nonlocal integral 
elasticity and nonlocal differential elasticity (Wang et al. 2008) 

μ/L Method 
Boundary conditions 

SS-SS CL-CL CL-FR 

0 
2-D NL-FEM 0.0130 0.0026 0.1250 
1-D NL-FEM 0.0130 0.0026 0.1250 

Wang et al. (2008) 0.0130 0.0026 0.1250 

0.01 
2-D NL-FEM 0.0282 0.0037 0.2087 
1-D NL-FEM 0.0130 0.0026 0.1250 

Wang et al. (2008) 0.0130 0.0026 0.1250 

0.02 
2-D NL-FEM 0.0694 0.0144 0.3088 
1-D NL-FEM 0.0132 0.0026 0.1250 

Wang et al. (2008) 0.0133 0.0026 0.1262 

 
 
Where J is the Jacobean matrix of transformation, )]([)( )()( ξxBξB in

T
in  , 

)]([)( )()( ξxBξB  im
T

jm  and b is the beam width. Finally by applying the Gauss-Legendre 
quadrature rule for numerical integration to Eq. (25) one gets 

         )),(),(([
1111)( ghsr
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h

nonloc
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T
in bwwww  JDBB   

(26)

Where NG is the Gauss points number per element, )),(),(( ghsr  xx   is the kernel 
associated to Gauss points in the global coordinate system and , , ,h g r sw w w w   are the Gauss 
weights. 

It is obvious that a converged result can only be achieved if a sufficient number of elements are 
allocated to the LR region of any given element. As a result, for problems with a small scaling 
effect parameter the total number of the elements is considerably more than the corresponding one 
in the case of local finite element. 

In Table 5, the non-dimensional maximum deflections for nanobeams with various boundary 
conditions and different scaling effect parameter under a uniformly distributed load are presented. 
The results correspond to three types of analysis, i.e., the nonlocal integral two-dimensional finite 
element, the nonlocal integral finite element based on classical beam theory as well as the nonlocal 
differential elasticity analysis. 

It is seen that for the beam under consideration, which is really thin (L/t=100), the results of 
nonlocal two-dimensional finite element indicate a profound difference with those of other 
methods. In other words, by increasing the scaling effect parameter for a thin beam, the kernel 
function of any given element through the thickness tends to be truncated by the upper and lower 
boundaries of the beam. Of course, this would inevitably lead to a higher flexibility of the beam if 
the nonlocal effects along the thickness are accounted for properly in a method such as the 
developed 2-D finite element analysis. When the effects of nonlocality through the thickness are to 
be investigated, it might be advisable to replace the scaling effect parameter μ/L by μ/t. This is 
because in the case of thin beams where for example the length is one hundred times bigger than 
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the thickness, a scaling effect parameter of μ/L=0.01 would mean the nonlocality region is 
longitudinally confined to the two ends of the beam. However, for the same beam, the effect of 
nonlocality is quite significant throughout the whole thickness since μ/t=1. Thus, one might be 
misled if the variations of the results were only shown based on the scaling effect parameter as 
μ/L. 
 
 
5. Conclusions 
 

In this study, the bending behavior of a nanobeam is investigated by using 1-D and 2-D finite 
element method based on nonlocal integral elasticity. The results are compared with those from 
nonlocal differential elasticity. In the case of nonlocal integral elasticity analysis, it is seen that the 
convergence rate is rather slow due to the presence of attenuation function. In fact, the 
convergence rate of the developed finite element method directly depends on the shape of 
implemented kernel function. In the case of clamped boundary conditions, the differential theory is 
incapable of demonstrating the nonlocal effects whereas by using the nonlocal integral theory, such 
effects are observed. Subsequently, it is shown that in the beam bending analysis, it is necessary to 
have a model in which the discretization through the thickness, in addition to the lengthwise 
discretization, is properly accounted for. This has led to a considerably lower bending stiffness of 
the beam. The present study has paved the way to facilitate the analyses and design of nano size 
structures with general boundary conditions and loadings. 
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