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Abstract.  This study presents critical buckling load optimization of the axially graded layered uniform 

columns. In the first place, characteristic equations for the critical buckling loads for all boundary conditions 

are obtained using the transfer matrix method. Then, for each case, square of this equation is taken as a 

fitness function together with constraints. Due to explicitly unavailable objective function for the critical 

buckling loads as a function of segment length and volume fraction of the materials, especially for the 

column structures with higher segment numbers, initially, prescribed value is assumed for it and then the 

design variables satisfying constraints are searched using Differential Evolution (DE) optimization method 

coupled with eigen-value routine. For constraint handling, Exterior Penalty Function formulation is adapted 

to the optimization cycle. Different boundary conditions are considered. The results reveal that maximum 

increments in the critical buckling loads are attained about 20% for cantilevered and pinned-pinned end 

conditions and 18% for clamped-clamped case. Finally, the strongest column structure configurations will 

be determined. The scientific and statistical results confirmed efficiency, reliability and robustness of the 

Differential Evolution optimization method and it can be used in the similar problems which especially 

include transcendental functions. 
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1. Introduction 
 

Nowadays, powder metallurgy has become an important area for engineering, especially in 

terms of production of structural members. Slender columns are, on the other hand, the structural 

members that are widely used in engineering areas such as mechanical, civil, marine and 

aerospace. These members loaded by compression may fail due to buckling (Timoshenko and 

Gere 1961). So, stability is the main problem and has a crucial importance for the structures. To 

improve their structural stability against buckling, increasing weight and/or flexural rigidity (EI) 

without violating economical aspects of the design routine are the first two things that can be 

considered. In addition, functionally graded materials are the special materials that can be 

characterized by the variation in composition and structure gradually over the volume in a 

continuous or piecewise manner, resulting in corresponding changes in the properties of the 

material such as elastic modulus and density. The concept for the functionally graded materials is 
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to make a composite material by varying the microstructure from one material to another material 

with a specific gradient. So, these special materials can be used for specific applications. For the 

axially graded layered columns, the critical buckling load can be controlled in a desired manner. 

Knowing optimum column structure configuration enables designers/engineers to save time and 

design costs at the same time. So, optimization of such structural members is of great importance. 

Keller (1960) determined the shape of strongest column for the hinged at both ends and later, 

Tadjbakhsh and Keller (1962) studied the same problem for a given length and volume of the 

column considering other types of end conditions. From then, there have been conducted extensive 

studies about optimization of the columns for attaining maximum buckling load in a continuous 

manner available in open literature. This is not the case for the column made of axially graded 

materials especially in a piecewise manner. The number of studies available in literature is rather 

limited. Coello and Farrera (1995) conducted a study dealing with optimization of axially loaded 

non-prismatic columns using the genetic algorithm optimization method. They formulated the 

optimization problem such that the objective function is to minimize the volume of a column 

under a given load by changing its shape, subject to both buckling and strength constraints. 

O’Rourke (1997) proposed a method to determine critical buckling load for non-uniform columns. 

A finite difference method is used to formulate the problem. He considered segment length and 

moment of inertia as variables but the elastic modulus was held constant throughout the parametric 

studies. He tabulated column configurations for cantilevered and simply-supported end conditions. 

Fu and Ren (1992) conducted a study dealing with optimization of axially loaded non-prismatic 

column using generalized reduced gradient method. This study aimed at minimizing the weight of 

a column under a given load by changing its shape, subject to both buckling and strength 

constraints and they concluded that considerable savings were achieved. Maalawi (2002) 

formulated buckling optimization of segmented solid and tubular columns for a given total mass 

and length. The optimization problem was formulated in a dimensionless form, making his model 

independent on specific cross-sectional shape and dimensions. The design variables are the radius 

of gyration and the segment length. He considered clamped-free and clamped-clamped boundary 

conditions. He showed that depending on the end conditions, an increment in the critical buckling 

load is attained. Based on the study of Maalawi (2002), Maalawi (2009) proposed an exact method 

for optimization of axially graded columns with clamped-free and pinned-pinned end conditions. 

Two different problems are considered, i.e., uniform column with axial material grading and thin 

wall columns with the thickness grading. Li et al. (2011) proposed an approach to determine the 

critical buckling load of cantilevered non-uniform composite columns subjected to distributed 

axial load and tip force. They considered two design problems for maximizing load-carrying 

capacity. The first one is to obtain an optimal parameter of the shape profile when the weight or 

volume is prescribed, and the other is to determine a suitable gradient parameter of a functionally 

graded composite column with uniform cross-section.  

Patnaik et al. (2012) presented a parametric study dealing with determination of minimum mass 

configurations of two segmented cantilevered columns with circular cross section for a given a 

buckling load constraint using numerical search algorithm. The segments of the columns are made 

up of either with a single material (steel) or with two materials (combination of aluminum – steel, 

aluminum – copper and aluminum – titanium, keeping aluminum as the free end segment). Finally, 

they tabulated minimum mass configurations for different inertia and length ratios. They 

concluded that the inertia ratio has a strong effect on the minimum mass design. In addition, 

Patnaik et al. (2013) studied the similar problem and performed mass minimization of the columns 

using the Kuhn-Tucker method. Sujatha et al. (2013) conducted stability analysis of columns using 
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Critical buckling load optimization of the axially graded layered uniform columns 

combination of finite difference method and unit step function to avoid stability problems of finite 

difference method. Unit step function is used to satisfy the continuity at points of discontinuity. 

The variation of modulus of elasticity, and moment of inertia, and loading functions are written in 

suitable forms using unit step functions. They also concluded that the results obtained from 

proposed methods are in good agreement with those obtained from the pure finite difference 

method. Singh and Li (2009) proposed a mathematical model for obtaining critical buckling loads 

of uniform and non-uniform axially graded columns. They approximated the columns with spatial 

variation of flexural stiffness resulted from material grading and/or non-uniform shape by an 

equivalent column with piecewise constant geometrical and material properties which in turns 

resulted in transcendental eigenvalue problems solved by a numerical method based upon 

Newton’s Eigenvalue Iteration Method. They carried out extensive parametric studies. Alkan 

(2015) presented optimum buckling design of axially layered graded uniform columns using 

“fmincon” nonlinear programming solver provided in the MATLAB's Optimization Toolbox. For 

all end conditions considered, he concluded that axial load carrying capacity (i.e., critical buckling 

load) of the axially layered graded uniform columns is increased when comparing with the case of 

the one segment uniform columns. 

In this study, critical buckling load optimization of the axially graded layered uniform columns 

is performed. Objective function formulation proposed by (Alkan 2015) for attaining higher 

critical buckling loads is used. As an optimization tool, Differential Evolution optimization 

technique coupled with eigen-value routine is used. For constraint handling, Exterior Penalty 

Function formulation is adapted. Firstly, the characteristic equations for determining critical 

buckling loads for all end conditions are obtained using the transfer matrix method. Then, for each 

case, square of this equation is taken as an objective function along with constraints. It is very 

difficult to explicitly obtain the objective function for the critical buckling load as a function of the 

volume fraction and the segment length, especially for the column structures with higher segment 

numbers. Therefore, pre-specified critical buckling loads are assumed and then the design 

variables satisfying constraints are searched. The design variables are volume fraction and segment 

length. Clamped-free, clamped-clamped and pinned-pinned type boundary conditions are 

considered. Some conclusions are drawn and finally, the strongest column structure configuration 

for each case is determined.  

On the other hand, to author knowledge, application of the Differential Evolution to this 

problem is not available in open literature. Even if its reliability and robustness are proven, some 

adjustments are needed to be done to efficiently solve any problem especially in terms of control 

parameters of DE (Das and Sugathan 2011). There is a satisfactory agreement between the results 

obtained in the present study and those obtained in literature. So, this conclusion and also 

performance experiments confirmed efficiency, reliability and robustness of the Differential 

Evolution optimization method. Therefore, it can be deduced from this study that this optimization 

method can also be used in different eigen-value problems especially having transcendental 

equations. 

In addition, it is mentioned in literature that optimum columns for clamped-clamped end 

conditions with the number of three and more than three segments are symmetrical about both the 

quarter and mid-span points. In other words, variation of the moment of inertia or cross-section 

along the column length has such a trend under the assumption of constant material properties. 

Present results showed that similar distributions for the material properties (i.e., Young’s Modulus 

and density) are obtained for the column structures where moment of inertia or cross-section do 

not change during the optimization cycles. This point is not mentioned in literature as far as 
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optimization studies dealing with axially graded column structures in a piecewise manner are 

concerned. 

 

 

2. Optimization problem formulation for the columns: 
 

A general constrained minimization (or maximization) problem can be stated as follows 

Find 
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x
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x

x

x  which minimizes f(x) or maximizes –f(x) 

subject to hj(x)=0       for j=1,….,m 

      gj(x)≤0        for j=1,….,p 

where x is an n-dimensional vector called design vector, f(x), objective function, hj(x), equality 

constraints, gj(x), inequality constraints, m and p are known as the number of equality constraints 

and inequality constraints, respectively.  

In this study, the objective function is to maximize the critical buckling loads and design 

variables are volume fraction of the materials and segment length. Equality constraints are the total 

mass and total length of the baseline column structure consisting of one-segment and having 

uniform mass and stiffness distribution. Initially, there are no inequality constraints in the 

optimization problem. However, inclusion of side constraints will provide linear constraints 

depending on the number of design variables. 

 
2.1 Objective function  
 

True and robust optimization routine strongly relies on the mathematical modeling of a 

problem. This study uses the mathematical formulation of the critical buckling load of axially 

graded columns proposed by (Maalawi 2009). Also, detailed information about the mathematical 

formulation steps can be found in (Li 2003).  

For an elastic, slender, total length (L) of the axially graded non-uniform column structure 

which is applied axial load P and constructed from any arbitrary number of segments (Ns) having 

different material property (i.e., different Young’s modulus and density), the following differential 

equation reads 

    Lx0;0
dx

wd
P

dx

wd
xIxE

dx

d
2

2

2

2

2

2














                 (1) 

where w denotes the transverse displacement, x axial coordinate and E(x)I(x), the flexural rigidity 

which depends on the axially graded modulus of elasticity E(x) and spatially varying geometry 

with the moment of inertia I(x) of the column. Fig. 1 shows general view of the one-segment and 

axially graded layered uniform column structures. 

Eq. (1) must also be valid for any uniform k
th
 segment and it can be rewritten in the non-

dimensional form for the present case in which cross section and moment of inertia are taken to be 

constant as follows 
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Critical buckling load optimization of the axially graded layered uniform columns 

 
(a) A uniform column with one segment (Baseline design) 

 
(b) A uniform axially graded layered column with NS segments 

Fig. 1 General view of the columns 
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 , the axial load, )(  denotes the differentiation with 

respect to the non-dimensional coordinate of x̂  and kx̂x̂x  . Also, it is noted that E, L and I are 

the baseline parameters for comparison.  

The transfer matrix method can be applied herein to establish the eigenvalue equation for the 

buckling of the column. Finally, one can find the following relation 
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where [T] is the overall transfer matrix relating the state variables at both ends of the column and 

given as 

][T][T]...[T][T][T][T[T]
1N2N3N2sN1sNsN 

 .                  (4) 
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Table 1 Characteristic equations for the calculation of the critical buckling loads (Pcr) under different 

boundary conditions
 

Type Boundary Conditions Characteristic Equation Reference Pcr values 

Clamped-free 
At 0ŵ,0x̂  and 

At 0M̂F̂,1x̂   

 

T33T44- T34T43=0 

 

2.4674 

Clamped-clamped 

(Half span) 

 

Clamped-clamped 

(Whole span) 

At 0ŵ,0x̂  and 

At 0F̂,5.0x̂   

At 0ŵ,0x̂  and 

At 0ŵ,1x̂   

 

T23T44- T24T43=0 

 

T13T24- T14T23=0 

 

 

39.4784 

Pinned-pinned 

(Half span) 

 

Pinned-pinned 

(Whole span) 

At 0M̂ŵ,0x̂   

At 0F̂,5.0x̂   

At 0M̂ŵ,0x̂   

At 0M̂ŵ,1x̂   

 

T22T44- T24T42=0 

 

 

T12T34- T14T32=0 

 

 

9.8696 

 

 

Fig. 2 The functions [T23T44- T24T43] and [T23T44- T24T43]
2
 versus non-dimensional axial loads 

 

Finally, considering nontrivial solution and boundary conditions, characteristic equations for 

the critical buckling loads can be obtained and the results are tabulated in Table 1.  

At this stage, objective function can be determined as taking square of the characteristic 

equation. As an example, for the clamped-clamped column, referring to Table 1, the objective 

function can be written as 

2
43244423k ]TTTT[)L̂,V(f                                                    (5) 

and this is the case for other end conditions. It is obvious that the minimum value of the function 

given by Eq. (5) is zero. That is to say, taking square of the characteristic equation ensures that the 

minimum value would be zero (Venkataraman 2002). When examining the Eq.(5) from the 

analytical aspect, the critical buckling load is obtained by equating the term [T23T44- T24T43] to 

zero which is identical to min([T23T44- T24T43]
2
). To clarify the idea, [T23T44- T24T43] and [T23T44-  
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Critical buckling load optimization of the axially graded layered uniform columns 

 

Fig. 3 The objective function, [T23T44- T24T43]
2
, versus non-dimensional axial loads 

 

 

T24T43]
2
 versus non-dimensional axial loads plots are given in Fig. 2 for the clamped-clamped 

baseline column structure. For this case, the critical buckling load is about 39.4784. Fig. 2 is 

zoomed around the value 39.4784 for the function [T23T44- T24T43]
2
 as given in Fig. 3. It is seen 

that the minimum value of the function, [T23T44- T24T43]
2
 is the same as the first root of [T23T44- 

T24T43] function. 

 

2.2 Constraints 
 

In many practical problems, the design variables minimizing objective functions can’t be 

chosen arbitrarily, rather, they have to satisfy certain specified requirements called as constraints. 

Due to the symmetric conditions, it is possible to consider only half of the column structures for 

the pinned-pinned and the clamped-clamped end conditions. So, the total mass and the total 

column length can be reduced to half. 

Non-dimensional mass of the column structure which is the first equality constraint can be 

written as 

1L̂ˆ
M

M
M̂ k

sN

1k
k

s
s 



 for the whole span                                 (6) 

5.0L̂ˆ
M

M
M̂ k

2/sN

1k
k

s
s  



 for the half span                   (7) 

in which M is the total mass of the baseline column structure, MS total mass of the axially graded 

uniform column. 1ˆ sM  or 5.0ˆ sM means that the column being optimized has the same total 

mass with those of baseline column structures.  

Second equality constraint of the optimization problem is the non-dimensional total length of 

the column and can be written as 

1L̂
sN

1k
k 



   for whole span or                          (8) 
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5.0L̂
2/sN

1k
k 



 for half span.                                                      (9) 

Also, for the realistic column design in terms of production, side constraints are present and the 

upper and the lower limits should be prescribed. Side constraints are   1ˆ,0  kLV  for the whole 

span and 10 V  and 5.0ˆ0  kL  for the half span. 

Inclusion of side constraints will provide a set of linear constraints depending on the number of 

design variables. Considering lower bounds, these can be written as 

g1(x) = -x(1) +(lower bound + ε) 

g2(x) = -x(2) +(lower bound + ε) 

………….. 

gNs(x) = -x(NS) +(lower bound + ε)                                           (10) 

and for upper bounds, these can be written as 

gNs+1 (x) = x(1)-(upper bound) 

gNs+2 (x) = x(2) -(upper bound) 

………….. 

g2*Ns(x) = x(NS) -(upper bound)                                               (11) 

where ε is the small number depending on the problem and x can be expanded as [VA1, VA2,…, VANs 

,Lk1, Lk2,… LkNs]. 

 
2.3 Optimization procedure 
 

Before explaining the optimization procedure, it is useful to mention about the column structure 

considered. The column consists of different number of segments and each segment is made of 

two different materials and each segment has different material properties (i.e., Elastic Modulus 

and mass density) depending on volume fraction of the materials. Let A and B denote the different 

materials used. For prediction of Young’s modulus and the mass density, Halpin–Tsai model is 

used and the following relations, under the assumption that no voids present, can be written as 

VA(x) + VB(x) = 1                    (12) 

E(x) = VA(x) EA + VB(x) EB           (13) 

ρ(x) = VA(x) ρA + VB(x) ρB           (14) 

On the other hand, all Pcr values obtained from optimization cycle are compared with those 

obtained from the baseline designs. The baseline design has uniform material properties and it is 

constructed from the same material with equal volume fraction, that is VA=VB=50%. So, Young’s 

modulus and the mass density of the baseline design can be calculated as 

2

)EE(
E BA                     (15) 

2

)( BA 
                   (16) 
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In addition, for each segment of the column, the mass density and Young’s modulus can be 

obtained using the following relations 

   
)Nto1k(;

VV
ˆ

s

k,BBk,AA

k 



                                            (17) 

   
)Nto1k(;

E

VEVE
Ê s

k,BBk,AA

k 


                                           (18) 

It is well known that Young’s modulus, mass density and segment length are the main factors 

affecting the critical buckling loads. Pcr, the fitness function, should be explicitly expressed as a 

function of them from the eigen-value routine. This is not the case for the present problem 

especially for the column structures having higher segment numbers. Therefore, Pcr is assumed to 

take predefined value depending on the end conditions. Its value is somewhat bigger than the one 

given in Table 1 for each end conditions. After assigning the critical buckling loads, then, V and 

kL̂  that minimize square of the characteristic equation are searched during the optimization cycle. 

So, the present optimization problem can be regarded as a root finding problem along with 

constraints. As a result, the present optimization problem can be stated as follows, 

Find 
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
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


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x

x

)L̂,V(x


 which minimizes [Characteristic Equation (V, kL̂ )]
2
 

subject to first equality constraint given in Eq. (6) or (7) 

second equality constraint given in Eq. (8) or (9) 

inequality constraints given in Eq. (10) and (11). 

After stating optimization problem as shown above, at this stage, any optimization tool can be 

used to carry out design routine. There is no single method for solving such a constrained 

optimization problem. Extensive traditional and modern optimization methods have been 

developed for solving different types of optimization problems. Detailed information about 

optimization techniques can be found in the book (Rao 2009). On the other hand, parallel to 

developing computer technology, stochastic methods are attracting increasing popularity among 

researchers in engineering areas. Various heuristic optimization methods have been applied in 

structural engineering (Rahmanian et al. 2014, Ertas 2013, Yildiz 2013). Differential Evolution is 

the most popular method found in constrained optimization. This is due to its good and consistent 

performance and its simplicity (Mezura-Montes and Coello 2011). As an optimization tool, 

Differential Evolution is used in the present study. DE introduced by (Storn and Price 1997) is a 

meta-heuristics and population-based optimization method that optimizes a problem by iteratively 

trying to improve a candidate solution with regard to the given conditions. DE does not use the 

gradient of the problem being optimized and so, it does not require for fitness and constraint 

functions to be differentiable. DE works through three stages: Mutation, crossover and selection. 

In DE, a solution vector is randomly initialized at the beginning and the solution can be improved 

by applying mutation, crossover and selection operators. Mutation and crossover are used to 

generate new vectors and selection is then used to determine which new generated vectors are the  
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Table 2 Program parameters used in the optimization routine 

Parameter Values 

Crossover probability: 0.7 

Scaling factor for differential evolution operator: 0.5 

Probability of choosing element from offspring in crossover: 0.8 

Penalty parameter: 10
5
 f or NS=2 and 3, 10

3
 for NS=5 

Number of generations : 1000 

Population size: 50 

 

 

best and retained for the next iteration. Detailed information can be found in (Storn and Price 

1997). 

In addition, in this study, Exterior Penalty Functions with static penalty factor which do not 

require initial feasible design variables satisfying all the constraints are adapted to the optimization 

cycle. A high penalty function value is assumed (de Melo 2012). To solve an optimization 

problem involving equality and inequality constraints, the following formulation can be used 

(Venter 2010). 

       



m

1j

2
jk

2
j

p

1j

kkk xhrxgrxfr,x


                                   (19) 

where ϕk denotes a new function constructed by augmenting a penalty term to the objective 

function, rk , penalty parameter and      2

jj xg,0maxxg


 .  

To perform the optimization routine, script files in Matlab environment is written based on the 

considerations outlined above. Program parameters used in the optimization routine are given in 

Table 2. In addition, optimization runs were terminated after a certain generation which is 

commonly used in evolutionary algorithms (Yildiz 2013). After preliminary tests, maximum 

number of generation is chosen to be 1000 for all cases considered. 

 

 

3. Results and discussions 
 

The columns are made of two different materials (E-glass/epoxy) denoting A and B and 

material properties of them are ρA=2.54 g/cm
3
, ρB=1.27 g/cm

3
, EA=73 GPa and EB=4.3 GPa 

(Maalawi 2009). Three different end conditions are considered: Clamped-clamped, clamped-free 

and pinned-pinned. Three different column structures constructing from two, three and five 

segments are examined. In the following tables, gain is the percentage increase in the buckling 

load and it is calculated by comparing the results obtained from the one-segment baseline and 

multi segmented columns. The terms  
k

L̂,V  in the tables are expanded as (VA1, VA2,…, VANs ,Lk1, 

Lk2,… LkNs,) for the column with NS segments.  

In Tables 3-5, design variables, objective functions, constraints (Total mass and total length of 

the columns), buckling load and gain are tabulated for three different segment numbers. It is 

observed that for all cases, parallel to an increase in the segment number, axial load carrying 

capacity of the column (i.e., critical buckling load) increase and at the same time, the gain 
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increases. That is to say, the more segment number is, the higher buckling loads are attained. The 

maximum non-dimensional buckling load attained for the cantilevered column structure with five 

segments is 2.9620 which represents 20.0454 % optimization gain. It is 46.6060 (18.0544% 

optimization gain) for the clamped-clamped columns with five segments and 11.8553 

(corresponding to 20.1194% gain) for the pinned-pinned columns with five segments. At the same 

time, care must be taken for the increased manufacturing costs. So, there should be balance 

between initial design requirements and column’s configuration. 

On the other hand, as mentioned in (Singh and Li 2009), the piecewise distribution of flexural 

rigidity (EI) can be obtained by changing the geometry (i.e., moment of inertia, I) or by axially 

graded material property (i.e., modulus of elasticity, E) along column length. If one obtains the 

same distribution of E and I, then these two cases can be regarded as to be identical. In the present 

study, the second case was considered and constant moment of inertia is assumed as made in 

(Maalawi 2009). The results showed that there is a good agreement between the results obtained 

from the study carried out by (Maalawi 2009) and present study considering cantilevered and 

pinned-pinned end conditions.  

In addition, as far as practical optimized shape or material distribution along the column length 

is concerned, the variation of the flexural rigidity is found to be in such a way that higher flexural 

rigidity is obtained in the segments near to fixed end and lower values found in the segments near 

to free end for the clamped-free columns. For pinned-pinned case, it is pointed out that for the 

most economical form and increasing stability, removing a portion of the materials from the ends 

(lowered E values for present case) and increasing cross-section (increasing E) over the middle 

section are the suitable choices (Timoshenko and Gere 1961). These phenomena are observed in 

the tables. As seen in Eq. (13), larger VAk values (k=1,2,…,NS) means higher E values since the 

elastic modulus of Material A is higher than the Material B. Also, smaller VAk values mean lower E 

values. 

Moreover, it is shown that optimum columns for clamped-clamped case with the number of 

three and more than three segments are doubly symmetrical, i.e., symmetrical about both the 

quarter and mid-span points. So, for this case, it is possible to deal only with one-fourth of the total 

number of the design variables, which reduces computational time. Performing many independent 

runs for two segments showed that there are two possible column configurations as seen in Table 

4. These are obtained by changing the values of the volume fraction and segment length of the first 

and second segments with each other. These observations are also mentioned in (Maalawi 2002) in 

which varying moment of inertia and constant elastic modulus are assumed. 

 

 
Table 3 Numerical values for the cantilevered axially graded layered columns 

NS 

Design Variables 

 
k

L̂,V ; k=1,2,..., NS 

NS: Segment Number 

Objective 

function 

Constraints Critical 

Buckling 

Load 

(
crP


) 

Gain 

(%) 
Total 

Mass 

Total 

Length 

2 (0.6386, 0.1911, 0.6904, 0.3096) 0.0000 1.0000 1.000 2.8220 14.3714 

3 
(0.6892, 0.3679, 0.0850, 0.5595, 

0.2721, 0.1684) 
0.0000 1.0000 1.000 2.9126 18.0433 

5 

(0.7343, 0.5576, 0.3713, 0.1974, 

0.0500, 0.4098, 0.2069, 0.1496, 

0.1120, 0.1217) 

0.0000 1.0000 1.000 2.9620 20.0454 
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Table 4 Numerical values for the clamped-clamped axially graded layered columns 

NS 

Design Variables 

 
k

L̂,V ; k=1,2,..., NS 

NS: Segment Number 

Objective 

function 

Constraints 
Critical Buckling 

Load (
crP


) 
Gain 

(%) Total 

Mass 

Total 

Length 

2 
(0.4231, 0.6999, 0.3611, 0.1389) 

 or (0.6999, 0.4231, 0.1389, 0.3611) 
0.0000 0.5000 0.5000 41.0081 3.8748 

3 
(0.6303, 0.1734, 0.6303, 0.1787, 

0.1426, 0.1787) 
0.0000 0.5000 0.5000 45.1208 14.2924 

 

5 

 

(0.6784, 0.3519, 0.0660, 0.3519, 

0.6784, 0.1463, 0.0662, 0.0749, 

0.0662, 0.1463) 

0.0000 0.5000 0.4999 46.6060 18.0544 

 
Table 5 Numerical values for the pinned-pinned axially graded layered columns 

NS 

Design Variables 

 
k

L̂,V ; k=1,2,..., NS 

NS: Segment Number 

Objective 

function 

Constraints Critical 

Buckling Load 

(
crP


) 

Gain 

(%) Total 

Mass 

Total 

Length 

2 (0.1886, 0.6390, 0.1543, 0.3457) 0.0000 0.5000 0.5000 11.2868 14.3592 

3 
(0.0868, 0.3690, 0.6890, 0.0845, 

0.1363, 0.2792) 
0.0000 0.5000 0.5000 11.6498 18.0372 

 

5 

 

(0.0500, 0.1957, 0.3683, 0.5531, 

0.7311, 0.0545, 0.0584, 0.0776, 

0.1066, 0.2029) 

0.0000 0.5000 0.5000 11.8553 20.1194 

 
Table 6 Experimental results of 10 independent runs for the clamped-clamped column with five segments 

Clamped-clamped 

end conditions 
Iteration 

Function 

Evaluation 
Best Mean Worst Std 

Two segments 1000 50000 4.94E-14 4.94E-14 4.94E-14 0 

Three segment 1000 50000 1.42E-14 1.47E-04 4.88E-4 2.36E-04 

Five segments 1000 50000 1.94E-07 2.20E-06 1.02E-05 4.24E-06 

 

 

As a performance analysis, worst, mean and best solutions found in 10 independent runs for the 

clamped-clamped columns are given in Table 6. The standard deviation (Std) of the optimal values 

is also reported in the same table. For the case of two segments, the standard deviation is zero, 

which means data values obtained from all runs are equal to each other. For the remain two cases, 

the standard deviation values close to zero, which also indicated that DE is able to produce, to 

some extent, high accuracy results. 

In addition to considerations mentioned above, objective function versus iteration plots for 

clamped-clamped case are given in Fig. 4. Due to the idea of keeping the length of the paper 

within the meaningful levels, other cases are not presented here. For the sake of comparison, the 

range of the objective function in all plots is set to be the same as [0, 0.4]. It is seen that initially, 

up to a certain iteration (or function evaluation), the curves fluctuated and then the fitness function 

values converge to a value closer to zero. 

All facts mentioned above including statistical results prove the reliability, efficiency and 

robustness of the Differential Evolution optimization method for the present problem. Also, it can 
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be concluded that this optimization methods can be used in different eigen-value problems 

especially having transcendental equations, i.e., maximizing natural frequencies of the structural 

members like beams. 
 

 

  
(a) Run1 (b) Run2 

  
(c) Run3 (d) Run4 

  
(e)Run5 (f) Run6 

Fig. 4 Objective function versus iteration plots obtained from the 10 independent runs for clamped-

clamped columns with five segments 
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(g) Run7 (h) Run8 

  
(i) Run9 (j) Run10 

Fig. 4 Continued 

 
 
5. Conclusions  
 

In this study, critical buckling load optimization of the axially graded layered uniform columns 

is presented. The following results can be drawn: 

• It is confirmed that for all boundary conditions, an increase in the segment number results in 

an increase in the critical buckling load. So, the maximum non-dimensional buckling load 

occurred in the case of the column structures with five segments. At the same time, it shouldn’t be 

forgotten that the manufacturing cost will increase. Therefore, designer or engineer should 

determine suitable strongest column’s configurations according to his/her initial design 

requirements. 

• It is concluded that the maximum non-dimensional buckling load attained for the cantilevered 

column structure is 2.9620 which represents 20.0454 % optimization gain. It is 46.6060 

(18.0544% optimization gain) for the clamped-clamped columns and 11.8553 (corresponding to 

20.1194% gain) for the pinned-pinned columns. 

• Literature survey indicates that optimum columns for clamped-clamped end conditions with 

the number of three and more than three segments are symmetrical about both the quarter and mid-
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span points. That is to say, variation of the moment of inertia or cross-section along the column 

length (i.e., Stepped column) has such a trend under the assumption of constant material 

properties. On the other hand, the present results reveal that similar distributions for the material 

properties (i.e., Young’s Modulus and density) are obtained for the column structures where 

moment of inertia or cross-section do not change during the optimization cycles (Uniform axially 

graded layered column). To author knowledge, this point is not mentioned in literature as far as 

optimization studies dealing with axially graded column structures in a piecewise manner are 

concerned. 

• There is a satisfactory agreement between the results obtained in the present study and those 

obtained in literature. So, this conclusion and also performance experiments confirmed efficiency, 

reliability and robustness of the Differential Evolution optimization method. Therefore, it can be 

deduced from this study that Differential Evolution optimization method can also be used in 

different eigen-value problems especially having transcendental equations, i.e., maximizing natural 

frequencies of the structural members like beams. 

 

 

References 
 
Alkan, V. (2015), “Optimum buckling design of axially layered graded uniform columns”, Mater. Test., 

57(5), 494-500. 

Coello, C.A.C. and Alonso, F.F.A. (1995), “Optimal design of axially loaded non-prismatic columns via 

genetic algorithms”, Proceedings of the 6th International Conference on Computing in Civil and Building 

Engineering, Berlin, Germany, July. 

Das, S. and Suganthan, P.N. (2011), “Differential evolution: a survey of the state-of-the-art”, IEEE T Evolut. 

Comput., 15(1), 4-31. 

Ertas, A.H. (2013), “Optimization of fiber-reinforced laminates for a maximum fatigue life by using the 

particle swarm optimization. Part II”, Mech. Compos. Mater., 49(1), 107-116. 

Fu, K.C. and Ren, D. (1992), “Optimization of axially loaded non-prismatic column”, Comput. Struct., 

43(1), 159-162. 

Keller, J.B. (1960), “The shape of the strongest column”, Arch. Rational. Mech. Anal., 5, 275-285. 

Li, Q.S. (2003), “Effect of shear deformation on the critical buckling of multi-step bars”, Struct. Eng. Mech., 

15(1), 71-81. 

Li, X.F., Xi, L.Y. and Huang, Y. (2011), “Stability analysis of composite columns and parameter 

optimization against buckling”, Compos. Part B-Eng., 42(6), 1337-1345. 

Maalawi, Y.K. (2002), “Buckling optimization of flexible columns”, Int. J. Solid. Struct., 39(23), 5865-

5876. 

Maalawi, Y.K. (2009), “Optimization of elastic columns using axial grading concept”, Eng. Struct., 31 (12), 

2922-2929. 

O’Rourke, M. (1977), “Buckling load for nonuniform columns”, Comput. Struct., 7(6), 717-720. 

Mezura-Montes, E. and Coello, C.C.A. (2011), “Constraint-handling in nature-inspired numerical 

optimization: Past, present and future”, Swarm Evol. Comput., 1(4), 173-194. 

Patnaik, V.S., Rao, G.V. and Gupta, A.V.S.S.K.S. (2012), “Minimum mass design of compound cantilever 

columns with buckling load constraint through numerical search”, Int. J. Mech. Eng. Rob. Res., 1(2), 196-

206. 

Patnaik, V.S., Rao, G.V. and Gupta, A.V.S.S.K.S. (2013), “Optimum design for minimum mass 

configuration of stepped cantilever compound columns with constraint on axial buckling load”, I.J.S.E.R., 

4(10), 956-965. 

Rahmanian, I., Lucet, Y. and Tesfamariam, S. (2014), “Optimal design of reinforced concrete beams: A 

review”, Comput. Concrete., 13(4), 457-482. 

739



 

 

 

 

 

 

Veysel Alkan 

Rao, S.S. (2009), Engineering Optimization: Theory and Practice, John Wiley & Sons, Inc, New Jersey, NJ, 

USA. 

Singh, K.V. and Li, G. (2009), “Buckling of functionally graded and elastically restrained non-uniform 

columns”, Compos. Part B-Eng., 40(5), 393-403. 

Storn, R. and Price, K. (1997), “Differential evolution-A simple and efficient heuristic for global 

optimization over continuous spaces”, J. Global. Optim., 11(4), 341-359. 

Sujatha, A., Jagannath, V. and Selvi (2013), “A new direction for the stability analysis of columns using unit 

step function- some case studies”, I.J.M.C.A.R., 3(4), 63-78. 

Tadjbakhsh, I., and Keller, J. B. (1962), “Strongest columns and isoperimetric inequalities for eigenvalues”, 

J. Appl. Mech., 29(1), 159-164. 

Timoshenko, S. P. and Gere, J. M. (1961), Theory of Elastic Stability, McGraw-Hill, New York, NY, USA. 

Venkataraman, P. (2002), Applied Optimization With Matlab®  Programming, 2nd Edition, John Wiley & 

Sons, Inc., New York, NY, USA. 

Venter, G. (2010), Review of Optimization Techniques, Encyclopedia of Aerospace Engineering, Eds. 

Richard Blockley and WeiShyy, John Wiley &Sons, Ltd. USA. 

Yildiz, A.R. (2013), “Comparison of evolutionary-based optimization algorithms for structural design 

optimization”, Eng. Appl. Artif. Intel., 26(1), 327-333. 

Yildiz, A.R. (2013), “Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning 

operations”, Appl. Soft. Comput., 13(3), 1433-1439. 

 

 

CC 

740




