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Abstract.  This paper focuses on large deflection static behavior of edge cracked simple supported beams 

subjected to a non-follower transversal point load at the midpoint of the beam by using the total Lagrangian 

Timoshenko beam element approximation. The cross section of the beam is circular. The cracked beam is 

modeled as an assembly of two sub-beams connected through a massless elastic rotational spring. It is 

known that large deflection problems are geometrically nonlinear problems. The considered highly non-

linear problem is solved considering full geometric non-linearity by using incremental displacement-based 

finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the 

magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of 

the beam. The beams considered in numerical examples are made of Aluminum. In the study, the effects of 

the location of crack and the depth of the crack on the non-linear static response of the beam are investigated 

in detail. The relationships between deflections, end rotational angles, end constraint forces, deflection 

configuration, Cauchy stresses of the edge- cracked beams and load rising are illustrated in detail in non-

linear case. Also, the difference between the geometrically linear and nonlinear analysis of edge-cracked 

beam is investigated in detail. 
 

Keywords:  open edge crack; total Lagrangian finite element model; circular beams; timoshenko beam; 

large displacements; large rotations 

 
 
1. Introduction 
 

In recent years, with the development of technology, increasing demands for optimum or 

minimum-weight designed structural components makes it necessary to use non-linear theory of 

beams. Especially, developments in aerospace engineering, robotics and manufacturing make it 

inevitable to excessively use non-linear models that must be solved numerically. Because, a 

closed-form solution is not possible and hence more general numerical processes play an 

important role. 

Many optimum or minimum-weight designed structural components are under severe 

operational conditions. In many cases, the small deflection linear theory is no longer applicable. It 

is very necessary to use and understand crack and fracture behaviour with non-linear analysis.  
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Structural elements are subjected to destructive effects in the form of initial defects within the 

material or caused by fatigue or stress concentration. As a result of destructive effects, cracks 

occur in the structural elements. It is known that cracks cause local flexibility and changes in 

structural stiffness. Understanding the mechanical behavior edge-cracked structures and detection 

of cracks are very important for safety of structures. In the literature, investigation in the non-

linear analysis of cracked beams is very limited. In the literature, studies of the nonlinear behavior 

of cracked beams are as follows; Post buckling behavior of a column with a transverse surface 

crack on the one side is studied by Anifantis and Dimarogonas (1984). Sundermeyer and Weaver 

(1995) used nonlinear vibration character of a cracked beam for determining crack location, depth 

and opening load. Chen et al. (2006) investigated the detection of newly induced damage in 

reinforced concrete beams by using transient characteristics of nonlinear vibration. Peng et al. 

(2008) analyzed nonlinear output frequency response functions for cracked beams. Mokashi and 

Mendelsohn (2008) examined quasistatic nonlinear moment-slope relation for an edge-cracked 

beam element with a strictly linear softening cohesive zone ahead of the crack tip. Mendelsohn et 

al. (2008) present nonlinear free vibration analysis of an Euler-Bernoulli beam with an edge and a 

cohesive zone at the crack tip by using bending and shear springs. Dutta et al. (2009) investigated 

a crack detection technique based on nonlinear acoustics. Kitipornchai et al. (2009) analyzed 

nonlinear vibration of beams made of functionally garded materials containing an open edge crack 

by using Timoshenko beam theory and von Karman geometric nonlinearity. Ke et al. (2009) used 

Ritz method to find solutions to the post-buckling behavior of FGM beams with an open edge 

crack based on Timoshenko beam theory and von Kármán nonlinear kinematics. Kocatürk and 

Akbaş  (2010) examined geometrically nonlinear behavior of simple supported beams within 2-D 

solid continuum approximation. Douka et al. (2010) studied nonlinear vibration technique for 

fatigue crack detection in beam-like structures using frequency mixing. Banik (2011) presents 

nonlinear responses behavior of a cracked reinforced concrete beam under harmonic excitation. 

Chatterjee (2011) studied damage assessments of cantilever beams under harmonic excitation by 

using nonlinear vibration response. Akbaş (2013) investigated geometrically nonlinear static 

analysis of edge cracked Functionally graded Timoshenko beam by using Total Langragian finite 

element method. Yan et al. (2012) discussed the nonlinear flexural dynamic behavior of a clamped 

Timoshenko beam made of FGM with an open edge crack under an axial parametric excitation 

which is a combination of a static compressive force and a harmonic excitation force based on 

Timoshenko beam theory and von Kármán nonlinear kinematics. Andreasus and Baragatti (2012) 

imvestigated experimental damage detection of cracked steel beams by using nonlinear 

characteristics of flexural forced vibration response. Younesian et al. (2013) investigated the 

frequency response of a cracked beam supported by a nonlinear viscoelastic foundation. Giannini 

et al. (2013) analyzed the nonlinear dynamic behavior of structures with breathing cracks forced 

by harmonic excitation. Wei et al. (2013) discussed the nonlinear response characteristics of a 

cracked beam subjected to a high-frequency acoustic wave. Akbaş (2014a, b, c) studied wave 

propagation of edge cracked beams under impact loads.   

It is seen from literature that that investigations of the full geometrically nonlinear analysis of 

edge cracked beams are very limited. It is seen from literature that the nonlinear studies of edge 

cracked beams are investigated within von Karman nonlinear strain approximation in which full 

geometric non-linearity cannot be considered. In von Karman nonlinear strain approximation, 

because of neglect of some components of strain, satisfactory results can be obtained only for large 

displacements but moderate rotations. It is known that large deflection problems are geometrically 

nonlinear problems. In the present study, the large deflection analysis of edge cracked beams is 
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considered by using the total Lagrangian finite element method by taking into account full 

geometric nonlinearity. There is no restriction on the magnitudes of deflections and rotations in 

contradistinction to von-Karman strain displacement relations of the beam. 

In this study, large deflection static behavior of edge cracked simple supported circular beams 

subjected to a non-follower transversal point load at the midpoint of the beam is studied by using 

the total Lagrangian Timoshenko beam element approximation. The cracked beam is modeled as 

an assembly of two sub-beams connected through a massless elastic rotational spring. The 

considered highly non-linear problem is solved considering full geometric non-linearity by using 

incremental displacement-based finite element method in conjunction with Newton-Raphson 

iteration method. The distinctive feature of this study is large deflection static analysis of edge 

cracked circular beams considering full geometric non-linearity. Another distinctive feature of this 

study is investigation of the differences of the analysis results in the case of geometrically linear 

and geometrically nonlinear. 

The development of the formulations of general solution procedure of nonlinear problems 

follows the general outline of the derivation given by Zienkiewicz and Taylor (2000). The related 

formulations of geometrically nonlinear static analysis of edge cracked Timoshenko beam 

subjected to a non-follower transversal point load at the midpoint of the beam are obtained by 

using the total Lagrangian finite element model. In deriving the formulations for geometrically 

nonlinear analysis of edge cracked Timoshenko beams, the total Lagrangian Timoshenko beam 

element formulations for given by Felippa (2013) are used. In the study, the effects of the location 

of crack and the depth of the crack on the non-linear static response of the beam are investigated in 

detail. The relationships between deflections, end rotational angles, end constraint forces, 

deflection configuration, Cauchy stresses of the edge- cracked beams and load rising are illustrated 

in detail in non-linear case. Also, the difference between the geometrically linear and nonlinear 

analysis of edge-cracked beam is investigated in detail.  

 

 

2. Theory and formulations 
 

A simple supported circular beam of length L, diameter D, containing an edge crack of depth a 

located at a distance from the left end L1, as shown in Fig. 1. One of the supports of the beam is 

assumed to be pinned and the other is rolled. It is assumed that the crack is perpendicular to beam 

surface and always remains open. The beam is subjected to a non-follower transversal point load 

(P) at the midpoint of the beam in the transverse direction as seen from Fig. 1. 

 

 

 

Fig. 1 A simple supported circular beam with an open edge crack subjected to a non-follower point load 

at the midpoint of the beam and cross-section 
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Fig. 2 A two-node C
0
 beam element 

 

 
(a)                                        (b) 

Fig. 3 Lagrangian kinematics of the C
0
 beam element with X-aligned reference configuration: (a) plane 

beam moving as a two-dimensional body; (b) reduction of motion description to one dimension measured 

by coordinate X. This figure is given by Felippa (2013) 

 

 

2.1 Total Lagrangian finite element formulations of intact Timoshenko beams 
 

In this study, the Total Langragian Timoshenko beam element is used and the related 

formulations are developed by using the formulations given by Felippa (2013). In the present 

study, finite element model of Timoshenko beam element is developed by using a two-node beam 

element shown in Fig. 2. Each node has three degrees of freedom: Two node displacements uxi and 

uyi, and one rotation θi about Z axis. 
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A particle originally located at P0(X, Y) moves to P(x, y) in the current configuration, as shown 

in Fig. 3. The projections of P0 and P along the cross sections at C0 and C upon the neutral axis are 

called C0(X, 0) and C(xc, yc), respectively. It will be assumed that dimensions of the beam cross 

section do not change, and that the shear distortion γ<<1 so that cosγ can be replaced by 1 (Felippa 

2013). 

 sin]sin)cos1()[sin()cossin(sin YxYxYxx ccc        (1) 

  cos]cos)cos1()[sin()sinsin(cos YyYyYyy ccc       (2) 

where xc=X+uXC and yc=uXC. Consequently, x=X+uXC−Ysinθ and y=uYC+Ycosθ. From now on we 

shall call uXC and uYC simply uX and uY, respectively, so that the Lagrangian representation of the 

motion is 
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in which uX, uY and θ are functions of X only. This concludes the reduction to a one-dimensional 

model, as sketched in Fig. 3(b). For a two-node C0 element, it is natural to express the 

displacements and rotation functions as linear in between the node displacements: 
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in which ξ=(2X/L0)−1 is the isoparametric coordinate that varies from ξ=−1 at node 1 to ξ=1 at 

node 2.  

The Green-Lagrange strains are given as follows Felippa (2013) 








 







































 Ye

uu

Yuu

e

e

e

e
e

YX

YX

XY

XX

sinsin)1(

1sincos)1(

2
][

2

1
           (5) 
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where e is the axial strain, γ is the shear strain and κ is curvature of the beam, dXduu Xx / , 

dXduu YY / , θ′=dθ/dX. 

According to Hooke’s law, constitutive equations of the beam with the second Piola-Kirchhoff 

stresses are as follows 
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where 
0

1
s , 

0

2
s  are  initial stresses, E is the modulus of elasticity, G is the shear modulus. Using 

constitutive equations, axial force N, shear force V and bending moment M can be obtained as 
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For the solution of the total Lagrangian formulations of Timoshenko beam problem, small-step 

incremental approaches from known solutions are used. As it is known, it is possible to obtain 

solutions in a single increment of the external force only in the case of mild nonlinearity (and no 

path dependence). To obtain realistic answers, physical insight into the nature of the problem and, 

usually, small-step incremental approaches from known solutions are essential. Such incremental 

procedures are useful to reduce excessive numbers of iterations and in following the physically 

correct path. In the iterations, the load is divided by a suitable number according to the value of 

load. The loading is divided by large numbers. After completing an iteration process, the load is 

increased by adding load increment to the accumulated load. 

In this study, small-step incremental approaches from known solutions with Newton-Raphson 

iteration method are used in which the solution for n+1 th load increment and i th iteration is 

obtained in the following form 
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where (K )i

T
 is the system stiffness matrix corresponding to a tangent direction at the i th 

iteration, i

n
d u  is the solution increment vector at the i th iteration and n+1 th load increment, 
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+

 is the system residual vector at the i th iteration and n+1 th load increment. This iteration  

procedure is continued until the difference between two successive solution vectors is less than a 

selected tolerance criterion in Euclidean norm given by 
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A series of successive approximations gives 
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The residual vector 1

i

nR +  for a finite element is as follows 
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1

i

n+
= -R f p                               (16) 

where f is the vector of external forces and p is the vector of internal forces given in Appendix. 

The element tangent stiffness matrix for the total Lagrangian Timoshenko plane beam element 

is as follows which is given by Felippa (2013) 

                                   T M G
= +K K K                              (17) 

where KG is the geometric stiffness matrix, and MK  is the material stiffness matrix given as 

follows by Felippa (2013) 

dXm

L

T
mM SBBK 

0

                            (18) 

The explicit forms of the expressions in Eq. (17) is given in Appendix. After integration of Eq. 

(18), KM can be expressed as follows 

a b s

M M M M
= + +K K K K                          (19) 

where 
a

MK  is the axial stiffness matrix, 
b

MK  is the bending stiffness matrix, 
s

MK  is the shearing 

stiffness matrix and explicit forms of these expressions are given in Appendix. The geometric 

stiffness matrix 
G

K , 
mB  and the internal nodal force vector p remain given in Appendix. 

 

2.2 Crack modeling 
 

The cracked beam is modeled as an assembly of two sub-beams connected through a massless 

elastic rotational spring shown in Fig. 4. 

The bending stiffness of the cracked section kT is related to the flexibility G by 

                                      
G

kT

1
                                   (20) 

Cracked section’s flexibility G can be derived from Broek’s approximation (Broek 1986) 

da

dGM

E

K I

2

)1( 222


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                            (21) 

where M is the bending moment at the cracked section, KI is the stress intensity factor (SIF) under 

mode I bending load and is a function of the geometry and the loading properties as well. υ 

indicates Poisson’s ratio. For circular cross section, the stress intensity factor for KI a single edge 

cracked beam specimen under pure bending M can be written as follow (Tada et al. 1985) 

 

 

 

Fig. 4 Rotational spring model 
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Fig. 5 The geometry of the cracked circular cross section 
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Where a is crack of depth and h
′
x is the height of the strip, is shown Fig. 5, and written as 

222 xRhx                               (24) 

where R is the radius of the cross section of the beam. 

After substituting Eq. (22) into Eq. (21) and by integrating Eq. (21), the flexibility coefficient 

of the crack section G is obtained as 
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where b and ax are the boundary of the strip and the local crack depth respectively, are shown in 

Fig. 5, respectively, and written as 

22 )( aRRb                                (26) 

)(22 aRxRax                              (27) 

The spring connects the adjacent left and right elements and couples the slopes of the two beam 

elements at the crack location. In the massless spring model, the compatibility conditions enforce 
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the continuities of the axial displacement, transverse deflection, axial force and bending moment 

across the crack at the cracked section (X=L1), that is 

                                     1 2
v v= ,  1 2

M M=              (28) 

The discontinuity in the slope is as follows 

121
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k TT                           (29) 

Based on the massless spring model, the stiffness matrix of the cracked section as follows 
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The stiffness matrix of the cracked section is written according to the displacement vector  

T
crq } ,{}{ 21)(                                (31) 

Where θ1 and θ2 are the angles of the cracked section. Addition with the crack model and by use of 

usual assemblage procedure, the system stiffness matrix is as follows 

)()()( ][][][ crrs KKK                              (32) 

Where [K](T) is tangent stiffness matrix for the intact Timoshenko beam which is given Eq.(17). 

After obtaining the displacements of nodes, the second Piola-Kirchhoff stress tensor 

components Sxx, Sxy, Syy can be obtained by using Eq. (7). It is known that the relation between the 

Cauchy stress tensor components σxx, σxy, σyy and the second Piola-Kirchhoff stress tensor 

components Sxx, Sxy, Syy can be written as follows 



































 yyxyxxxx S

Y

x

X

x
S

Y

x

X

x
S

X

x

X

x
2

0

2




                  (33a) 



































 yyxyxxyy S

Y

y

Y

y
S

Y

y

X

y
S

X

y

X

y
2

0

2




                 

 

(33b) 



































 yyxyxxxy S

Y

x

Y

x
S

Y

y

X

x
S

X

x

X

x
2

0

2




                  (33c) 

where 
0
ρ and ρ represent the mass densities of the material in configurations C0 and C, 

respectively. The relations between the Lagrange coordinates X, Y and Euler coordinates x, y are 

given by Eqs. (1), (2). The relation between 
0
ρ and ρ is as follows; 

The relation between 
0
ρ and ρ is as follows 

0
ρ=ρ J                                   (34) 

where J is the determinant of the deformation gradient tensor F (or the Jacobian of the 

transformation) and defined as follows 
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In this study, it is assumed that 
0
ρ and ρ. 

 

 

3. Numerical results 
 

In the numerical examples, the linear and the non-linear static displacements, end rotational 

angles, end constraint forces, deflection configuration, Cauchy stresses (true stresses) of the beams 

are calculated and presented in figures for different crack locations, crack depths. To this end, by 

use of usual assembly process, the system tangent stiffness matrix and the system residual vector 

are obtained by using the element stiffness matrixes and element residual vectors for the total 

Lagrangian Timoshenko plane beam element. After that, the solution process outlined in the 

previous section is used for obtaining the related solutions for the total Lagrangian finite element 

model of Timoshenko plane beam element. The beams considered in numerical examples are made 

of lower-carbon Aluminum: E=70 GPa v=0.33. In the numerical integrations, five-point Gauss 

integration rule is used. In the numerical calculations, the number of finite elements is taken as 

n=100. Unless otherwise stated, it is assumed that the diameter of the beam is D=0.2 m and length 

of the beam is L=3 m in the numerical results. In the geometrically non-linear case, the Cauchy 

stresses can be obtained by using Eqs. (33a-c) after obtaining the second Piola-Kirchhoff stresses 

by using equation (7). 

In Figs. 6, 7 and 8, the vertical displacements of the midpoint v(L/2), the left-end rotational 

 

 

  

Fig. 6 Load-vertical displacements of the midpoint v(L/2) curves for different the crack depth ratios a/D, 

(a) linear case (b) non-linear case 
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Fig. 7 Load-the left end rotational angle θ curves for different the crack depth ratios a/D, (a) Linear case 

(b) Non-linear case 

 

 

angle θ (rad.) and the end constraint force RV in the vertical direction versus load rising are 

presented , respectively, with different the crack depth ratios (a/D) for linear and nonlinear case for 

the crack location 𝐿1/𝐿=0.5. 

It is seen from Figs. 6 and 7 that, with the increase in the crack depth (𝑎/D), the displacements 

and rotaions increase, as expected. This is because by increasing the crack depth ratio (𝑎/D), the 

beam becomes flexible. With the increase in the load, the effects of the crack on the beam increase 

significantly. Also, it is seen from Figs. 6 and 7 that there is a significant difference between the 

geometrically linear case and nonlinear case for the edge cracked beam. The increase in load 

causes increase in difference between the displacement values of the linear and the nonlinear 

solutions. Increase in load is more effective in the vertical displacements and rotations of the linear 

solution. Also, the difference between intact and cracked beam in the linear case is bigger than in 

the nonlinear's. This situation may be explained as follows: In the linear case, arm of the external 

forces or arm of the external resultant force do not change with the magnitude of the external 

forces, and therefore the displacements depend on the external forces linearly. However, in the 

case of nonlinear analysis, the arm of the external forces change with the magnitude of the external 

force and, as the magnitude of the force increases the arm of these external forces decrease. 

However, as the forces increase the configuration of the beam become close to vertical direction 

and therefore increase in the load does not cause a significant increase in displacements after 

certain load level in which the configuration of the beam is close to the vertical direction. Hence, 

the difference between intact and cracked beam in the linear case is bigger than the difference 

between intact and cracked beam in the nonlinear case.  

It is seen from figure 8 that, with increase in the crack depth ratio, the end constraint forces RV  

do not change in the linear case because the arm of the external forces or arm of the external 

resultant force do not change with the crack depth since. Whereas, with increase in the crack depth 

ratio, the end constraint forces RV change in the nonlinear case because the arm of the external 

forces or arm of the external resultant force change with the crack depth. 

In Fig. 9, the vertical displacements of the midpoint v(L/2) versus load rising are presented with  
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Fig. 8 Load-the end constraint force RV curves for different the crack depth ratios a/D, (a) Linear case 

(b) Non-linear case 

 

  

Fig. 9 Load-vertical displacements of the midpoint v(L/2) curves for different the crack locations (𝐿1/𝐿) 

from the left end, (a) Linear case (b) Non-linear case 

 

 

different the crack locations (𝐿1/𝐿) from the left end for linear and nonlinear case for the crack 

depth ratios a/D=0.35.  

It is seen from Fig. 9 that, when the crack locations get closer to the midpoint of the beam, the 

displacements increase. This is because the crack at the midpoint of the beam has a most severe 

effect in the beam. It is observed from the Fig. 9 that there are significant differences of the 

analysis results for the linear case and nonlinear case.  

Fig. 10 displays the effect of crack depth ratio (a/D) on the deflected shape of the beam for the 

crack location ratio 𝐿1/𝐿=0.5 from the left end and the point load is 𝑃=50000 kN for the 

geometrically linear and the nonlinear case. 
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Fig. 10 The effect of the crack depth ratios (a/D) on the deflected shape of the beam for (a) Linear case 

(b) Non-linear case 

 

  

Fig. 11 The effect of the crack locations ratio (𝐿1/𝐿) on the deflected shape of the beam for (a) Linear case 

(b) Non-linear case 

 

 

In Fig. 11, the effect of crack locations ratio (𝐿1/𝐿) on the deflected shape of the beam is 

presented for the crack depth ratio a/D=0.35 and the point load is 𝑃=50000 kN for the 

geometrically linear and the nonlinear case. 

It is observed from figure 10 and 11 that he crack depth ratio (a/D) and the crack location ratio 

(𝐿1/𝐿) play important role on the static response of the beam. There is a significant difference 

between the deformed configurations of the beam for linear case and nonlinear case. It shows that 

to learn about more realistic mechanical behaviour of the cracked beams, the geometrically 

nonlinear analysis must be considered. 

In Fig. 12, Cauchy normal stresses in the X direction (σxx) at midpoint of the beam (X=1,5 m 

and Y=−0.1 m) versus load rising are presented with different the crack depth ratios (a/D) for the 

geometrically linear and the nonlinear case. 
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Fig. 12 The effect of the crack depth ratios (a/D) on the Cauchy normal stresses for (a) Linear case (b) 

Non-linear case 

 

 

Fig. 12 shows that the crack depth is very effective in Cauchy stresses. With increase in the 

crack depth, Cauchy stresses increase seriously. It is seen Fig. 12 that stresses in the intact case are 

very small relative to crack case. This is because, when it has occurred a crack in the beam, the 

intensity of a stress field increase. As a result, high local stresses occur and the stresses can cause 

structures to fail more quickly. Also it is seen from Fig. 12, with increase in load, the difference 

between the linear case and nonlinear case increases for Cauchy normal stresses. It is observed 

from Fig. 12 that in the design and modeling of the structural elements in the crack must be 

considered with nonlinear analysis. The effect of the crack must be considered in the safe design of 

the structural elements because it can be occurred cracks in the structural elements after the 

construction.   

 

 
4. Conclusions  
 

Large deflection static analysis of edge cracked simple supported circular beams subjected to a 

non-follower transversal point load at the midpoint of the beam is studied by using the total 

Lagrangian Timoshenko beam element approximation. The cracked beam is modeled as an 

assembly of two sub-beams connected through a massless elastic rotational spring. The considered 

non-linear problem is solved by using incremental displacement-based finite element method in 

conjunction with Newton-Raphson iteration method. the effects of the location of crack and the 

depth of the crack on the non-linear static response of the beam are investigated in detail. It is 

observed from the results that the crack locations and the crack depth have a great influence on the 

geometrically non-linear behaviour of the beam. Also, it is seen from results that there are 

significant differences of the analysis results for the linear case and nonlinear case. Hence, the 

geometrically nonlinear case must be taken into account for safe design of edge cracked beams and 

for obtaining more realistic results. Otherwise an important error is inevitable. The effect of the 
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crack on the beams must be considered at the design stage because it can be occurred cracks in the 

structural elements after the construction. Future work should be devoted to the interpretation of 

the results in order to possible experimental investigation to validate the numerical results. Also, it 

would be interesting to demonstrate the ability of the procedure through a wider campaign of 

investigations concerning multi-cracked beams with different boundary conditions. 
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Appendix 
 

The components of the material stiffness matrix: the axial stiffness matrix a
MK , the bending 

stiffness matrix b
MK  and the shearing stiffness matrix s

MK  are as follows 
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where m stands for beam midpoint, ξ=0, and ωm =(θ1+θ2)/2, ωm=θm+φ, cm=cosωm, sm=sinωm, 

em=Lcos(θm−ψ)/L0−1, α1=1+em and γm=Lsin(ψ−θm)L0 (See Fig. A1 for symbols). The axis of the 

considered beam initially is taken as horizontal, therefore φ=0. The matrix S is defined as follows 
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Bm matrix is as follows 
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Fig. A1 Plane beam element with arbitrarily oriented reference configuration (Felippa 2013) 

 

 
The geometric stiffness matrix KG is given as follows 
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in which Nm and Vm are the axial and shear forces which are evaluated at the midpoint. The internal 

nodal force vector is as follows Felippa (2013) 
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where z
T
=N V M. The external nodal force vector can be expressed as follows 
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where fX, fY are the body forces, tX, tY, mZ are the surface loads in the X, Y directions and about the 

Z axis. 
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